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Abstract

Cognitive maps support inference and planning by representing associations between
experiences encoded in memory. These map-like representations are thought to carry
information not only about directly observed links but also about longer paths. The ability to
make judgments based on multi-step associations varies with one’s experience in an
environment and with changes in memory abilities across the lifespan. However, it remains
unclear exactly how representations of associative structure are influenced by learning curricula
and memory constraints. Prior studies have suggested a tradeoff: memory representations can
either be more integrated to improve inference, or more separated to recall distinct direct
associations. Whether overlapping associations are experienced nearby in time (interleaved) or
spaced apart (blocked) can bias memory representations toward integration or separation.
However, key recent findings about how blocked versus interleaved experience bias integration
or separation have been inconsistent. Here, we introduce a computational framework that helps
reconcile these apparent discrepancies. Using neural network simulations of three separate
memory-guided inference tasks, we show that variations in memory capacity and the sparsity of
neural codes interact with learning sequence to shape network representations. Specifically,
blocked learning promotes integration when memory capacity is low, while interleaved learning
promotes integration when memory capacity is high. Integration is especially likely to result from
representations formed when neural codes are both sparse and distributed. These results offer
a principled computational account of how flexible, map-like representations can arise from
experience and suggest avenues for individualized memory interventions to improve inference,
generalization, and planning.

Keywords: cognitive maps, spatial navigation, associative inference, neural representations,
memory capacity, sparse and distributed coding, training schedules.

1. Introduction

Individuals extract both commonalities and distinctions across related experiences. For
instance, one may integrate similarities across experiences to support inference and
generalization (e.g., realizing that the parking spaces nearest to building entrances are usually
unavailable). Conversely, one might encode distinct details of an event (e.g., parking under a
tall tree) to separate this episode from similar ones to achieve a specific goal (e.g., locating your
car at the end of the work day). This ability to detect regularities across episodes is thought to
be critical for forming higher-order knowledge structures, such as cognitive maps. Just as
spatial maps support navigation and path integration, the cognitive map hypothesis proposes
that abstracted mental representations can support structural inference about unseen
connections and paths (Tolman 1948; Collett & Graham, 2004; McNaughton et al., 2006).
However, it is less clear how such cognitive maps are assembled from distinct experiences.
Here, we examine the conditions under which known episodic memory processes of integration
and separation can drive the formation of complex knowledge structures such as spatial or
cognitive maps.

The cognitive map framework has been extended to encompass abstract, non-spatial
associative networks, referred to as cognitive graphs (Chrastil & Warren, 2014; Yoo et al.,
2024). According to the cognitive graph hypothesis, cognitive maps can be formally described
as graphs with nodes defined as stimulus features and edges defined as transitions or
associations between nodes. These nodes and edges can be extracted from experience and
refined through episodic memory encoding processes (Yoo et al., 2024). Research has
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identified distinct neural representations associated with storing episodic details: integrated
memories may support generalization and inference, whereas separated memories may reduce
interference among individual episodes (Bakker et al., 2008; Kumaran & McClelland, 2012;
Schlichting et al., 2014, 2015; Zhou et al., 2023). Specifically, pattern-separated representations
may protect against memory interference by storing related memories as distinct, non-
overlapping codes (Bakker et al., 2008; Bennett & Stark, 2016). In contrast, integrated
representations may facilitate schema and concept formation by emphasizing shared similarities
across related events (Mack et al., 2018; Schlichting et al., 2014). Of particular note for the
study we present here is that this balance may be mediated by the sparsity of neural codes
(Barak et al. 2013).

Prior work in episodic memory also suggests that the sequence of information
presentation during learning biases whether neural codes become integrated or separated
(Beukers et al., 2024; Schlichting et al., 2015; Zhou et al., 2023). The idea that one can shape
the nature of memory representations simply by manipulating study sequences holds promise
for developing interventions that can optimize learning in different contexts. For instance,
(Schlichting et al., 2015) used an associative inference task in which participants encoded
overlapping episodes (e.g., AiB1 and later B1C,, where Az, B1, and C; represent distinct
elements of an episode). They showed that blocked learning, during which all AB pairs are
presented before BC pairs, promoted integration: A and C items showed increased neural
similarity after learning (Figure 1A). The authors suggested this occurred because blocked
learning strengthens AB representations before introducing overlapping (BC) episodes, enabling
retrieval and updating of existing memories rather than encoding new ones separately (Morton
et al., 2017; Zeithamova, Schlichting, et al., 2012). By contrast, interleaved learning, in which
AB and BC episodes are presented nearby in time and in shuffled order, increased the potential
for interference, and was associated with greater neural differentiation of A and C after learning,
consistent with adaptive separation and interference resolution (Chanales et al., 2021;
Schlichting et al., 2015). However, another study (Zhou et al., 2023) using a similar experiment
design reported the opposite: blocked learning produced highly specific, localized
representations, whereas interleaving yielded more distributed representations that supported
generalization. These conflicting findings complicate efforts to identify the conditions under
which integrated versus separated representations emerge.

One possible source of inconsistency lies in how representational changes are
examined and measured across studies. Theories suggest that stronger pre-established AB
memories increase the likelihood that B items will cue related AB memories (Schlichting et al.
2015; O'Reilly and Rudy 2001; McClelland et al. 2002; Winocur et al. 2010; Leutgeb et al. 2004)
and encourage memory updating (integration) via pattern completion. In contrast, other theories
suggest that presenting overlapping episodes closer in time promotes integration (Estes, 1955;
Howard & Kahana, 2002; Zeithamova & Preston, 2017; Zhou et al., 2023). Thus, blocked
learning may support integration by strengthening prior representations, whereas interleaving
may do so by placing related episodes in close temporal proximity to emphasize their
similarities.

This tension raises a natural question: how should training curricula be optimized to
promote integration of related episodes? Blocking strengthens AB memories before BC is
introduced, whereas interleaving highlights commonalities across overlapping events, albeit with
higher cognitive load. The optimal approach may depend on individual differences in
susceptibility to interference. Individuals prone to interference may benefit from blocked training,
whereas those with stronger memory capacity may benefit from interleaving. Indeed, prior work
using a graph-structured associative inference task showed that individuals with weaker
memory abilities performed better on graph-based inference judgments when overlapping
edges were learned in a blocked sequence, whereas those with stronger abilities performed
better when all edge pairs were interleaved (Noh et al., 2025).
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Beyond memory capacity, representational coding strategies may also shape outcomes.
Schlichting et al. (2015) and Zhou et al. (2023) observed evidence of integration/separation in
different neural subregions and pathways, suggesting that coding biases within those regions
may have contributed to their divergent findings. Schlichting et al. (2015) found integration in
anterior hippocampus and posterior mPFC, but separation in posterior hippocampus and
anterior mPFC. Zhou et al. (2023), by contrast, emphasized differences between the
monosynaptic (MSP) and trisynaptic (TSP) hippocampal pathways, showing that blocking
versus interleaving produced more localist versus distributed codes.

These differences highlight an important point: the way neural populations represent
information can vary across individuals and brain regions. Some representations (sparse neural
codes) emphasize efficiency by recruiting only a small subset of neurons to encode a stimulus,
producing distinct, minimally overlapping codes. Other representations (distributed neural
codes) emphasize generalization by recruiting many neurons, leading to overlapping codes that
highlight shared features across experiences. At an individual level, factors such as age and
memory ability can bias which coding strategy is favored: older adults, for instance, may be less
likely to maintain sparse codes and more likely to rely on distributed, overlapping codes relative
to younger adults (Wilson et al., 2006; Yassa & Stark, 2011). Within individuals, different
hippocampal subregions also exhibit distinct coding biases. The dentate gyrus, with its dense
population of granule cells and strong inhibitory circuitry, is well-suited for sparse coding and
pattern separation. In contrast, CA3, with its recurrent collaterals, is more prone to distributed
coding that supports pattern completion and generalization (Kumaran & McClelland, 2012;
Leutgeb et al., 2007; Neunuebel & Knierim, 2014; Treves & Rolls, 1994). Thus, both individual-
and regional-level biases in encoding strategy may influence whether overlapping experiences
are prone to integration or separation during learning. Specifically, the sparsity of neural activity
may further define how separated versus integrated information is represented (Benna & Fusi,
2021; Cayco-Gajic et al., 2017; Cayco-Gajic & Silver, 2019; Chavlis et al., 2017). Sparse coding
arises when relatively few, locally clustered neurons are recruited to encode a stimulus. This
strategy reduces overlap across memories and helps minimize interference by decorrelating
inputs, often through inhibitory feedback mechanisms (Tetzlaff et al., 2012; Wiechert et al.,
2010). Distributed coding, by contrast, arises when many neurons spread across a network are
recruited, producing overlapping representations that emphasize shared features. This strategy
supports generalization and increases overall representational capacity (Hinton, 1984;
McClelland & Rumelhart, 1988; Rigotti et al., 2013). Importantly, a balance between sparse and
distributed codes may support an optimal tradeoff, capturing complex patterns with both
efficiency and robustness (Hinton & Ghahramani, 1997).

