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ABSTRACT 
Functional connectivity, the study of coordination between distinct brain regions, is a key focus in 
neuroscience. The Psychophysiological Interaction (PPI) model, commonly used to infer task- 
dependent functional connectivity, is limited by its susceptibility to confounding effects. We pro-
pose using partial correlations, instead of PPI regression coefficients, as they correct for confound-
ing. We show how the PPI model can be used to estimate the precision matrix of a Gaussian 
Graphical Model (GGM), from which partial correlations are easily derived. We then propose a 
Bayesian extension to the PPI model that allows this measure of functional connectivity to vary 
over time. We enforce sparsity in the GGM precision matrix through scale-mixture shrinkage priors, 
mitigating overfitting. Additionally, we identify structural zeros in the precision matrix using a 
Bayesian multicomparison decision-theoretic framework. We demonstrate the efficacy of our 
model over the standard PPI model using simulated data and we further apply it to human fMRI 
data from a serial reaction time experiment. Our framework offers a more robust and dynamic 
approach to functional connectivity analysis.
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1. Introduction

The study of coordination of activity between brain regions, 
known as functional connectivity (FC), has led to a better 
understanding of brain mechanisms, including how the 
brain responds to external stimuli. Those advances have also 
resulted in improved diagnoses and classifications of disease 
severity (see, e.g. Lynall et al. (2010); Anderson and Cohen 
(2013)). Friston (2011) defines FC as the study of the 
(undirected) statistical dependencies between brain regions.

The psychophysiological interaction (PPI) model was first 
proposed by Friston et al. (1997) as a formal way of investi-
gating/quantifying these statistical dependencies. This model 
is typically applied in task-based fMRI studies wherein the 
subject is exposed to an experimental stimulus in the form 
of a task while undergoing repeated MRI scans. The goal is 
to identify the effect this stimulus has on the coordinated 
activity between brain regions as measured by the blood- 
oxygen level dependent (BOLD) response recorded by the 
MRI scans. The PPI model makes the reasonable assumption 
that two brain regions exhibit coordinated activity if one 
region’s activity is predictive of the other. This is formalized 
as a linear regression with one brain region’s BOLD 
response as the dependent variable and other regions of 
interest (ROIs) as predictors. The modulatory effect of the 
experimental stimulus is captured by the model through the 
inclusion of interaction terms. The original model by 

Friston et al. (1997), which considered only a single stimu-
lus, was later generalized by McLaren et al. (2012) to accom-
modate multiple stimuli.This generalized PPI model (gPPI) 
has become so ubiquitous that when the PPI model is 
invoked it is often referring to its generalized form.

While the main contribution of this paper is a time- 
varying extension of the PPI model, we first bring attention 
to an appealing interpretation of the coefficients in the 
standard PPI model. We note how the PPI model for mod-
eling one region’s activity as a function of the other regions 
is consistent with a Gaussian Graphical Model for brain 
activity as a whole. Partial correlation, which is the correl-
ation unique to a pair of variables conditional on all the 
others, is a quantity that arises easily from a Gaussian 
Graphical Model.

The PPI model is widely purported to be vulnerable to 
mediating effects of other brain regions (see, for instance, 
Gitelman et al. (2003)). The implication is that the coeffi-
cients can only be used to identify the presence of coordin-
ation without any sense of its magnitude. Using partial 
correlation between brain regions as a measure of functional 
connectivity overcomes the potential limitations of media-
ting effects and makes the magnitude of functional connect-
ivity directly interpretable. We note how the values of the 
coefficients in a saturated PPI model, i.e. one that includes 
all brain regions, are proportional to the corresponding 
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partial correlations. Moreover, deriving the partial correl-
ation between each pair of brain regions is computationally 
straightforward.

Recent developments in neuroimaging suggest that inter- 
regional coordination in the absence of stimuli may better 
be characterized as varying over time (Calhoun et al. 2014; 
Chen and Leng 2016; Iraji et al. 2019). This flexibility is not 
supported by the generalized PPI model of McLaren et al. 
(2012) and may obscure the modulatory effects of experi-
mental stimuli. Our main contribution in this paper is a fur-
ther generalization of the PPI model that can accommodate 
potentially time-varying connectivity. We do this using a 
Bayesian framework which allows us to model partial corre-
lations as dynamic processes. Placing continuous scale- 
mixture shrinkage priors on the means and variances of 
these processes simultaneously avoids overfitting and 
encourages the processes to “shrink” to a time-invariant val-
ues in the absence of evidence to the contrary.

Our second contribution is the development of a new 
method for identifying significant inter-regional partial cor-
relations by adapting a non-marginal decision-theory-based 
multicomparison framework proposed by Chandra and 
Bhattacharya (2019). This multiple testing procedure is 
designed to control the rate of false-positive decisions (con-
cluding that two brain regions’ activity are coordinated 
when they are not) while still allowing the model to detect 
true non-zero partial correlations.

The paper is structured as follows. In Section 2.1, we 
define the PPI model and explain its link with the Gaussian 
Graphical Model. In Section 2.2 we introduce our Bayesian 
Time-varying PPI model and describe the shrinkage priors 
applied to the model coefficients. Section 2.3 describes how 
we obtain posterior inference of partial correlations from 
our model as well as details on the multicomparison proced-
ure for testing the significance of those partial correlations. 
We illustrate the performance of our model in a simulation 
setting (Section 3.2) and in an application to data from a 
serial reaction time experiment (Section 3.4). Finally, Section 
4 concludes with a discussion of our proposed method, as 
well as plans for future investigation.

2. Methods

2.1. The PPI Model

In this section we review the popular PPI model of Friston 
(2011) and its generalization proposed by McLaren et al. 
(2012). We also review the Gaussian Graphical Model, 
which can be employed as a working model for describing 
brain connectivity. We show that the PPI model estimates 
the mean and inverse covariance of a Gaussian Graphical 
Model and that the fitted coefficients of the PPI model 
can be used to derive partial correlations between brain 
regions.

The PPI model originally proposed by Friston seeks to 
quantify the coordination of activity between functionally 
distinct brain regions, especially in response to an experi-
mental stimulus. Its validity rests on the reasonable assump-
tion that two regions are functionally connected if activity 

in one region is predictive of activity in the other. In this 
section, we restate the form of this model, with some minor 
adjustments and their justifications to build the framework 
for the extensions presented in the next Section.

In fMRI studies, the MRI machine records changes in the 
amount of oxygenated hemoglobin in small volumetric pix-
els, voxels, of the brain at consistent time intervals over the 
course of the study. Oxygenated blood flows into regions of 
the brain that have recently experienced neural activity, syn-
aptic firing, in order to “reset” the synapses. The blood oxy-
gen level dependent (BOLD) response recorded by the MRI 
machine thus serves as a proxy for neural activity. However, 
that response does not happen instantaneously but instead 
oxygenated hemoglobin rushes into a region that has experi-
enced neural activity, peaking after about 6 s and is then 
gradually flushed from the area. The BOLD response 
observed in a voxel YðtÞ is frequently modeled as the convo-
lution of an underlying neural signal yjðtÞ with a hemo-
dynamic response function (HRF) which we define as hðtÞ:
In the following, we denote this convolution as YðtÞ ¼
HðyðtÞÞ where the function Hð�Þ convolves its operand with 
the HRF hðtÞ; i.e. HðyðtÞÞ ¼ hhðtÞ � yðtÞi: Through a process 
of deconvolution the implicit neural activity yðtÞ can be 
recovered. We denote this deconvolution as yðtÞ ¼
H−1ðYðtÞÞ: Gitelman et al. (2003) suggest several ways to 
perform this deconvolution and propose a Bayesian method 
that we will discuss later.

When using the PPI model for functional connectivity 
analysis, the predictor and response regions are typically 
chosen ahead of time, often based on available prior litera-
ture or a testable research hypothesis. The predictor regions 
are referred to as seed regions and the response region as 
the target. Seed-based functional connectivity analysis inves-
tigates the association in the fMRI signal of each seed region 
to the target region. This approach is fundamentally bivari-
ate in nature, as the associations are found independently 
for each seed-target pair. However, the results are heavily 
dependent on the choice of seed and target regions; if differ-
ent seed regions are chosen the results may vary. Thus, the 
choice of seed regions can impact the reproducibility and 
generalizability of any findings (Lv et al. 2018). A possible 
solution is to include all regions in the model, one as the 
target and the others as seeds. Traditional methods for test-
ing for significant associations among many regressors, such 
as p-values which are typically used in PPI analysis, are 
known to detect spurious non-zero effects. In Section 2.3.1
we propose a method that is more robust against this type 
of error. First we explore the implications of including all 
regions in the PPI model.

In an fMRI study, the voxels are typically aggregated 
into P functionally distinct regions of the brain, and activ-
ity within each of the constituent voxels is aggregated so 
that YiðtÞ, i ¼ 1, :::, P represents the average BOLD response 
of the voxels in the region i. A study will also have K 
experimental conditions or stimuli. Let skðtÞ denote the 
strength of stimulus k at time t. In an experiment with a 
block design or impulse design skðtÞ ¼ 1 when the experi-
mental stimulus is active and skðtÞ ¼ 0 otherwise. In a 
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more general scenario, the experimental stimulus could be 
thought also as varying continuously over time. We will 
explore this situation further, both in our simulation and 
in our application.

Now, given aggregated BOLD response data YiðtÞ and 
their implied neural-level activity yiðtÞ, i ¼ 1, :::, P as well as 
the K experimental stimuli skðtÞ, k ¼ 1, :::, K; we consider 
the generalized form of the PPI model:

YiðtÞ ¼ li

þ
X

j6¼i
b

j
iYjðtÞ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
physiological

þ
XK

k¼1
ai, kHðskðtÞÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
psychological

þ
XK

k¼1

X

j6¼i
c

j
i, kHðskðtÞyjðtÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
psychophysiological interaction

þ�iðtÞ

(1) 

We should note that this formulation differs in a few 
respects from the generalized PPI model of McLaren et al. 
(2012). For instance, we include a mean term li because we 
don’t wish to assume our data has been de-meaned prior to 
analysis. We do, however, assume that the data has had all 
confounding effects (e.g. subject movement within the MRI 
machine) removed, a standard procedure prior to analysis. 
The model residuals eiðtÞ we assume to be normally distrib-
uted, centered at 0. We also incorporate the work of 
Gitelman et al. (2003), who stress the distinction between 
neural-level and hemodynamic-level data, by calculating the 
psychophysiological interaction regressor at the neural-level 
rather than the hemodynamic-level before convolving that 
product with the HRF. This is represented in the term 
HðskðtÞyjðtÞÞ in the psychophysiological interaction portion 
of equation (1) and which we clarify below.

There is no generally accepted method for convolving 
and deconvolving an HRF. The method proposed by 
Gitelman et al. (2003) infers likely neuronal activity yiðtÞ
from observed BOLD response YiðtÞ using Bayesian priors 
on the weights of a set of user-specified basis functions. 
This method is used in the popular fMRI analysis software 
package SPM. Regularization inherent in the estimation of 
the weights results in imperfect reconvolution of a decon-
volved time-series. We were uncomfortable with this so 
instead employ a more simplified method of deconvolution 
that relies on time-shifted canonical HRF basis functions 
and least squares estimates of weights. This method yields 
interaction regressors that factor as SðtÞYiðtÞ; where SðtÞ is 
the stimulus sðtÞ convolved with the canonical HRF, i.e. 
HðskðtÞyiðtÞÞ ¼ HðskðtÞÞYiðtÞ (Wu et al. 2013). By defining 
SkðtÞ ¼ HðskðtÞÞ; i.e. stimulus k convolved with the HRF, 
then we can re-express equation (1) as

YiðtÞ ¼ li þ
XK

k¼1
ai, kSkðtÞ

 !

þ
X

j6¼i
b

j
i þ
XK

k¼1
c

j
i, kSkðtÞ

 !

YjðtÞ þ �iðtÞ
(2) 

This arrangement allows YiðtÞ to be factored out of 
HðskðtÞyiðtÞÞ: Our choice of basis functions in the deconvolu-
tion algorithm allow this directly but we point out that this 
factorization is still possible with other selections of basis 

functions or other methods of deconvolution, by defining a 
new stimulus vector at the hemodynamic-level, S�kðtÞ ¼
HðskðtÞyiðtÞÞ

YiðtÞ : This is properly defined as long as YiðtÞ 6¼ 0;
which is one of our motivations for not de-meaning the data.

Furthermore, equation (2) clearly shows that the arrange-
ment of the PPI model is an example of a varying- 
coefficient model (Cleveland et al. 1992; Hastie and 
Tibshirani 1993). This class of models is linear in the regres-
sors but the coefficients are allowed to change smoothly as a 
function of another set of variables, which can be seen as 
“effect modifiers.” In the PPI literature the experimental 
stimuli are indeed often considered as effect modifiers; how-
ever, as we will discuss later, effect modifiers do not need to 
be related only to the stimulus effect.