In light of these considerations, the present study aims to clarify the mechanisms by
which sequencing effects shape memory representations and, ultimately, cognitive map
formation. We propose that reconciling conflicting findings regarding sequencing effects
requires systematically examining how individual differences in memory capacity and coding
strategies interact with learning schedules. Both sources of variability (memory capacity and
coding strategy differences) may yield different representational outcomes in response to
blocked or interleaved learning sequences. Specifically, we hypothesize that individuals with
lower memory capacity are more vulnerable to interference, and therefore may benefit from
blocked learning. By first strengthening AB associations before introducing overlapping BC
associations, blocked training reduces cognitive load and increases the likelihood that BC
episodes update existing AB memories rather than compete with them (Schlichting et al., 2015).
In contrast, individuals with higher memory capacity may tolerate greater load and benefit more
from interleaved training, which presents overlapping associations in close temporal proximity
and encourages structural inference across episodes (Zeithamova & Preston, 2017; Zhou et al.,
2023).
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Critically, we also predict that capacity effects will be further tuned by differences in
coding strategies. Sparse coding, which emphasizes decorrelation and separation, may amplify
the benefits of blocking by reducing interference across sequentially presented events.
Distributed coding, which emphasizes overlap and generalization, may instead amplify the
benefits of interleaving by highlighting similarities across temporally adjacent episodes.
Together, these considerations point toward an interaction between learning schedule, memory
capacity, and representational coding strategy as a key determinant of whether integration or
separation emerges during learning.

To test this framework, we use feedforward neural network simulations of published
associative inference tasks (Schlichting et al., 2015; Zhou et al., 2023). Our models
systematically manipulate memory capacity and sparsity constraints to evaluate how these
factors affect the representations formed under blocked vs. interleaved training. This approach
allows us to explain the conflicting findings with regard to sequencing effects observed in prior
studies, and to identify conditions under which integration versus separation may be favored.
We then compare the qualitative patterns that emerge from model simulations under our
framework to performance in a graph-structured multi-step associative inference task, which
showed variability across the lifespan and with memory capacity (Noh et al., 2025; Rmus et al.,
2022). Our models show that differences in memory capacity and coding strategies can be
sufficient to generate the kinds of divergent patterns observed in prior empirical work with
respect to how training conditions shape cognitive representations. In this way, we demonstrate
the potential utility of our framework for interpreting sequencing effects and motivate future
empirical tests under this account.

2. Method

2.1. Associative inference task (simple triad graph)

2.1.1. Training with blocked and interleaved schedules Training datasets were generated to
mimic experimental data collected by Zhou et al., (2023) and Schlichting et al., (2015).
Specifically, the datasets were constructed with two kinds of stimulus “schedules”: hybrid and
pure. The hybrid schedule (Zhou et al., 2023) includes both blocked and interleaved curricula
within a single learning phase, whereas the pure schedule (Schlichting et al., 2015) includes
either a blocked or an interleaved curriculum in separate, counterbalanced learning phases. In
the blocked schedule, all direct associations of one type (A,B) are presented before any
overlapping associations (B,C) are introduced. The interleaved schedule shows the (A,B) and
(B,C) associations in a random order.

For the hybrid schedule, there were 360 training trials. We one-hot encoded 36 items.
From these, 18 were randomly sampled for training. The 18 items were grouped into six triads
(A, B, C). During training, triads were presented as overlapping pairs (AB or BC). In the blocked
condition, all of one pair type (e.g., AB) were presented before the overlapping pairs (e.g., BC).
In the interleaved condition, AB and BC pairs were interleaved throughout the learning phase.
Each direct pair type was shown 30 times. The order of A, B, and C within pairs was
randomized, and trials were randomized following the blocked or interleaved curriculum. Pairs
sharing the same A, B, or C item were never shown consecutively.

For the pure schedules, we created two schedules, each with 360 trials (the same as the
hybrid schedule). The key difference is that the pure schedule separates blocked and
interleaved conditions into two distinct, counterbalanced learning phases (blocked first vs.
interleaved first). For the pure blocked schedule, we used the 180 blocked trials from the hybrid
schedule to improve comparability. Similarly, for the pure interleaved schedule, we used the 180
interleaved trials from the hybrid schedule, allowing direct comparison between formats (pure
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vs. hybrid). Although raw similarity metrics differed somewhat by format, blocked vs. interleaved
training did not produce fundamentally different patterns of results (e.g., blocked > interleaved in
pure vs. hybrid). For clarity, we therefore collapsed pure blocked with hybrid blocked and pure
interleaved with hybrid interleaved into two conditions—blocked and interleaved—for all main
analyses (see Supplementary Figure 1 for disaggregated values).
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Figure 1. Tasks and models. (A) Structural inference in simple triad graphs. Models are
trained to predict paired sequences then tested on an inference task. Inset: Triad with solid
arrows showing observed associations and dashed line showing the unobserved association
that must be inferred. Items were organized into 6 triads (colors) in a blocked (open circles) and
interleaved schedule (filled circles). (B) Neural networks were also trained to perform structural
inference across an entire graph. A different set of models were trained to learn a sequence of
edges drawn from a latent graph structure. Edges are colored according to the blocked
schedule, where half the models were trained with a blocked schedule. In this schedule, 4 mini-
blocks were created where each block contained 4 edges that did not share any nodes with
each other. (C) The neural network was trained using a loss function that penalized for errors in
predicting the next item, given the current item (Chandak et al., 2024). The loss function also
contained a term that encourages sparse representations with low activation strengths, inspired
by energy constraints in biology. A scaling parameter, a, controls the degree of sparsity.
Different memory capacities were simulated by varying the size of the encoding (E1, E2) and
decoding (D1, D2) layers. (D) The loss function encourages localist versus distributed codes in
the 18 embedding layer units (circles). Sparser activation (lighter colors) characterize more
localist versus distributed codes by encouraging fewer units to activate (see Supplementary
Materials, section on Defining sparsity). We can also quantify the information content by
calculating the code’s entropy, where higher entropy indicates a more diverse and distributed
pattern of activation to encode the same stimulus.

2.2. Structural inference task generalized to a complex graph

2.2.1. Training with blocked or interleaved schedules. Models were trained to perform a
complex associative inference task designed to approximate shortest-path distance judgments.
We trained 16 pairs (edges) of 12 stimuli (nodes) in either a blocked or interleaved schedule
using one-hot codes for each stimulus. For both schedules, pairs were drawn from the edges of
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an underlying, undirected and unweighted, graph (Figure 1B). The 16 pairs were repeated 44
times each, yielding 704 trials. In the interleaved schedule, trial order was randomized during
the learning phase. In the blocked schedule, pairs were grouped into four mini-blocks, each
containing four unique object pairs. To reduce potential for memory interference during
encoding, the 4 pairs presented in each mini-block shared no overlapping nodes (Figure 1B).

2.3. Neural networks To simulate individual differences in sequence learning, we used feed-
forward neural networks with five hidden layers (two encoding, one embedding, and two
decoding). For the simple triad task, we trained 100 models per schedule type (hybrid and
pure). For the pure schedule, training was counterbalanced: 50 models were trained with pure
blocked then pure interleaved schedules, and 50 with pure interleaved then pure blocked
schedules. We trained 200 models (100 each for hybrid and pure schedules) for three memory
capacities—low, medium, and high—and across 11 sparsity constraints (described below),
yielding 6,600 trained models in total. For the complex graph task, we trained 25 models for
each of two schedules, 11 sparsity constraints, and five levels of memory capacity, totaling
2,750 models.

Differences in coding strategy were operationalized systematically and quantitatively.
Distributed activation can be indexed by the entropy of stimulus-evoked population activity, with
higher entropy reflecting more distributed coding. Sparsity was indexed by the inverse of
activation strengths, with smaller values indicating that only a few units were recruited to encode
a stimulus in a more localist manner. Thus, coding style was measured along continuous
dimensions, allowing us to test how sparsity and distributedness interact with learning schedule
and memory capacity to shape representational outcomes. Below, we detail how we
encouraged specific coding strategies using different forms of regularization during training.

2.3.1. Unsupervised learning The model was first pre-trained to reproduce each item using a
loss function similar to an autoencoder model. This stabilized task training and provided pre-
task representations of each item, which were later compared to post-task representations to
evaluate changes after learning.

Pre-training was performed for 100 epochs with a loss function defined by a mean
squared error term plus sparsity constraint:

Lreconstruction = MSE + a * lell + (1—G) * Z(Wi)z s (1)

where Lreconstruction s the total reconstruction loss, MSE is the mean-squared error between the
reconstruction and original input, w; are individual network weights, o is the L1 regularization
strength (Lasso penalty), a, is the L2 regularization strength (Ridge penalty), Ylwil is the L1 norm
(sum of absolute weight values), and ¥ (wi)? is the L2 norm (sum of squared weight values). a ranged
from 0.0 to 1.0 in increments of 0.1.