More importantly, equation (2) can be related to 
Gaussian Graphical Models (GGMs). A GGM provides an 
appealing working model for studying whole brain activity 
and inter-regional coordination. The nodes represent func-
tionally distinct regions of the brain and an edge connecting 
two nodes represents an undirected relationship between 
those two nodes. A GGM is defined through a multivariate 
normal distribution characterized by a mean vector l and a 
covariance matrix R: The inverse of R; i.e. the precision 
matrix X ¼ R−1; encodes conditional independences 
between the nodes, i.e. the connections in the graph 
(Dempster 1972; Lauritzen 1996). Two nodes are connected 
by an edge if their partial correlation is different than zero. 
In this context, partial correlation captures the correlation 
between activity in two brain regions conditional on all 
other regions’ actvity, i.e. the correlation that cannot be 
explained by any other region. In formulas,

qYi , YjjY=fYi, Yjg
¼ −

Xi, j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi, iXj, j

p , (3) 

i, j ¼ 1, :::, P: Partial correlation is an appealing measure of 
functional connectivity because it resolves the problem of 
mediating effects, a well-known limitation of the PPI model 
(Gitelman et al. 2003).

We can reformulate the PPI model (2) as a GGM as fol-
lows. Let YðtÞ � N PðlðtÞ, RðtÞÞ be a P-dimensional multi-
variate Gaussian random vector where Y ¼ Y1ðtÞ, :::,½

YPðtÞ�T ; lðtÞ ¼ l1ðtÞ, :::, lPðtÞ½ � and RðtÞ ¼ RijðtÞ
� �

, i, j ¼
1, :::, P: Let XðtÞ ¼ R−1ðtÞ: Then, it is possible to represent a 
GGM through a series of regressions by conditioning each 
node Yi on all other nodes Y−i (Maathuis et al. 2018; Tsai 
et al. 2022). More specifically, we can write

YiðtÞ ¼ l�i ðtÞ þ
X

i6¼j
Bj

iðtÞYjðtÞ þ �iðtÞ (4) 

where Bj
iðtÞ ¼ b

j
i þ
PK

k¼1 c
j
i, kSkðtÞ and l�i ðtÞ ¼ li þ

PK
k¼1 

ai, kSkðtÞ Thus, the regression coefficients Bj
iðtÞ consist of 

two components: one that quantifies the background par-
tial correlation and another that represents a change in 
the partial correlation induced by experimental stimuli. 
Moreover, we can obtain an expression of time-varying 
partial correlations,
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qYi , YjjY=fYi , Yjg
ðtÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi, iðtÞ
Xj, jðtÞ

s0

@

1

ABj
iðtÞ, (5) 

i.e. the coefficients Bj
iðtÞ in (4) are proportional to the partial 

correlations between nodes of a GGM. Thus, if a Gaussian 
Graphical Model is adopted as the working model for 
whole-brain activity, then the standard gPPI model can be 
used to estimate the rows of the precision matrix at time t, 
XðtÞ; which can, in turn, be used to derive partial correla-
tions between regions.

Meinshausen and B€uhlmann (2006) called the row-wise 
estimation of a precision matrix “neighborhood selection” 
because each node in a graph corresponds to a row of a pre-
cision matrix, and the non-zero entries in that row corres-
pond to the node’s neighbors. They proposed estimating 
the rows of a time-invariant precision matrix using the 
penalized regression Lasso (Tibshirani 1996). Recent work 
attempting to estimate a dynamic covariance or precision 
matrix that changes over time uses kernel smoothing (Chen 
and Leng 2016) or penalized basis splines (Xue et al. 2020). 
Our proposed method allows for flexibly modeling a preci-
sion matrix that varies both over time and in response to an 
external stimulus.

2.2. A Bayesian Time-Varying PPI Model

In this section, we present our proposed Bayesian Time- 
varying Psychophysiological Interaction (PPI) model, which 
extends the standard gPPI model by allowing all regression 
coefficients to vary over time. This extension accounts for 
the fact that time-dependence is not solely induced by 
experimental stimuli but also by the non-stationary nature 
of resting-state (background) functional connectivity, thus 
providing a more realistic representation of the underlying 
neural processes. More precisely, dynamics in Bj

iðtÞ can be 
achieved by allowing the coefficients b

j
i and c

j
i, k to vary. 

Additionally, li and ai, k can also be allowed to vary to 

increase the flexibility in the intercept term l�i ; preventing 
larger variance in the residuals �i and, consequently, poor 
estimates of the diagonal elements of the precision matrix 
Xi, iðtÞ from which they are derived. Our model, then, takes 
the form

YiðtÞ ¼ liðtÞ þ
XK

k¼1
ai, kðtÞSkðtÞ

 !

þ

P
j6¼i b

j
iðtÞ þ

XK

k¼1
c

j
i, kðtÞSkðtÞ

 !

YjðtÞ þ �iðtÞ:

(6) 

Figure 1 provides an illustrative example of the type of 
time-varying relationship between two time series that our 
proposed model can capture. We generate bi-variate 
Gaussian data with a correlation structure that varies both 
smoothly over time and abruptly in response to a stimulus. 
We obtain the partial correlation between the two variables 
as q1, 2ðtÞ ¼ 0:4 � sinðt=15Þ þ 0:6 � sðtÞ; where the stimulus 
process sðtÞ alternates between periods of activity and 
inactivity every 25 s.

The two simulated time series in Figure 1 are only weakly 
dependent when sðtÞ ¼ 0: That dependence increases when 
sðtÞ ¼ 1; which manifests as greater concordance between 
the two time-series during periods where sðtÞ ¼ 1: The 
time-dynamic changes in partial correlation are modeled by 
bðtÞ while the stimulus-dependent changes in partial correl-
ation come from cðtÞ: The existing non-dynamic versions of 
the PPI model are not capable of capturing these subtle fluc-
tuations in the strength of inter-regional connectivity.

Friston et al. (1997) emphasizes that, in general, PPI coeffi-
cients should not be interpreted as correlations, though test-
ing their significance is equivalent to testing for the 
significance of correlations. A key advantage of our model, 
which includes all regions, is that the coefficients can be 
interpreted as partial correlations between regions, as dis-
cussed in Section 2.2. This makes the magnitude of the fitted 
coefficients meaningful. Partial correlations are particularly 

Figure 1. This simulated data set illustrates the two dynamics that our proposed model is able to capture. Here, background connectivity as measured by partial 
correlation varies smoothly over time. There is an additional change in partial correlation when the experimental stimulus is active, when sðtÞ ¼ 1: By comparison, 
the Generalized PPI is only able to model the stimulus-dependent changes in partial correlation.
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advantageous because they account for mediating effects of 
other regions, a frequently cited limitation of the PPI model. 
To reiterate, the standard PPI coefficients are used as a tool 
to test for the presence of functional connectivity between 
regions; beyond that their magnitude defies interpretation. 
The magnitude of the PPI coefficients in our proposed model 
are directly interpretable as partial correlations. They give a 
sense of the strength of functional connectivity between brain 
regions while controlling for mediating effects of other 
regions.

Building on the derivation of partial correlations in the 
non-dynamic PPI model of Section 2, the partial correlation 
between a seed region j and a target region i can be derived 
from (6) as

qi, jj�ðtÞ ¼ bi
jðtÞ þ

XK

k¼1
SkðtÞ � ci

k, j

 !
rj

ri
, i 6¼ j: (7) 

Here, bi
jðtÞ; ci

j, k; and ri are obtained from the PPI model 
where region i is the target, while rj is derived from a separ-
ate PPI model where region j is the target. Thus, calculating 
any partial correlation requires fitting two PPI models. 
Fortunately, fitting the P PPI models, one for each target 
region, yields all the estimates of the parameters necessary 
to calculate the partial correlation between any two regions. 
These P regressions can be done efficiently in parallel. 
However, there is no guarantee that estimates of qi, jðtÞ and 
qj, iðtÞ align. In fact, one may be deemed significant while 
the other may not, which presents an evident problem. 
Asymmetry in the precision matrix would imply directional-
ity of association which is assumed not to be the case in 
functional connectivity analysis. Furthermore, an asymmetric 
precision matrix is incompatible with a Gaussian Graphical 
Model, our working model for whole brain activity. In 
Section 2.3.1 we describe a multi-comparison procedure to 
detect structural zeros and enforce symmetry in the preci-
sion matrix.

2.2.1. Shrinkage Priors
The time-varying coefficients capture varying connectivity 
between the seed region j and the target region i. At any 
given time t, it is reasonable to expect that only a subset of 
the seed regions will be related to the target, i.e. we expect a 
degree of sparsity among the associations. Our Bayesian 
treatment of the PPI model gives us needed flexibility in 
specifying the behavior of our model’s coefficients by plac-
ing appropriate sparsity-inducing prior distributions on 
them. Recently, several Bayesian approaches have been pro-
posed for dynamic variable selection priors in sparse time- 
varying state-space models (see for example Kowal et al. 
2019; Rockova and McAlinn 2020). Here, we employ the 
double gamma prior, which was recently proposed by Bitto 
and Fr€uhwirth-Schnatter (2019) and Cadonna et al. (2020). 
This prior generalizes the popular Horseshoe prior 
(Carvalho et al. 2010) to the time-varying modeling frame-
work. In our experience, this choice of prior is efficient 
from a computational perspective, helps to avoid overfitting 
by restricting the variances of the time-varying coefficients, 

and is flexible enough to adapt to varying degrees of spars-
ity. We give details of the double-gamma formulation in this 
section.

We model all the regression coefficients in equation (6)
dynamically in the same way. To simplify the notation, we 
re-express the model by defining the vector giðtÞ ¼
liðtÞ, aiðtÞ, biðtÞ, ciðtÞ½ �; which includes all PðK þ 1Þ regres-

sion coefficients. Let gj
iðtÞ be the j-th component of the vec-

tor giðtÞ: We assume that these regression coefficients 
exhibit a relatively smooth temporal evolution. A class of 
processes flexible enough to capture a variety of possible 
time courses is the discrete random walk. Thus, we consider

g
j
iðtÞ ¼ g

j
iðt − 1Þ þ x

j
iðtÞ, (8) 

where the xj
iðtÞ; t ¼ 1, :::, N; are independent identically dis-

tributed random variables centered at 0. The degree of vari-
ability in the path of g

j
iðtÞ over time is driven by the 

variability of x
j
iðtÞ; if the variance of x

j
iðtÞ shrinks to 0, 

there are no changes to gj
iðtÞ over time and it degenerates to 

a constant value, that being its starting point g
j
ið0Þ: The 

double-gamma prior of Bitto and Fr€uhwirth-Schnatter 
(2019) places a normal prior on xj

iðtÞ and controls the vari-
ance with two gamma distributions:

g
j
iðtÞ ¼ g

j
iðt − 1Þ þ x

j
iðtÞ (9) 

x
j
iðtÞjh

j
i �

iid
Nð0, hj

iÞ t ¼ 1, :::, N

h
j
ijn

j
i
2 � G
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2

,
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j
i
2

 !

n
j
i
2jan, j2 �

iid
G an,

anj2

2

� �

j ¼ 1, :::, PðK þ 1Þ

Restricting the variance of a random walk process when 
it is used as a time-varying parameter in a model is neces-
sary to avoid overfitting. We are simultaneously interested 
in maintaining sparsity in our model. We achieve this by 
also placing restrictions on the mean of the random walk 
process. Thus, a similar double-gamma shrinkage prior for-
mulation is placed also on the starting value of the process 
g

j
ið0Þ; to encourage the process to be centered at 0 in the 

absence of evidence from the data to the contrary. If the 
variance of the random walk process also shrinks to 0, then 
the parameter degenerates further to a constant 0 and effect-
ively drops out of the model. Appealingly, this situation is 
not difficult to achieve because those values are interior 
points in the support of gj

iðtÞ and hj
i: If hj

i ¼ 0 but gj
ið0Þ 6¼ 0 

then the corresponding functional connectivity component 
is present but not dynamic. If hj

i 6¼ 0 and gj
ið0Þ 6¼ 0 then the 

component is present and dynamic.
The double-gamma prior in Equation (9) is an example 

of a global-local shrinkage prior (Polson and Scott 2012). 
The parameter j is the global shrinkage parameter common 
to all hj

i: Larger values of this parameter encourage all values 
of h

j
i to shrink toward 0. The parameter an controls local 

adaptation to the global level of shrinkage induced by j:

Specifically, larger values of an enable individual hj to better 
counterbalance the global shrinkage effect, allowing for 

DATA SCIENCE IN SCIENCE 5



more flexibility. Bitto and Fr€uhwirth-Schnatter (2019) have 
excellent illustrations of how different values of the parame-
ters an and j affect the shrinkage of process variances to 0 in 
the time-varying parameter model. The choice of these 
parameters should ideally be informed by prior knowledge 
regarding the expected variability in components of functional 
connectivity. Alternatively, these parameters can be learned 
from the data, which is the approach we have adopted.