Experimentally, pre-training was needed to provide a baseline for representational
similarity analysis (RSA). Given our aim to reconcile discrepancies in prior literature, we
followed the analysis approach from Schlichtling et al. (2015), showing how representations
change after successful learning. Practically, pre-training and regularization (L1 and L2 norms)
were necessary to achieve above-chance performance compared with shallower or non-
pretrained networks. These steps allowed the task model to begin with a representation that can
at least support accurate reconstruction by initializing the weights in a space that respects the
distinct items, instead of randomly projecting the stimulus into an initialization with a noisy
space.



2.3.2. Supervised learning Following unsupervised pre-training, networks were trained on the
dataset described above with a batch size of 32 for 100 epochs. Each trial consisted of a pair:
the network received the first one-hot encoding as input and was tasked with producing the
second one-hot encoding as output. In this supervised learning phase, the network was trained
with binary cross-entropy loss.

We selected layer sizes, embedding layer size, learning rates, and weight decay by grid
search across five random seeds. To improve performance while reducing overfitting, each
layer included batch normalization, ReLU activation, and dropout regularization (0.3). The linear
output layer used a softmax function to produce probability distributions for predicted outputs.
To prevent vanishing or exploding gradients, weights were initialized with Xavier uniform
initialization (and biased to a small constant, 0.01, to utilize more neurons during initial stages of
training) with the AdamW optimizer using weight decay=0.001 and learning rate=0.001. This
provides better regularization for the model. Training efficiency was optimized with a
ReduceLROnNPIateau learning rate scheduler. This scheduler monitors the loss, and when the
loss fails to decrease across epochs (patience=20 epochs), it reduces the learning rate by a
factor of 0.5 to a minimum of 0.00005. This adaptive learning rate mechanism was used to help
the model converge in later stages of training.

To model individual differences in memory capacity, we trained low-, medium-, and high-
capacity networks. Low capacity models had encoding/decoding layer sizes of (6, 3).
Importantly, we selected these layers to be smaller than the input layer, enforcing a many-to-
one mapping of incoming information to simulate conditions of increased interference pressure.
In contrast, high memory capacity models had sizes of (256, 128), supporting one-to-one
mapping of inputs, with ample space for pattern separation. Medium memory models had sizes
of (32, 16). All models used an embedding layer of size 18, chosen to match the input size and
stabilize integration/separation metrics such as cosine similarity, which are sensitive to
dimensionality of the vectors.

To better interpret the effects of our manipulations, we included two separate encoding
and decoding layers from the embedding layer that either reduce or expand the input. We
decided on the depth of two encoding/decoding layers following prior work comparing models
with similar architecture to human performance data (Noh et al., 2025). Here we further sought
to manipulate the size of the layers to allow for both compression-expansion and expansion-
compression dynamics, which have been shown to support learning and generalization (Farrell,
Recanatesi, Moore, Lajoie & Shea-Brown, 2022; Ito & Murray, 2023). Finally, to better compare
differences between network representations, we used an additional fixed-size embedding layer
to facilitate cross-model comparison while isolating memory capacity manipulations. In practice,
the size of the medium and high capacity neural networks were chosen to improve inference
performance across tasks, as prior work using similar but smaller models performed only
modestly above chance (Noh et al., 2025). For additional details on layer-size choices and how
they relate to the human literature, see the Supplementary Materials (section on Memory
capacity and representational dimensionality).

2.3.3. Supervised learning loss function to encourage integration or separation. Both
Integrated or separated representations may support successful AC inference. Integrated
representations are thought to be useful because they distribute information across
representational units, allowing for quick and efficient generalization between integrated AC
item representations (Zhou et al., 2023). However, these representations can be susceptible to
memory failures and false memories, as integrated representations make it difficult to
distinguish individual memory episodes from inferred ones. Separated representations are
thought to enhance memory precision because they are encoded with more local and sparse
properties that distinguish A from C and improve resistance to interference. However, making
the AC association may then require a more explicit and costly retrieval process of separate A
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and C representations (e.g., retrieving separate AB and BC memories to infer the AC
relationship).

We use these neural networks to investigate how representations influence inference
and how learning schedules shape those representations. Prior work showed that specific
models biased toward either separated (localist) or integrated (distributed) representations
improved performance under blocked or interleaved learning, respectively (Zhou et al., 2023).
However, those models also differed in other architectural respects. To simplify the comparison,
we varied separated versus integrated representation types within the same class of
feedforward neural networks. We achieved this by using a loss function that encouraged either
more separated or more integrated internal representations, which in turn could help or hinder
AC inference under blocked or interleaved schedules. L1 and L2 regularization encourage
localist and distributed representations, respectively. Therefore, by combining them, we can
manipulate the balance of separation and integration using an elastic net regularization loss
function:

Lprediction = BCE +a * lell + (1—(1) * Z(Wi)z 5 (2)

where Lprediction is the total prediction loss, BCE is the cross-entropy classification loss, w; are
individual network weights, o is the L1 regularization strength (Lasso penalty), a, is the L2
regularization strength (Ridge penalty), Ylwil represents the L1 norm (sum of absolute weight
values), and ¥ (wi)? represents the L2 norm (sum of squared weight values). Eleven values of o were
tested (0.0 to 1.0 with a step size of 0.1). Intuitively, as the a * YIwil term becomes larger, the
representations become more localist and separated: this L1 regularization drives many weights to
zero and introduces sparsity. In contrast, as the (1-a) * ¥(wi)? term becomes larger, the
representations become more distributed and integrated: this L2 regularization discourages large
weights but does not drive them to zero, smoothing the weight distribution across units. Lprediction

defines an error which is propagated to adjust how representations are updated to balance a
compression trade-off between efficient representations for association and the fidelity of that
representation.

2.4. Measuring separation or integration of representations

We used entropy to quantify whether the loss function shifted stimulus encoding toward more
distributed/integrated versus more sparse/separated representations. Entropy measures the
“spread” of a representation, with higher entropy indicating more distributed coding. A
distribution with maximum entropy has a uniform spread of values, whereas one with minimal
entropy has only a single value (Figure 1D). To calculate entropy, each item was input to the
network to produce a vector of activations in the embedding layer. This activation vector was
then converted into probabilities using a softmax function: P(x;) = exp(x;) /X;  exp(x;) .

These probabilities were used to calculate entropy:
H(X) = =X iP(x)) log P(xi), 3)

where X is the representation, x; are possible items in the representation, and P(x;) is their
probability.

Sparsity was used as a complementary measure, capturing the suppression of activation
when representing a stimulus. The higher the sparsity, the lower the activity used to represent
an item. To quantify sparsity, items were input into the network to produce activations in the
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embedding layer. The sparsity is defined as the inverse of collective activity strength (for
discussion of alternative definitions of sparsity, see the Supplementary Materials section on
Defining sparsity).

2.5. Analysis

2.5.1. Indirect AC inference in simple triad graph task. Our primary analysis centered around
the integration or separation of AC representations after learning. We input the18 learned items
and recorded the network’s internal representation of A and C. We then calculated cosine
similarity between A and C vectors. Intuitively, higher cosine similarity reflects more integrated
representations, whereas lower cosine similarity reflects more separated representations.

2.5.2. Judgment of relative distances in complex graph task.

In the complex graph task, models judged which of two target nodes was closer to a source
node (Rmus et al. 2022; Noh et al. 2025). True distances were defined as the shortest paths in
the graph, (i.e., the fewer edges between source and target). Models chose which of the two
target nodes was closer to the source object based on the indirect relationships of the graph
learned during training. Specifically, the model chose the target node with smaller cosine
distance to the source node, thus approximating the shorter distance. Trials varied in difficulty
based on the degree to which the target node options differed in the topological distance from
the reference node, in which a difference of 1 was the most difficult, 2 had intermediate
difficulty, and 3 was the easiest. Accuracy was computed within each distance bin.

Each of the 12 nodes served as a source node 17 times, for a total of 204 trials. The two
target node options for each trial were randomly selected with three constraints. First, target
pairs at relative distance 3 were deterministically included to ensure sufficient sampling of the
easiest trials. For example, when node 0 was the source, the 17 trials necessarily included pairs
such as 3-10, 3-11, 4-10, and 4-11, as these corresponded to distance differences of 3. Second,
neither target node was directly paired with the source node in the underlying graph. Third, the
two target nodes were required to differ in distance from the source node. The same set of 204
trials were used to test all models.

2.5.3. Pre-study versus post-study representational change in the simple triad inference
task.

Following prior work (Schlichting et al., 2015), we examined how AC representations changed
after learning. Neural representations of each item were measured both before and after study.
For each schedule (blocked and interleaved), similarity between A and C items was calculated
within and between ABC triads. Comparisons of AC similarity across schedules (i.e., between
blocked and interleaved conditions) were excluded. This procedure produced representational
similarity matrices in which rows corresponded to C items and columns corresponded to A items
(Figure 3A). Cosine similarity values defined each matrix element, measuring the similarity of A
and C items both before and after learning. Learning-related change in representational
similarity (ARS) was calculated as: post-study minus pre-study matrix similarities, with positive
values indicating the magnitude of integration and negative values indicating the magnitude of
separation. Following methods analogous to those used in prior work (Schlichting et al., 2015),
only successfully learned pairs (accurately discerning that A was more similar to C than a foil)
were included in the analysis.