2.3. Posterior Inference of Model Coefficients

In this section, we outline how we obtain inference on the 
coefficients of our model. Since the posterior distribution is 
not available in closed form, we need to use posterior sam-
ples obtained via a Markov Chain Monte Carlo (MCMC) 
algorithm for posterior inference. Fortunately, the model in 
(6) can be simply implemented in the R package shrinkTVP 
by Knaus et al. (2021), which uses the collapsed sampler 
employed by Cadonna et al. (2020) to efficiently perform 
MCMC sampling of the coefficients in a regression model 
with double-gamma priors on the regression coefficients. 
This package also enables inference on stochastic volatility, 
allowing our model to capture structured changes in the 
error variance of equation (6). Since the diagonal elements 
of XðtÞ; crucial for calculating partial correlations, are the 
inverse of the error variance, accurately modeling the error 
variance is essential. Our BTV-PPI model treats region i as 
the target and all other regions as seeds to model the ele-
ments of the ith row of XðtÞ: We fit P separate and inde-
pendent BTV-PPI models to estimate all rows of XðtÞ: Each 
row is fit independently so we can do this efficiently in 
parallel, leading to a sizeable computational gain. Next, we 
provide a decision-theoretic framework for testing the sig-
nificance of the resulting partial correlations and ensuring 
the symmetry of a final estimate of XðtÞ; inspired by the 
work of Chandra and Bhattacharya (2019). We then discuss 
the procedure for constructing point estimates of the time- 
varying partial correlation matrices, Gt 2 R

P�P t ¼ 1, :::, T:

2.3.1. Graph Selection
After performing the MCMC algorithm for each of the P 
rows of XðtÞ; we obtain posterior samples for each cell of 
the dynamic precision matrix XðtÞ: In other words we get 
samples of XijðtÞ: We arrange samples of these individual 
cells to form a single unified sample of the dynamic preci-
sion matrix XðtÞ: For instance, by arranging the first 
MCMC sample of XijðtÞ 8i, j in a 3D matrix we form the 
first MCMC sample of XðtÞ: However, this estimated XðtÞ
has several shortcomings that need to be addressed. First, 
the estimated XðtÞ does not reflect the assumed sparsity of 
connections between different brain regions. This is due to 
the nature of continuous shrinkage priors, which induce 
shrinkage toward 0 without discontinuities at 0. In contrast, 
discrete spike-and-slab priors (George and McCulloch 1993, 
1997) can place positive posterior probability mass on zero, 
allowing for easy computation of the posterior probability of 
inclusion of coefficients in the model. However, their use 
comes at a significant computational cost. Since continuous 

shrinkage priors never take the exact value 0, it is necessary 
to establish criteria for determining when a coefficient is 
statistically different from 0. Thresholding approaches have 
been proposed, where a posterior sample value is set to 
exactly 0 if its value is within a small range around zero. 
Alternative techniques, such as those suggested by Carvalho 
et al. (2010) and Cadonna et al. (2020), set a threshold based 
on a latent shrinkage factor of a coefficient. Such threshold-
ing methods do not formally account for multiple compari-
sons, as we need for testing the significance of P � ðP − 1Þ
off-diagonal elements at each time point t ¼ 1, :::, N:
Another important limitation of the estimated XðtÞ is that it 
is not symmetric. This arises from the rows of XðtÞ being fit 
independently, as described below. Lack of symmetry is a 
problem because the resulting estimate cannot be a valid 
precision matrix. In the following, we will explain how we 
correct for the lack of symmetry and account for multiple 
comparisons to address these limitations of the esti-
mated XðtÞ:

The partial correlation between two brain regions is pro-
portional to the off-diagonal element of the precision matrix 
XijðtÞ: Due to our row-wise estimation of XðtÞ; our 
approach leads to two estimates of this element: XijðtÞ from 
the fitted BTV-PPI model with region i as the target, 
and XjiðtÞ from the model with region j as the target. 
Conducting a marginal test that considers XijðtÞ and XjiðtÞ
in isolation can lead to conflicting conclusions. This is 
because the two estimates are not independent, as they arise 
from the same underlying connectivity pattern between 
regions i and j. Testing each estimate separately may result 
in one estimate being deemed significant while the other is 
not, even though they represent the same partial correlation.

Chandra and Bhattacharya (2019) developed a Bayesian 
non-marginal decision-theoretic approach to address hypoth-
esis testing with dependent hypotheses, emphasizing concord-
ant conclusions among sets of related hypotheses. Here, non- 
marginal means that the joint posterior distribution of XijðtÞ
and XjiðtÞ is considered, rather than relying solely on mar-
ginal decision rules based on the marginal posterior distribu-
tion of XijðtÞ alone. This approach leads to a modified false 
discovery rate (mFDR) criterion that is more accurate than 
marginal methods.

To define the set of dependent hypotheses, let H0, i, j, t :

Xi, jðtÞ ¼ 0 be the hypothesis that the off-diagonal element 
XijðtÞ is 0 with the corresponding alternative hypothesis 
HA, i, j, t : Xi, jðtÞ 6¼ 0; indicating that it is not 0. The set of 
related hypotheses is then defined as Hi, j, t ¼ fH0, i, j, t , 
HA, i, j, t , H0, j, i, t , HA, j, i, tg: Let Di, j, t ¼ IðHA, i, j, t is acceptedÞ be 
our decision function, which takes the value 1 when we con-
clude significance of Xi, jðtÞ: For simplicity of notation, it is 
convenient to introduce a variable zi, j, t ¼ Dj, i, t; which sim-
ply allows us to state the related decision about the signifi-
cance of Xj, iðtÞ using the same index. Lastly, let 
hi, j, t ¼ IðXi, jðtÞ 6¼ 0Þ indicate the true state of nature, taking 
the value of 1 if regions i and j are truly functionally con-
nected. Let At denote the set of triplets ði, j, tÞ formed as we 
vary i, j ¼ 1, :::, R, i 6¼ j; at each time t ¼ 1, :::, T: Following 
Chandra and Bhattacharya (2019), a non-marginal decision 
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rule will aim at maximizing the posterior expectation of true 
positive (TP) decisions at each time t,

TPt ¼
X

i2At

Dihizi, (10) 

while controlling for possible decision errors. TPt counts the 
number of cases where both HA, i, j, t and HA, j, i, t are correctly 
accepted.

In the context of non-marginal decision rules there are 
several sources of decision errors: related hypotheses are 
both wrongly accepted, both wrongly rejected, or do not 
agree. Chandra and Bhattacharya (2019) show that a count 
of these errors adds up to the following total error,

Et ¼
X

i2At

Dið1 − hiziÞ: (11) 

The resulting optimization problem can be seen as a con-
strained minimization of a loss function that penalizes both 
false positive decisions and conflicting decisions while maxi-
mizing the posterior expectation of true positive decisions. 
Thus, a general objective function can be written as a func-
tion of the admissible decisions in the set of all possible 
decision configurations under some penalization constant,

fg, tðDÞ ¼
X

i2At

DiðwiðDÞ − gÞ, (12) 

where for any given triplet ði, j, tÞ in At; wi, j, tðDÞ ¼
PðHA, i, j, t \ HA, j, i, tjYÞ denotes the joint posterior probability 
that functional connectivity is detected between regions i 
and j from both BTV-PPI regressions, one treating region i 
as the target and the other with region j as the target. Since 
the two BTV-PPI regressions are fit independently, the joint 
posterior probability factors as wi, j, tðDÞ ¼ PðHA, i, j, tjYÞ
PðHA, j, i, tjYÞ; which is then computed as

wi, j, tðDÞ ¼ P
�
�
�
�b

j
iðtÞ þ

XK

k¼1
c

j
i, kðtÞSkðtÞ

�
�
�
� � cri

�
�
�
�Y

 !

�P
�
�
�
�b

i
jðtÞ þ

XK

k¼1
ci

j, kðtÞSkðtÞ
�
�
�
� � crj

�
�
�
�Y

 !

,

(13) 

for some small c 2 R: Our decision rule allows non-zero off- 
diagonal values in both XijðtÞ and XjiðtÞ when the corre-
sponding time-varying coefficients in (6) are both further 
than c standard deviations from 0 with high probability. 
In all the following implementations, we have found that 
c ¼ 0:1 suffices to obtain good operating characteristics.

Chandra and Bhattacharya (2019) suggest a multi-step 
approach to maximize the objective function in equation (12). 
First, they set the penalization constant g ¼ 1 − mFDRY 
where mFDRY 2 ð0, 1Þ indicates the posterior modified false 
discovery rate and is a measure of Type-I error in multiple 
hypothesis testing. This mFDRY is defined as

mFDRY ¼
X

D2D

P
i2At

Dið1 − wiðDÞ
P

i2At
Di

IðDjYÞ, (14) 

where D denotes the space of all possible decision configu-
rations and the indicator IðDjYÞ is equal to one only for the 
final decision.

Chandra and Bhattacharya (2019) use a simulated anneal-
ing method to maximize fg, tðDÞ for a given g: However, the 
posterior of mFDRY encodes an additional penalty for the 
incorrect decisions, particularly when the weights wi, j, t are 
small. Thus, using the mFDRY to define the penalty may 
lead to an overly conservative procedure. As a way around 
the problem, they propose running the simulated annealing 
algorithm multiple times, progressively decreasing g until 
the desired mFDRY is achieved. This approach is computa-
tionally burdensome for large datasets. Here, we employ an 
alternate approach, which has been motivated by the follow-
ing realization. In our experiments, the achieved mFDRY 
often falls below the nominal false discovery rate after the 
initial run of the simulated annealing algorithm, which leads 
to optimal decision pairs that are discordant, i.e. of the type 
Di, j, t 6¼ Dj, i, t , i, j ¼ 1, :::, P: Subsequent runs of the annealing 
algorithm with progressively smaller g tend to reduce these 
discordant decisions. To improve computational efficiency, 
we introduce a simple modification after running the simu-
lated annealing algorithm once. We inspect all the decisions 
and conclude that two regions are not associated only if the 
optimal solution identified by a single run of the annealing 
algorithm for a fixed g sets both Di, j, t ¼ 0 and Dj, i, t ¼ 0:
Thus we avoid an overly conservative decision procedure 
while only running the simulated annealing algorithm once. 
This modification is computationally efficient and appears 
to perform well in our investigations, striking a balance 
between accuracy and speed.

2.3.2. Inference on Partial Correlations
Utilizing the non-marginal decision rules and our modified 
algorithm allows us to identify the structural zeros in our 
dynamic precision matrix, i.e. when inter-regional partial 
correlations are indistinguishable from 0. The last remaining 
step is to rectify those off-diagonal elements of XðtÞ that 
our decision process deemed statistically different from 0. 
Our approach is to take the average of the two off-diagonal 
entries, ensuring that XðtÞ is symmetric. We justify taking 
the average rather than some other function, such as the 
maximum, because we have no reason to prefer one esti-
mate over the other after the selection algorithm has made a 
determination of significance. Our final fitted X̂ðtÞ has off- 
diagonal entries as follows:

X̂i, jðtÞ

¼

0 if Di, j, t ¼ 0 and Dj, i, t ¼ 0
1
2

~Xi, jðtÞ þ ~Xj, iðtÞ
� �

otherwise
i, j ¼ 1, :::, R

8
<

:

where, for any two regions i and j, the decisions Di, j, t and 
Dj, i, t are the optimal decisions obtained by the simulated 
annealing algorithm of Chandra and Bhattacharya (2019) in 
the models fitted assuming target region i and j, respectively 
(see Section 3.2). Finally, from this fitted X̂ðtÞ that reflects our 
assumptions of sparsity in functional connectivity through our 
multi-comparison testing and also is symmetric, we can calcu-
late inter-regional partial correlation according to equation (3).
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Before transitioning to the applied portion of our paper, 
we briefly summarize the methodological framework. We 
are interested in obtaining potentially dynamic partial corre-
lations between brain regions because they are directly inter-
pretable, can control for drift in association that is 
independent of an experimental stimulus, and avoid prob-
lems with mediating effects. In Section 2.1, we discussed 
how partial correlations between brain regions can be 
derived from the precision matrix of a Gaussian Graphical 
Model, and that estimates of this precision matrix can be 
obtained from the generalized PPI model (gPPI). Building 
on this, in Section 2.2, we introduced the BTV-PPI model, 
which estimates the precision matrix while incorporating the 
desired time-varying dynamics, in contrast to the time- 
invariant nature of the gPPI model. Furthermore, in Section 
2.3.1, we adapted a multi-comparison method for testing 
dependent hypotheses to identify structural zeros within the 
precision matrix. Finally, we obtained a final estimate of the 
precision matrix estimate over time by enforcing symmetry. 
This enables us to derive time-varying partial correlations 
between brain regions that vary through time and in 
response to a stimulus.

3. Results

3.1. Simulation Setup

In this section, we compare the estimates of partial correl-
ation obtained using our proposed BTV-PPI model to those 
obtained using the standard gPPI model of McLaren et al. 
(2012). We show that our model can accurately detect an 
array of different partial correlation structures, including 
dynamic structures that the standard gPPI model can only 
loosely approximate.