Using this ARS approach, the resulting matrices were compared to two hypothesized
representational structures. The first hypothesized structure is one in which the blocked

schedule leads to more similar AC representations (blocked — integration) whereas the
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interleaved schedule leads to more dissimilar AC representations (interleaved — separation).
The second hypothesized representational structure is the opposite, in which the interleaved
schedule leads to more integrated AC representations (interleaved — integration) while the

blocked schedule leads to more separated AC representations (blocked — separation).

2.5.4. Pre-study versus post-study representational change in the complex graph task.
We applied a similar approach to the complex graph task. Pre-study representations were
defined as the embedding layer activations of each one-hot input after pre-training with an
autoencoder. A cosine similarity matrix was then constructed across all nodes to measure the
degree of integration. There were two pertinent post-study representations for each trial in the
judgment task. Given two options, the participant chose either the correct or incorrect target. We
obtained a representation for both the correct target and the incorrect target. We then tested
how integrated the correct target was with the source node, as well as how integrated the
incorrect target was with the source node. Using the pre-study and post-study values, we
calculated the change in integration for each target-source pair (Ar) as post-study similarity
minus pre-study similarity. Higher cosine similarity differences indicated that representations
became more integrated after the training phase. Finally, we calculated the difference in
representation between the cosine similarity of the correct target with the source node and that
of the incorrect target with the source node: (Ar correct - Arsource) - (Afincorrect - Arsource). We would
expect this difference to be larger for easier trials than for harder trials. This prediction followed
from the assumption that the correct node (i.e., target closer to the source node) should be
represented with greater cosine similarity to the source than is the incorrect target node,
particularly in the distance difference = 3 trials compared to the distance difference = 1 trials.

3. Results

We report the results of how memory capacity affects the integration of representations
for items A and C following training. Throughout, we operationalize integration as higher cosine
similarity between the embedding layer’s representation of A and C. Viewing the learning curves
across all models, higher memory capacity allowed training to converge more quickly to an
asymptote of the AC integration curve than lower memory capacity (Figure 2A). Importantly, the
models were not explicitly trained to increase AC integration; rather, integration emerged as a
byproduct of predicting the next item in a sequence. A multiple regression analysis indicated
that with greater memory capacity, the interleaved schedule produced greater AC integration
(adjusted R2=0.09, F(11, 989988) = 9298, 3 = 0.31, p < 0.001). However, integration was on
average lower than representations produced from blocked learning across memory levels (8 =
-0.18, p < 0.001). There was also a three-way interaction between epoch, schedule, and
memory capacity, such that interleaved learning produced more integrated representations
under high memory capacity, whereas blocked learning produced more integrated
representations under low memory capacity (f = 0.07, p < 0.001). Together, these findings
suggest that exposure to different training sequences affects the degree of integration and
separation in learned representations differently as a function of memory capacity.

While effects on separation and integration were evident from the training sequence, we
next assess how representations relate to task performance following training. The blocked
schedule with low memory capacity is associated with greater AC cosine similarity across all
triads and models, whereas an interleaved schedule with high memory capacity is associated
with greater AC integration (Figure 2B). Integration for target pairs (within triads) was greater
than the integration for foils (between triads; t(68240) = 147.18, p < 0.001). The results of a
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multiple regression analysis suggest that there were main effects of memory capacity (adjusted
R2=0.01, F(5, 34140) = 60.35, Bmemory = -0.11, p < 0.001) and schedule (Bschedule = 0.05, p <
0.001) on AC cosine similarity. Moreover, there was an interaction between schedule and
memory capacity on AC cosine similarity (Bmemory*schedule = 0.27, p < 0.001). The blocked
schedules have higher AC integration with low memory capacity, whereas the interleaved
schedules have higher AC integration with high memory capacity. These results are consistent
with the notion that the type of schedule that best supports AC integration depends on individual
differences in memory capacity.
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Figure 2. Encoding the indirect AC association with integrated representations. (A)
Integration is operationalized as the cosine similarity between the internal representations of A
and C for different memory capacities as the models are exposed to items from different
schedules. The cosine similarity between A and C was greater for blocked versus interleaved
schedules in the low and medium memory capacity conditions. In contrast, for high memory
capacity, the cosine similarity between A and C was greater for interleaved versus blocked
schedules. (B) AC similarity for every triad and model. AC integration, as measured by cosine
similarity between A and C, benefits from blocked schedules when memory capacity is low and
interleaved schedules when memory capacity is high. The similarity of AC is consistently greater
than foils containing one element from a different ABC triad trained under the same schedule.
Error bars depict 95% confidence intervals.
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Having shown that memory capacity affects how integrated AC representations become
following blocked versus interleaved learning schedules, we next show in more detail how AC
representations change after learning for triads where the model performed successful AC
inference. For successful trials, we measure representational change as the change in AC
cosine similarity within and across triads for each model post-training minus the AC cosine
similarity pre-training (Ar). Using the raw cosine similarities of pairs following learning (Figure
3A), we constructed this cosine similarity matrix for each AC pair within and across triads for the
same schedule (Figure 3B). Positive values suggest learning resulted in integration of AC
information, whereas negative values suggest that learning lead to more separation of AC
information. Then we compare the empirical matrix to two hypothesized representation
matrices, one where blocking leads to integration and interleaving leads to separation
(consistent with (Schlichting et al., 2015), and the other where blocking leads to separation and
interleaving leads to integration (consistent with (Zhou et al., 2023).

We show that whether blocked or interleaved schedules lead to integrated or separated
AC representations depends on memory capacity (Figure 3C). Specifically, models with low
memory capacity produce more integrated representations after blocked training and separated
representations after interleaved training, whereas models with high memory capacity showed
the opposite pattern: they tend to form integrated representations after interleaved training and
separated representations after blocked training. The results from a multiple regression analysis
support this observation (adjusted R?=0.02, F(5, 12062), Bschedule*memory = 0.46, p < 0.001).
Notably, this result cannot be fully explained by confounds such as catastrophic interference
between representations or poor direct pair learning (Supplementary Figures 3 and 4). Similar
to the analysis of AC integration after exposure to different training sequences (Figure 2), we
find an increase in AC integration from pre-study to post-study for the interleaved schedule as
memory increases from low to high and vice versa for the blocked schedule.
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Figure 3. Memory capacity explains differing effects of learning schedule on AC
representation integration. (A) Direct AB (green) and BC (blue) and indirect AC (red) pair
similarities for models trained using blocked or interleaved schedules. (B) To test if integration
or separation supports successful inference, we follow prior analysis analyzing the change in
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similarity after learning versus before learning for only the models with accurate inference.
Schematic of the representational similarity analysis of post-study changes in representations
compared to pre-study representations. Adapted from Schlichtling, et al. (2015). Left:
Hypothesized changes when the blocked schedule leads to more integrated AC
representations. The diagonal entries are AC similarities within distinct ABC triads. The off-
diagonal entries are AC similarities across triads but still within either the blocked or interleaved
schedule. Right: hypothesized representational similarity matrices for when interleaved
schedules lead to more integrated AC representations. (C) When memory capacity is low,
successful performance on the AC inference task arises from the blocked schedule tending to
lead to more integrated representations. In contrast, when memory capacity is high, successful
performance arises from the interleaved schedule tending to lead to more integrated AC
representations.
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Figure 4. Effects of sparse and distributed codes on the integration of AC
representations. (A) A schematic demonstrating how local and distributed coding can be
understood by the receptive field of each unit (circle) that responds to a stimulus (point). We
guantify these concepts by measuring how distributedness differs according to the information
content (entropy) and magnitude (sparsity) of activation in embedding layer units. The orange
distribution is localist because it substantially overlaps with 0, indicating that many units are
inactive. The blue curves are more distributed codes because most units are involved in coding
for stimuli. The sharper blue curve (low entropy) is less distributed but has lower information
content relative to the flatter blue curve (high entropy) that has a higher probability of inactive
units and higher information content. (B) Different models trained with more constraints on
localist memory encoding produced embedding representations with more sparsity (Pearson’s
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r(39,036) = 0.07, p < 0.001) and less entropy (r(39,598) = -0.07, p < 0.001). Models with
different sparsity and distributedness constraints mimic mixed representations in hypothesized
information processing pathways that use representations with both low and high sparsity or
distributedness. (C) When representations are more sparse and less distributed, AC inference
seems to benefit from the blocked schedule encouraging integrated representations. In contrast,
when representations are less sparse and more distributed, successful AC inference tends to
benefit from the interleaved schedule encouraging more integrated AC representations.