We simulate fMRI data for P ¼ 15 different brain 
regions. We do this using a Gaussian Graphical Model with 
a specified precision matrix XðtÞ that varies over time. We 
choose the off-diagonal elements of the precision matrix to 
enforce certain properties of inter-regional partial correl-
ation in simulated data. We have identified 5 different par-
tial correlation structures we wish to have present in our 
simulated data in order to demonstrate that our proposed 
model is capable of recovering them all:

� 2 regions that are never functionally connected
� 2 regions that only have a PPI connection
� 2 regions that only have a constant, time-invariant 

physiological connection
� 2 regions that only have a dynamic physiological 

connection
� 2 regions that have both a physiological connection and 

a PPI effect

To construct XðtÞ; we first decide which brain regions will 
share a physiological connection. We divide our 15 brain 
regions into 5 groups of 3 regions each. The regions within 
each group have either varying or time-invariant physiological 
connections. A time-invariant connection is achieved by 

setting Xi, jðtÞ ¼ a, t ¼ 1, :::, T for some scalar a with jaj < 1 
to help ensure invertability of XðtÞ: A dynamic connection is 
achieved by setting Xi, jðtÞ ¼ f ðtÞ for some dynamic process 
f ðtÞ: Intra-group region pairs’ physiological connects are all 
set to 0, reflecting our assumption that most brain regions 
are not functionally connected. This is accomplished by set-
ting Xi, jðtÞ ¼ 0, t ¼ 1, :::, T: The diagonal elements of XðtÞ
are the inverse of the variance of our simulated data; we set 
these all equal to 1, so Xi, iðtÞ ¼ 1, i ¼ 1, :::, P: Finally, we 
then decide which region pairs’ partial correlations will have 
PPI effects. This is accomplished by adding an additional 
time course to the existing element of XðtÞ: If the connection 
between regions i and j changes in the presence of the stimu-
lus, then we add SðtÞa for some scalar a to Xi, jðtÞ: We tried 
two different version of the stimulus (convolved with the 
HRF). One which follows the traditional event-based experi-
mental design where the underlying stimulus is a binary vec-
tor which indicates when the stimulus is “active.” We also 
tried another situation where the underlying stimulus is 
allowed to vary over time. We have not seen this situation in 
the literature but its exclusion seems unwarranted. There is 
no reason from a statistical perspective to preclude experi-
mental setups where a subject is exposed to varying degrees 
of a stimulus. Indeed, our data application in the following 
section details just such a situation.

In this manner we construct two precision matrices, one 
for a binary stimulus and another for a variable stimulus, 
that both include all 5 of the desired partial correlation 
structures details above. We simulate 60 different datasets 
from each of these carefully constructed precision matrices. 
We then attempt to recover the true precision matrix by 
estimating its rows in a manner akin to Meinshausen and 
B€uhlmann (2006)’s “neighborhood selection.” For compari-
son, we first estimate the rows with the standard gPPI 
model, where the coefficients do not vary over time. We 
then model the coefficients using penalized basis splines 
(Xue et al. 2020). Finally, we estimate the row with our pro-
posed BTV-PPI model before and after the selection method 
of Chandra and Bhattacharya detailed in Section 2.3.1 as 
well as the subsequent correction for symmetry. We derive 
all inter-regional partial correlations from these four esti-
mates of XðtÞ and compare them to the truth using the 
squared error from each simulation, defined as SE ¼
PT

t¼1
PP

i¼1
PP

j¼1 ðXi, jðtÞ − X̂i, jðtÞÞ2; and finding the mean 
over all 60 simulations.

3.2. Simulation Results

We present a visual display of estimated partial correlation 
from a single simulation of data with a binary stimulus 
mimicking a block-design experiment in Figure 2. There are 
five scenarios we are interested in exploring, as mentioned 
above. The standard gPPI and our BTV-PPI models exhibit 
comparable performance in the first three scenarios, all of 
which lack time-varying partial correlations independent of 
the stimulus. This outcome is consistent with our expect-
ation that the BTV-PPI model would perform well in 
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scenarios where the gPPI model also performs well because 
our model generalizes the gPPI by allowing the coefficients 
to vary over time when necessary. In these scenarios, such 
flexibility is not required, leading the variance of the BTV- 
PPI coefficients to degenerate to zero, rendering them time- 
invariant. However, the BTV-PPI model outperforms the 
gPPI model in the final two scenarios, where physiological 
connectivity is allowed to vary. In these cases, the gPPI can 
only provide a loose approximation of the underlying partial 
correlations.

The ability of the BTV-PPI model to capture partial correl-
ation in scenarios where physiological connectivity varies over 
time is more dramatic when the stimulus strength is also 
allowed to vary over time. A visual display of estimated par-
tial correlation from a single simulation with varying stimulus 
strength, as described above, is presented in Figure 3. The 
last situation, which includes a PPI effect as well as varying 
physiological connectivity, demonstrates how inadequate the 
gPPI’s estimates of partial correlation can be.

We repeat these simulations 60 times, with the same XðtÞ
corresponding to either a binary stimulus or variable stimulus, 

and calculate the mean squared error (MSE), defined as the 
average squared difference between each partial correlation 
estimate and the truth at each time point, for each of the 5 
scenarios. The results for the binary stimulus are summarized 
in Table 1 and for the variable stimulus in Table 2.

3.3. Functional Connectivity Modulated by Lookahead 
Predictions

A topic of continuing interest in cognitive neuroscience is 
how individuals learn predictive associative relationships 
that can be used to support decision-making and planning 
for rewards (Daw and Shohamy 2008). Our interest lies in 
studying how learning in a predictive association experiment 
modulates functional connectivity. More specifically, we 
have available data on eight subjects who were shown a 
probabilistic sequence of four images. The subjects were 
asked to press one of four buttons that uniquely identified 
the image currently being shown (Bornstein and Daw 2012). 
The sequence of images was randomly generated (unknown 
to the participants) according to a first-order Markov 

Figure 2. Simulation Study: estimates of partial correlation for 5 different scenarios. The estimates come from a single simulation with a binary stimulus. The plots 
compare the estimates arising from the generalized PPI (gPPI) model, the model fit using penalized basis splines (splinePPI), and our BTV-PPI model to the truth. 
Estimates are similar in scenarios where the physiological and PPI effects are time-invariant (the first three scenarios). The BTV-PPI model is better able to capture 
partial correlation when it varies over time independent of the stimulus (the last two scenarios).
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Figure 3. Simulation Study: estimates of partial correlation for 5 different scenarios. The estimates come from a single simulation with varying stimulus strength. 
The plots compare the estimates arising from the gPPI model, splinePPI model and our BTV-PPI model to the truth. The BTV-PPI model performs especially well 
when physiological connectivity varies and there is a PPI effect.

Table 1. Mean squared error (and standard deviation) across 60 simulations with a binary experimental stimulus. The minimum MSE for 
each class of connectivity are emphasized in bold.