We next show that, beyond the memory capacity of the model, encoding properties of
the network also affect how integrated AC representations become after learning. Prior work
indicated that interleaved schedules confer their advantages to AC inference by increasing the
distributedness of integrated representations (Zhou et al., 2023). Here we ask whether models
biased toward using distributed versus sparse representations are more likely to form integrated
representations (of related A and C items) after blocked or interleaved training conditions. We
operationalize sparsity as the inverse of the activation strengths and the distributedness as the
entropy of the activation magnitudes (Figure 4A). We again analyze the successful inference
trials and measure changes in AC integration, but now separate the results by models trained
with various sparsity versus distributedness constraints. This constraint was operationalized by
the parameter a (Figure 4B). Here we discretize the models into ones where representations
were constrained to be less sparse and more distributed (a = 0 to 0.3), a mixture of sparsity and
distributedness (a = 0.4 to 0.6), and more sparse and less distributed (a = 0.7 to 1). We
performed a multiple regression analysis to test the effects of sparsity on performance (adjusted
R2=0.03, F(11, 6576) = 22.05, p < 0.001). In general, models with greater sparsity tended to
have greater representational similarity to either hypothesized integration process ( = 0.07, p =
0.0001). Moreover, the interleaved schedule tended to benefit from greater memory capacity
than the blocked schedule (Bschedulermemory = 0.51, p = 0.0001). Blocked representations appear to
benefit from high sparsity and low distributedness, whereas interleaved representations benefit
from high distributedness and low sparsity (Bschedule*sparsiy = 0.13, p < 0.001; Figure 4C). This
interaction was further moderated by the memory capacity (Bschedule*sparsitymemory = 0.13, p =
0.002). These results support the notion that the tendency to form integrated representations
after blocked versus interleaved learning not only depends on memory capacity, but also
sparsity constraints.
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Figure 5. Effect of schedule on task performance depends on memory. Insets: Examples of
relative distance 1, 2, and 3 trials. The red node is the source node and the green path is the
correct choice because the terminal node is more proximal to the source node than for the blue
path. Plots illustrate improving task performance with increased memory capacity (plotted
logarithmically) and chance performance marked by the dotted line. There is a main effect of
memory capacity, where networks with higher memory tended to perform better. Networks with
low capacity benefited from blocking, whereas those with high capacity benefited from
interleaving. Easier (longer) distance judgments benefited more from interleaving than blocking.
Here we show models with low sparsity constraints (a = 0 to 0.3), which prioritize more
distributed representations with greater information content.

Having demonstrated that our model can capture the effects of memory, sparsity, and
distributedness on structural inference in simple triad graph structures, we investigate if these
findings generalize to more complex graph tasks that require higher-order structural inference
across multiple associations. To do this, we assessed model performance in a structural
inference task on a more complex graph consisting of 12 nodes and 16 edges (Figure 1B;
Figure 5 insets). Specifically, the trained models performed a relative distance judgment task.
Models were given a source node and two possible target nodes and tasked with determining
which target node was closer to the source node based on the cosine similarities between the
source and target nodes (for additional task constraints, see Methods). We found that the
trained models reproduce performance patterns seen in both the triad graph structures above
and in human performance on the same complex graph task (Figure 5) (Noh et al., 2025). The
results of a multiple regression analysis suggest that performance for both schedules improved
with increasing memory capacity (adjusted R? = 0.14, F(11, 2988), 8 = 0.22, p < 0.001) and
there was a main effect of the schedule (B = 0.25 p < 0.001) but not distance (8 = -0.08, p =
0.11) on performance. The interleaved schedule performed better than the blocked schedule as
memory capacity increased (Bschedulermemory = 0.28, p<0.001) and this effect was further
moderated by increases in the relative distance between choice options (Bschedulememory*distance =
0.26, p = 0.0002). Consistent with the models in the simple triad graph structures as well as
human performance on the same complex graph structure, the effect of training schedule on
performance appears to depend on memory capacity.
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Figure 6. Effect of sparse and distributed codes on integration of task representations.
(A) For correct trials, the integration value is calculated as how much more similar the correct
pair became after training compared to the incorrect pair. The relationship between integration
and memory differs across different levels of a. As sparsity (a) increases towards a mixture of
sparse and distributed representations, integration is more likely to occur in high memory
capacity conditions after interleaved training. (B) An analysis of the full range of sparsity and
entropy levels. When coding strategies have mixed sparsity and distributedness (mixed local
and distributed coding), high memory capacity conditions support integration when trained via
an interleaved schedule versus a blocked schedule. In contrast, when coding strategies are less
sparse and more distributed, higher memory capacity conditions support integration when
trained via a blocked schedule versus an interleaved schedule. These effects are consistent
across levels of task difficulty (distance differences).

Taken together, the above results suggest that training conditions can affect multi-step
associative inference differently for neural networks with varying capacity and coding. A series
of studies in which humans completed versions of the above tasks has suggested individual
differences in performance and neural representations (Noh et al., 2025; Schlichting et al.,
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2015; Zhou et al., 2023). Therefore, we examined whether the degree to which memory
encoding was sparse versus distributed during learning can also bias representational change
in ways consistent with human behavior in the relative distance judgment task (Noh et al., 2025)
and in the triad inference task (Schlichting et al., 2015; Zhou et al., 2023). To do this, we trained
additional models varying in memory capacity, sparsity, and distributedness across the range
described in the triad inference task and applied it to the judgment phase of the complex graph
task. For each trial of the judgment of relative distances task, we calculated the representational
change (ARS) resulting from blocked or interleaved schedules as the post-study minus pre-
study change in cosine similarity (Ar) between the correct target with the source node (ARScorrect
= Arcorrect-Arsource), @S Well as that for the cosine similarity between the incorrect target with the
source node (ARSincorrect = Afincorrect-Arsource). We then calculated how different the resulting value
was for the correct pair minus the value for the incorrect pair (ARScorect - ARSincorrect). Intuitively,
the resulting value can be interpreted as the strength of the model’s prediction which should be
larger for easier versus harder trials.

Using this methodology, we measured the changes in representation for successful
performance in the judgment of relative distances task. A multiple regression analysis suggests
that across correct trials, there was a main effect of memory capacity (adjusted R? = 0.17, F(7,
992) = 29.32, B = 0.57, p < 0.001) as well as an interaction between schedule and memory
capacity ( Bschedulermemory = -0.54, p < 0.001; Figure 6A). The interleaved schedule produced more
integrated representations when memory capacity and sparsity was high. By contrast, the
blocked schedule produced more integrated representations when memory capacity was high
and the representations were more distributed. Furthermore, there was an interaction between
memory capacity and sparsity, such that the more sparse the encoding, the less memory
capacity influenced integration (Bmemory*sparsity = -1.87, p < 0.001). The schedule also interacted
with memory capacity and sparsity to predict integration: increased integration from the
interleaved schedule, compared to the blocked schedule, was moderated by memory capacity
and sparsity (Bschedulermemory*sparsity = 2.64, p < 0.001). These results suggest that how memory
capacity is used to perform tasks relates to sparse and distributed properties of memory
encoding.

Finally, we assessed representational change across different levels of task difficulty.
The results of a multiple regression analysis suggest that the integration increased as the
relative distances increased between options (e.g., as trials became easier) (adjusted R? = 0.32,
F(19, 8215) = 203.7, B = 0.12, p < 0.001; Figure 6B) and as memory capacity increased ( =
0.43, p < 0.001). In general, the interleaved schedule resulted in more separated
representations than the blocked schedule (B =-0.19, p < 0.001). This effect was even stronger
at higher memory capacities (Bschedulermemory = -0.22, p = 0.001). This apparent conflict with
previous results where interleaving generally increased integration can be explained by sparsity
limitations. The interleaved schedule led to more integrated representations relative to the
blocked schedule when the representations were constrained to have an intermediate mixture of
sparse and distributed representations (Bschedule*sparsiy = 0.44, p < 0.001) and high sparsity
(Bschedule*sparsity = 0.17, p = 0.001). Across all models, encodings with medium (8 = 1.08, p <
0.001) and high (B = 1.54, p < 0.001) sparsity tend to have more separated rather than
integrated encoding, consistent with the notion that sparsity mechanisms produce
orthogonalized and separated representations. These results suggest that separation does not
always result from high sparsity but rather also depends on the schedule and memory capacity.
For example, the effect of the interleaved schedule on integrated representations was especially
high when representations were both sparse and distributed and memory capacity was higher
(Bschedule*capacitysparsiy = 0.61, p < 0.001). Together, these results show how sparse and distributed
memory encodings permit the formation of separated versus integrated task representations
across distinct learning conditions and as a function of individual differences in memory
capacity.
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4. Discussion

The present study aimed to provide a mechanistic account and framework of how
learning sequence, representational capacity, and coding style jointly shape associative maps.
When memory capacity is low, we hypothesized that presenting related episodes in a blocked
sequence would allow AB associations to stabilize before BC is introduced. Consistent with this
hypothesis, our models produce greater AB accuracy during and after blocked training relative
to interleaved training (Supplementary Figure 4), and this stabilization corresponds to
increased integration in the low-capacity models. When capacity is high, the system can tolerate
greater cognitive load, and interleaving overlapping pairs fosters cross-episode comparisons
that allow for integration of similarities across related episodes (Zeithamova & Preston, 2017;
Zhou et al., 2023). Coding style further modulates these dynamics: sparse codes reduce
overlap and amplify blocking benefits, while distributed codes promote overlap and amplify
interleaving benefits (Kumaran & McClelland, 2012). Together, these constraints help determine
whether integrated vs. separated representations emerge after learning.

Our framework helps reconcile previously conflicting results in the literature. Schlichting
et al. (2015) reported that blocked learning promoted integration, whereas Zhou et al. (2023)
reported the opposite (interleaving — integration). While differences in memory capacity were
not explicitly measured in the conflicting studies, there is evidence to suggest that these
differences may have driven the conflicting findings between the two studies. Schlichting and
colleagues used a “pure” schedule in which blocked and interleaved phases were learned
separately, thus reducing interference pressures and allowing AB associations to stabilize
before BC was introduced. Zhou and colleagues instead used a “hybrid” schedule in which
blocked and interleaved pairs were intermixed within a single phase, substantially increasing
cognitive load and interference pressures. The hybrid design implemented by Zhou et al. (2023)
was associated with higher exclusion rates—up to 65% in some experiments—and substantially
lower AC inference accuracy, suggesting that perhaps the results were biased by the exclusion
of participants with lower memory capacity. Our model reproduces these patterns, showing that
blocked learning generally encourages integration in low-capacity and medium-capacity

networks, but interleaving promotes integration in high-capacity networks.

Our results are also consistent with prior work suggesting that implicit temporal structure
could play a role during learning in humans, specifically for those with high memory capacity.
Because blocking reduces interference by adding temporal distance between AB and BC pairs,
the BC learning phase may trigger a new temporal context for individuals with high memory
capacity, which further separates this information from prior learning and make it difficult to draw
inferences across episodes encountered across long time delays. On the other hand,
interleaving reduces temporal distance between overlapping AB and BC pairs, which can
encourage similarity-based integration for individuals with high memory capacity. Prior work also
shows that individuals may implicitly encode temporal context and use it to organize
representations (Pudhiyidath et al., 2022; Schapiro et al., 2013, 2016), and interestingly, these
time-based relationships emerge even without any explicit representations of time in their
models (Schapiro et al., 2013, 2016). With that said, because our model’s architecture does not
include an explicit temporal-context, it cannot be used here to adjudicate between different
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forms of temporal separation (e.g., elapsed time vs. number of intervening items). Instead,
temporal proximity in humans may reflect the ease with which related information can be jointly
represented within working memory or a shared neural context. In our networks, while “time”
itself is irrelevant, alternating presentation order can serve an analogous computational role, as
overlapping associations occupy a shared representational space. Thus, while temporal
proximity may support integration in humans by maintaining access to multiple related traces in
memory, our models may achieve a comparable outcome via concurrent representational
overlap which is facilitated by the interleaved order of presentation. In high-capacity models,
interleaving provides an order of presentation which may promote integration by encouraging
concurrent representational overlap during training. This order of presentation is an abstraction
of the observation that in humans, temporal proximity of related episodes facilitates integration
(Zeithamova and Preston 2017). While related to time, the model abstraction does not
encompass the varied effects of temporal dynamics. Beyond the scope of the present models,
future models could be developed to better dissociate the influence of time, intervening
episodes, and presentation order in shaping memory representations during and after learning.
For example, models that explicitly represent temporal context or use sequence models like
recurrent neural networks can be used to test if temporal proximity benefits integration and how
it may interact with the memory capacity and sparse encoding constraints of the models
(Beukers et al. 2024; Zhou et al. 2023). Extending our framework to include representation of
temporal context or proximity as a feature (such as a decaying drift vector) could help to
systematically test how the temporal dynamics present within blocked/interleaved schedules
interact with capacity and coding to drive relational inference performance. This would be
especially relevant given evidence that high-capacity individuals may maintain temporal
structure to guide integration, whereas lower-capacity individuals may not (Noh et al., 2025).

Beyond reconciling prior discrepancies, the present results generalize to more complex
graph learning tasks. The same schedule x capacity x coding interactions that were observed in
the simple triad tasks extended to multi-step structural inference performance in a more
complex graph-learning design, providing even stronger evidence and application of our
framework. Specifically, we find that even in the graph task, blocking promotes integration in
low-capacity settings, whereas interleaving promotes integration in high-capacity environments.
While the present study does not include behavioral metrics, our simulations are consistent with
both behavioral and computational findings using the same graph learning task (Noh et al.,
2025). It is also important to note that the modeling approach used in prior work had notable
differences from the present study, yet still provide converging results in favor of our framework
(Noh et al., 2025). Conceptually, the interaction between capacity, schedule, and coding style
outlined in our framework provides a domain-general mechanism for organizing semantic,
spatial, and temporal structure. It can also be loosely applied to predict coding biases at the
regional level-such as sparse coding in dentate gyrus versus more distributed coding in CA3
(Treves & Rolls, 1994; Yassa & Stark, 2011), as well as differences at an individual level-such
as working memory capacity, to explain divergent representational outcomes across studies and
populations.

Limitations of the present work deserve emphasis and we caution against any direct
mappings of our findings to specific biological pathways or phenomena. Our feedforward
networks are intentionally minimal, isolating capacity and coding constraints and their impacts
on resulting representations of relational information. Thus they do not include specific biological
phenomena, such as consideration of complementary learning systems, recurrent dynamics, or
explicit representations of temporal context. Catastrophic interference, which has been shown to
preferentially impact blocked learning (Kumaran & McClelland, 2012), is exaggerated in
machine learning compared to human learning. Operationalizations of “integration” and
“performance” rely on representational similarity, which do not necessarily translate to
better/worse behavioral performance in humans. Our aim was to computationally test whether
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differences in memory capacity and coding sparsity can interact with training sequences to
produce distinct representational changes demonstrated previously in the literature (Zhou et al.
2023; Schlichting et al. 2015). Our results suggest that the neural network models produce the
observed effects via a compression-based integration mechanism during which overlapping AB
and BC associations become compressed to varying degrees as a function of capacity, sparsity,
and schedule. Feed-forward networks with representational bottlenecks or sparsity constraints
as implemented here are known to implement a compressive process to efficiently represent
inputs, and one well-known example is an autoencoder (Kramer 1991; Olshausen and Field
1997). Future work could test the compression and alternative algorithmic processes by directly
fitting a suite of such putative process models to human behavioral or neurocimaging data. The
relative simplicity of the model, however, also represents a strength: by stripping assumptions to
a minimum, our framework isolates the computational role of memory and coding constraints
and unifies conflicting empirical findings. These potential limitations are further discussed below.

One potential concern regarding the interpretation of our findings might be that feed-
forward networks such as those used here are highly susceptible to catastrophic interference,
and especially so for lower capacity models under blocked training conditions (see
Supplementary Materials, section on Catastrophic interference as a possible modeling
confound). In this case, the observed pattern of AC integration and subsequent inference
performance may simply be an artifact of increased interference or competition, wherein all
representations become merged and increase in similarity. To address this possible concern,
we further interrogated the input-output mappings of our model using a retrieval-style analysis
after training. This analysis probed the likelihood of producing a B item when cued with A (see
Supplementary Methods for full analysis details). This retrieval-based analysis confirmed that,
although some competition is present after blocked learning (especially in lower capacity
models), the direct associations are preserved (target B activations > foil B activations for
corresponding A items; Supplementary Figure 5). The models’ elevated AC performance in
these conditions cannot be explained by catastrophic interference alone and instead points to a
compression-based integration process that tolerates, and may even exploit, partial overlap in
representations to support AC inference. Thus, catastrophic interference may indeed be a
limitation of low-capacity neural networks but does not fully explain nor undermine the key
findings. Nevertheless, because humans rarely forget AB pairs entirely, our framework should
be interpreted as a proof of principle rather than a direct mapping to human performance.
Furthermore, the loss of AB and BC information (on which the models were trained) does not
necessarily imply a lack of learning—specifically, if AB and BC become integrated, it is
reasonable to think that the specificity of individual AB and BC representations are lost or
blurred, as would be expected from compressing these two individual episodes to a single
representation (ABC). Thus, a related consideration is that integration may necessarily reduce
AB/BC distinctiveness such that representational similarity analyses may misclassify integration
as poor direct-pair memory. Our results support this possibility: we show that accurate AC
inference can arise even when AB and BC similarity appear weak, consistent with findings that
generalized representations persist even as individual memories fade (Brainerd & Reyna, 1990,
2001).

Consistent with existing behavioral studies, our models show that the process of
integrating AB and BC representations to support successful AC inference may come at the
cost of reduced AB/BC fidelity and discriminability (Carpenter and Schacter 2017; Carpenter et
al. 2021; Zhou et al. 2023; Liu et al. 2024). The feed-forward networks architecture we
implement with representational bottlenecks or sparsity constraints are known to implement a

compressive process to efficiently represent inputs (Kramer 1991; Olshausen and Field 1997).

Under this model architecture, compressing representations leads to both updating and losing
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direct pair fidelity due to the bottleneck and sparsity constraints: ABC representations are
compressed during learning to efficiently integrate related AB and BC representations. This
compression-based integration is likely to be especially important in low capacity cases, as
overlapping AB and BC associations converge onto a more efficient, but limited, latent code (AB
+ BC - ABC). This updated ABC representation sacrifices pair-specific fidelity (AB, BC) while

preserving the relational structure needed for inference. This tradeoff of compressed integration

and loss of fidelity—where the integration of ABC to support AC inference is linked to a rise in
misattribution of specific item details or greater false memories for AB/BC source information—
has been observed in several associative inference tasks within the field of episodic memory
(Carpenter and Schacter 2017; Carpenter et al. 2021; Liu et al. 2024; Zhou et al. 2023).
Relatedly, even in the neural network literature, there is increasing recognition that error and
lossiness are forms of adaptive distortions which cannot be explained as purely noise (or
interference) (Zhao et al. 2021; Lin et al. 2024). These adaptive distortions can be explained by
theoretical accounts of generalization via lossy compression (Brainerd and Reyna 2015; Noh et
al. 2021). This highlights the need for experimental designs that jointly measure direct-pair
fidelity and inference performance, rather than examining post-training representations and
performance. Future work should examine ways to quantify and dissociate these possibilities.

Finally, the learning that occurs in these models is sensitive to initial conditions. This is
partly a feature not a bug, because we attempt to interpret the effects of such hyperparameters.
For example, we manipulate regularization to operationalize coding schemes which influence
the resulting variability in model weights and performance. Sensitivity to the specification of
hyperparameters is not unique to our model, and such parameters are often neither explained
nor biologically motivated. While prior models are also sensitive to hyperparameter settings
(Zhou, Singh, Tandoc, & Schapiro, 2023), the number of parameters is far larger in the neural
networks we implement. Hence, the models serve as a useful proof-of-concept of seemingly
conflicting computational-level memory and learning phenomena. It may be fruitful to further test
these memory and encoding constraints in future work using more sophisticated models, such
as implementations of complementary learning systems and biophysical signal propagation in
the Leabra framework (O’Reilly et al., 2015).

Taken together, the present study provides a mechanistic explanation for why blocked
learning may promote integration under some conditions while interleaving does in others. The
results highlight the critical role of individual differences in capacity and coding strategies, as
well as design differences across tasks, and how they can shape representational outcomes.
Thus, we believe our general framework highlights the importance of considering these potential
sources of variability when designing experiments and models to examine learning related
representational changes. Potential extensions of our framework might include incorporating
some of these ideas into the complementary learning systems framework, or examining the role
of temporal context and its potential interactions with individual differences and sequencing
effects. Important future directions include linking representational measures to neural and
behavioral data in human participants, as well as testing moderators such as working memory
capacity and age to predict which schedule optimizes integration, and also exploring
interventions that bias coding toward sparse versus distributed representations across
individuals. These extensions will help strengthen the link between computational mechanisms
and individual variability in cognitive map formation, offering a stronger framework for
understanding how episodic learning contributes to inference, generalization, and planning.
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Supplementary Materials
Disaggregating “pure” and “hybrid” schedules

Here we consider results disaggregated into more granular types of training schedules (pure vs.
hybrid; Supplementary Figure 1). In addition to AC integration, we assessed the indirect AC
association by using the activation (e.qg., retrieval) strength of item C given item A. To obtain an
activation strength, we applied a sigmoid function to the outputs of the neural networks. This
sigmoid function produces a probability value ranging from 0 to 1. Memory capacity also affects
the retrieval of item C given item A. This retrieval strategy is a distinct process from the pattern
completion strategy that benefits from AC integration. We operationalize the retrieval strength
as the magnitude of the sigmoid activation of item C when the model is given item A as input.
Higher memory capacity allows for training to reach a higher activation of C given A than lower
memory (Supplementary Figure 2A). The hybrid schedules appear to show stronger C
activation than the pure schedules. Indeed, this benefit of the hybrid schedules for C activation
is particularly prominent when memory is low (Supplementary Figure 2B). As memory capacity
increases, the C activation increases overall and differences between the hybrid and pure
schedules are diminished. These results show that the hybrid and pure schedules, despite both
containing blocked and interleaved schedules, are not equivalent. Rather the hybrid schedule
confers a benefit towards the retrieval strategy over the pure schedule.
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Supplementary Figure 1. Effect of hybrid versus pure schedules on AC integration. (A)
These are more granular results of Figure 2 from the main text, separated by the “pure” or
“hybrid” types of the schedule. For the blocked schedule, the pure schedule resulted in higher
distributedness and lower sparsity whereas the hybrid schedule resulted in lower
distributedness and higher sparsity when controlling sparsity with the parameter a. For the
interleaved schedule, the pure schedule resulted in more distributedness and more sparsity

24



whereas the hybrid schedule resulted in less distributedness and less sparsity. (B) The learning
curves were also split by the pure or hybrid schedule type. (C) The magnitude of integration of A
and C differs by pure or hybrid schedules, but schedule format (pure vs. hybrid) did not
fundamentally change the pattern of results with respect to which schedule is optimal under
varying capacity conditions (e.g., blocked > interleaved in low capacity conditions, regardless of
format).
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Supplementary Figure 2. Learning indirect AC association by retrieving C. (A) The
activation of item C given item A for different memory capacities as the models are exposed to
items from different schedules. The activation strength was greater for hybrid schedules than
pure schedules across memory capacities. (B) The strength of retrieval for item C when
presented with item A depends was measured as the sigmoid activation of item C given item A.
The retrieval strengths increase with memory capacity. Retrieval benefits from hybrid versus
pure schedules. Outputs appear stratified due to our parameter sweep and the input-output non-
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linearity of the sigmoid function being more extreme at the midpoint. Error bars depict 95%
confidence intervals.

Catastrophic interference as a possible modeling confound

Trained models often fail to learn both direct pairs because BC learning may partially
overwrite AB. An important confound to consider is whether greater AC similarity is an artifact of
a degenerate state of the model that is suffering from catastrophic interference. We consider
models to be learning AB when AB cosine similarity increases and BC when BC cosine
similarity increases. We quantify evidence of BC overwriting AB (catastrophic interference) as
when BC similarity is greater than AB similarity and AB minus BC similarity is negative. When
the BC association is being learned the AC association is unlearned. The Spearman’s
correlation between AB-BC similarity and AC similarity is modest: rho=-0.08, p<0.001. In the
lowest memory models where catastrophic interference would presumably be most severe,
there is no correlation (rho=-0.005, p=0.56).

Nevertheless, there is evidence in the low memory models that catastrophic interference
could explain our models (Supplementary Figure 3). Low memory models are especially
susceptible to such overwriting. However, the models with medium and high memory still exhibit
the pattern of results we report in the main results.

To further investigate the importance of direct pair learning, we trained another set of
models with larger capacity to evaluate the importance of direct pair learning for our main
results (Supplementary Figure 4). All models now have greater capacity relative to the input
dimension, where the encoding layer is expanded to low having 128 units, medium having 256
units, and high having 384 units. We obtain above-chance performance (50% in binary choice
tests of target versus foil) in direct pair learning of AB and BC. The Spearman’s correlation
between AB minus BC similarity and AC similarity is modest: rho=-0.05, p<0.001. The lowest
capacity model exhibited a slightly higher correlation of rho=0.07, p<0.001.

When memory capacity is low, we hypothesized that presenting related episodes in a
blocked sequence would allow AB associations to stabilize before BC is introduced. Consistent
with this hypothesis, neural network architecture can produce greater AB accuracy during and
after blocked training relative to interleaved training (Supplementary Figure 4). At the same
time, introducing BC pairs initially produces more competition between AB and BC in blocked
than interleaved sequences. With that said, the competition is temporary and the networks
continue to steadily improve performance across training such that both AB and BC
performance “stabilize” while AC inference performance improves. This pattern of performance
is consistent with the account that blocking in low-capacity networks is yielding a lossy,
compressed ABC representation that supports AC inference which may come at the cost of
some degradation in pair-specific (AB, BC) fidelity.
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Supplementary Figure 3. Representational similarity analysis with top and bottom
5th percentiles of ceiling and floor associations excluded. While the original low
memory model results appear driven by ceiling and floor associations, the models with
higher memory remain consistent with the original results. These findings reinforce the
importance of memory capacity for the integration of representations.

This modest relationship between AC similarity and direct pair performance suggests
that the degenerate state of the model is not a confound which can fully explain these modeling
results.
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Supplementary Figure 4. Performance over training for direct and indirect
pairs. A new set of models with larger memory capacity (low having 128 units,
medium having 256 units, and high having 384 units) exhibit direct and indirect
pair learning. Correct performance is determined by learned representations with
greater cosine similarity of direct pairs (e.g. A1-B1) than the cosine similarity of
foil pairs (e.g. A1-B3). Foils were selected such that one element of the pair is
from a different triad but still within the same schedule type (e.g. not A1-B6). The
dashed horizontal line indicates chance performance for the two-forced choice
task of whether target similarity is greater than foil similarity.

Relatedly, one interpretation of the integrative encoding hypothesis is that integration may
benefit from maintaining a high-fidelity A-B association. In our model, this maintenance of the A-
B association should be reflected in a greater likelihood of retrieving the associated target than
retrieving an unassociated foil within that experimental condition (blocked vs. interleaved).
Across the low, medium, and high capacity models, the final models reported in the main text
maintain this hypothesized pattern of results, suggesting maintenance of the target A-B
association (Supplementary Figure 5). Specifically, target retrieval (e.g. A1|B1 and B1|Al
within a triad) was greater than foil retrieval (e.g. A1|B3 and B3|Al within condition). While such
differences suggest maintenance of useful direct pair representations for various potential
integrative processes, the magnitude of this difference was smallest in the low-capacity models
for blocking, consistent with greater competition and interference. Moreover, the probabilities of
target retrieval were generally lower after blocking. This lower probability points to a stronger
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competition and interference effect between the blocked and interleaved experimental
conditions the models were trained on (e.g. A1|B6 and B6|Al between conditions).
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Supplementary Figure 5. Discriminative learning of associated pairs under
competition across conditions. Target retrieval (e.g. A1|B1 and B1|A1 within ABC
triad 1) was greater than foil retrieval (A1|B3 and B3|A1 within the condition). This
suggests that the models—across memory and task conditions—learned the trained
associations. However, the relatively low average retrieval probabilities overall suggest
competition and interference between schedules (A1|B6 across blocked and interleaved
schedules).

Memory capacity and representational dimensionality

Memory capacity. We operationalized memory capacity as dimensional expansion or
compression across two encoding/decoding layers, with a fixed-size embedding layer to support
comparable representational similarity outcomes and analyses. Under-complete (integrated)
codes encourage compact, interference-resistent memory, whereas over-complete (separated)
codes support flexible, robust representations (Kumaran & McClelland, 2012; Treves & Rolls,
1994). The width of the embedding layers in the “low” and “high” memory conditions were
chosen based on conceptual abstractions of our framework—in the “low” memory capacity
model, we picked a size that was smaller than the input layer, forcing a many-to-one mapping of
incoming information. In doing so, we aimed to create a condition of high interference pressure,
similar to what we believe individuals with poor memory abilities chronically face. We chose to
reduce the 18-dimensional stimuli to 6 dimensions then to 3 dimensions, reflecting a 3:1 and
then 2:1 compression ratio during encoding (and vice versa for the expansion ratio during
decoding). These ratios are within the biological 5:1 range observed for the input-output

29


https://paperpile.com/c/AY8vnM/Egvb+5NdR
https://paperpile.com/c/AY8vnM/Egvb+5NdR

projection ratios in the human hippocampus (Cayco-Gajic & Silver, 2019), the 10:1 range in
some computational models of the rodent hippocampus (Guzman et al., 2021), and the 29:1
range for computational models of human perceptual memory (Bates & Jacobs, 2020). On the
other end of the spectrum, we chose encoding layer sizes that would be sufficiently large to
simulate a case in which there are no capacity-level constraints, which allow us to better
examine how sparsity and distributedness constraints operate in the absence of capacity
limitations. The capacity constraints were therefore motivated and abstracted from the
theoretical assumptions of our framework, but not meant to be interpreted as a one-to-one
mapping to human participants.

Representational dimensionality. Building from the sparse coding and representation
learning literature, we aimed to enforce the usage of either an “undercomplete” or
“overcomplete” encoding, where the representation layer is smaller or larger than the input
layer, respectively (Luo, 2021). Undercomplete representations have been shown to encourage
compressed memory and may track temporal structure, approximating the connectivity and
processing of hippocampal and temporal regions (Bates & Jacobs, 2020; Schapiro et al., 2013;
Spens & Burgess, 2024). In contrast, overcomplete representations have been shown to be
useful for flexible and robust representations, approximating the connectivity and processing of
the visual stream (Fusi et al., 2016; Olshausen & Field, 2004).

The usage of layer size has been shown to approximate representational capacity by
manipulating the expansion or compression of representation dimensionality (Litwin-Kumar et
al., 2017; Luo, 2021). This approach has been successfully applied to synthesize several
domains of memory under the shared framework of capacity limitations (Bates & Jacobs, 2020).
However, there are several limitations to interpreting layer size as memory capacity. At the
cognitive level, there are many distinct memory processes, each of which may be differently
affected by capacity and each of which may dynamically allocate capacity depending on task
demands. Hence, approximating general capacity is a simplistic view of varied memory
processes, which limits generalizability to human memory. At the neurobiological level, the sole
usage of layer size as a proxy for capacity overlooks other factors that affect the efficiency of
codes. For this reason, in the present analysis, we incorporated additional constraints to induce
more sparse or distributed codes. Finally, the usage of neural networks to model particular
regional processes neglects the interactive contributions of other regions, motivating
approaches such as multi-region recurrent neural networks (Perich & Rajan, 2020).

Simplicity and complexity of models

We have taken a relatively simple modeling approach relative to some models in the memory
literature (Bates & Jacobs, 2020; Beukers et al., 2024; Flesch et al., 2018; O’Reilly & Rudy,
2001; Schapiro et al., 2017; Zhou et al., 2023). Our approach shares comparable complexity to
some other neural network models of episodic memory (Benna & Fusi, 2021; Schapiro et al.,
2013) and is more complex than yet other approaches in the literature with respect to size and
encoding scheme (Morton et al., 2020; Noh et al., 2025; Schapiro et al., 2013).

We prioritized simplicity to make minimal assumptions for greater interpretability of our
systematic manipulations to memory capacity and encoding strategy. Despite these
advantages, one notable drawback is that the model sacrifices biophysical accuracy for greater
interpretability compared to more sophisticated models that include multiple regions, neuron
profiles, and signaling mechanisms (O'Reilly & Rudy, 2001; Schapiro, Turk-Browne, Botvinick &
Norman, 2017). While prior models are also sensitive to hyperparameter settings (Zhou, Singh,
Tandoc, & Schapiro, 2023), the number of parameters is far larger in our neural networks, which
is necessary to directly manipulate capacity and coding strategy differences. Thus, our results
are highly sensitive to the initial conditions and hyperparameters for training. We mitigate this
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variability by performing a grid search and averaging performance over many (thousands) of
model runs.

Defining sparsity

There are many definitions of sparsity used in the literature (Beyeler et al., 2019). In the
brain, reducing activation magnitudes can be seen as a consequence of inhibitory signaling. It
has been shown that under inhibition and considering the energetic cost of larger activity
magnitudes, activating just a small proportion of units is the most energetically efficient solution
(Laughlin, 2001). When applied to neural networks, this kind of regularization has useful
outcomes for learning and generalization by helping to disentangle representations and lead to
more local feature codes (Olshausen & Field, 2004; Whittington et al., 2022).

A metric of sparsity from neuroscience is the Treves-Rolls sparseness (Treves & Rolls,
1991), defined as:

1 (%12{”:1 ri)?
NZ?’:1 r
The numerator penalizes the average magnitude of activation and the denominator
normalizes the numerator by its spread and scale. For example, [0.5, 0.5, 0.5, 0.5] is just as
sparse as [0.1, 0.1, 0,.1, 0.1] under this definition, both having a sparsity of 0.

In contrast, the sparsity metric that we selected in the present manuscript characterizes
[0.5, 0.5, 0.5, 0.5] as 20 times less sparse as [0.1, 0.1, 0,.1, 0.1]. Moreover, our distributedness
metric characterizes [0.5, 0.5, 0.5, 0.5] as having the exact same distributedness as [0.1, 0.1,
0.1, 0.1]. Taken together, our dual metrics disentangle the contribution of magnitude and activity
spread to sparseness.

In a subset of models, we calculate the relationship between these metrics. The Treves-
Rolls sparsity positively correlates with the inverse-magnitude sparsity metric (r(883)=0.50,
p<0.001) and negatively correlates with the entropy metric (r(883)=-0.12, p=0.0003). These
correlations indicate that the Treves-Rolls sparseness relates to lower overall activity magnitude
and a more concentrated (local) distribution of activity. Taken together, our neural network
metrics are consistent with prior metrics of sparseness.
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Highlights

Learning cognitive and spatial maps requires associative memory and inference
Associative inference can be supported via memory integration or pattern separation
Prior work yielded conflicting results on the conditions for integration v separation
Memory capacity and training sequence interact to shape representations

Neural coding principles explain the interactive effect of abilities and experience