Results with a Binary Experimental Stimulus

Connectivity type

PPI model variant

gPPI spline-PPI BTV-PPI
BTV-PPI  

with selection

No Connectivity 0:82ð2:54Þ 0:34ð0:53Þ 0:33ð0:84Þ 0:06ð0:5Þ
Only a PPI Effect 184:93ð36:17Þ 10:93ð5:25Þ 2:11ð2:01Þ 2:09ð2:04Þ
Time-invariant Physiological Connection 167:74ð31:12Þ 9:68ð3:91Þ 1:48ð2:04Þ 2:01ð3:3Þ
Varying Physiological Connection 65:75ð26:12Þ 9:4ð4:94Þ 8:26ð3:9Þ 10:65ð6:02Þ
Varying Physiological Connection and PPI Effect 137:52ð16:59Þ 14:3ð4:89Þ 7:74ð3:41Þ 9:24ð3:74Þ

Table 2. Mean squared error (and standard deviation) across 60 simulations with a time-varying continuous experimental stimulus. The 
minimum MSE for each class of connectivity are emphasized in bold.

Results with a time-varying continuous experimental stimulus

Connectivity type

PPI model variant

gPPI spline-PPI BTV-PPI
BTV-PPI 

with selection

No Connectivity 1:97ð5:69Þ 0:19ð0:35Þ 0:18ð0:48Þ 0:01ð0:06Þ
Only a PPI Effect 75:32ð51:01Þ 8:77ð3:63Þ 2:07ð1:56Þ 3:62ð3:03Þ
Time-invariant Physiological Connection 157ð55:53Þ 9:63ð3:7Þ 1:82ð2:04Þ 2:37ð2:98Þ
Varying Physiological Connection 60:19ð33:96Þ 8:61ð3:5Þ 6:73ð2:64Þ 9:25ð5:22Þ
Varying Physiological Connection and PPI Effect 65:2ð8:1Þ 11:11ð3:48Þ 7:48ð3:48Þ 9:22ð3:95Þ
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process, where the probability a picture is shown in trial t ¼
1, :::, 999 depends solely on the picture shown in trial t − 1:
The transition probabilities can be represented by a 4� 4 
matrix, where the ði, jÞ entry specifies the probability that pic-
ture j will be shown after picture i, i, j ¼ 1, :::, 4: Over the 
course of the experiment the subject implicitly learns these 
transition probabilities through experience. To encourage 
continual learning, the Markov transition matrix was changed 
twice, at trials t ¼ 334 and t ¼ 667: The participants’ reaction 
times (RTs), i.e. how quickly a subject took to correctly iden-
tify the current image, were measured as a proxy for predict-
ive learning; a faster reaction time indicates that a subject 
relied to some degree on a prediction of the picture they 
were subsequently shown. The true transition matrix, which 
the subject was implicitly learning, was unique to each subject 
and selected to minimize mixing time, the time it takes for a 
Markov Process to be close to its steady state. This was done 
so that first-order dependencies would be the only consistent 
source of information about the next image and could be 
used as the primary predictor of behavior. In the following 
section we detail how we derive regressors that represent 
learning under different, empirically justified assumptions to 
include in our BTV-PPI model.

3.3.1. Learning Rules and Estimation of the Lookahead 
Activity

The relationship between the RTs and the underlying stimu-
lus probabilities is typically captured by the learning rate, 
which measures the weight a system places on new informa-
tion relative to previous experience. Following previous work 
on the division of learning into multiple systems (Gl€ascher 
and B€uchel 2005; Poldrack et al. 2001), we consider two 
Rescorla-Wagner learning rules under an assumption of 
either a slow or a fast learning rate: Ps, Pf 2 R4�4�999 where 
Ps and Pf represent the evolution of a subject’s learned transi-
tion matrix probabilities over time according to a slow learn-
ing rate and a fast learning rate respectively. The evolution of 
the learned transition matrix is described by

Pz
i, j, t ¼

(
Pz

i, j, t−1 þ az 1 − Pz
i, j, t−1

� �
j ¼ IðtÞ

Pz
i, j, t−1 þ az 0 − Pz

i, j, t−1
� �

j 6¼ IðtÞ
z ¼ s, f ; t ¼ 1, :::, 999

(15) 

where IðtÞ 2 1, 2, 3, 4 indicates the label of the image shown 
at trial t ¼ 1, :::, 999: This learning rule models how a sub-
ject updates their transition probabilities with each image 
presented. Pz

i, j, t−1 is a subject’s learned transition matrix 
before the image in trial t is shown, i.e. their experience up 
until t, and az is the weight given to new information 
received in trial t, the learning rate. We use as ¼ 0:0138 and 
af ¼ 0:5499; the median parameter values across the broader 
population, as estimated in Bornstein and Daw (2012). We 
also assume the subjects place equal weight on all transitions 
at the start of the experiment, i.e. Pz

i, j, 0 ¼ 1=4: Using this 
starting value, the two assumed learning rates and the 
observed image sequence we compute Ps and Pf and from 

these derive the forward entropy of the system under the 
two learning rates, say HsðtÞ and Hf ðtÞ for the slow and fast 
rates respectively. The forward entropy is a measure of the 
expected surprise of the next image given the participant’s 
current experience and the image they are currently viewing 
under each assumed learning rate. It captures the amount of 
lookahead activity to be expected in anticipation of the 
upcoming stimulus (Bornstein and Daw 2013; Johnson and 
Redish 2007; Khoudary et al. 2022; Wang et al. 2022):

Hzðt þ 1Þ ¼ E -logðPz
IðtÞ, j, tÞ

h i
(16) 

¼ −
X4

i¼1
logðPz

i, j, tÞP
z
i, j, t z ¼ s, f 

Figure 4 gives an example of the calculated lookahead 
entropies under the two assumed learning rates given the 
actual sequence of images presented during the experiment. 
Both lines start at the same value at t ¼ 1; which reflects an 
expectation that the subject places equal weight on each of 
the four images at the beginning of the experiment. 
Lookahead entropy under a fast learning rate, represented 
by the dotted line, quickly drops to a lower value while for-
ward entropy under a slow learning rate exhibits much 
smaller sequential jumps. This illustrates how a fast learning 
rate yields predictions with more confidence, and thus lower 
entropy, because more weight is given to very recent experi-
ence and thus there is less ambiguity in the predicted next 
image. Predictions under a slow learning rate, by contrast, 
come with less certainty, reflecting conflicting experiences 
from a broader window of time. The original study found 
evidence that different brain regions were predictive of RTs 
under different assumed learning rates. In particular, the 
Hippocampal region was predictive of RTs under the slow 
learning rate while the Striatum was predictive of RTs under 
the fast learning rate. These results motivate our investiga-
tion into whether functional connectivity changes in 
response to the entropy under the two learning rates. We 
also use the data from this study to illustrate other interest-
ing patterns of functional connectivity that our proposed 
BTV-PPI model is able to uncover.

3.3.2. Time-Varying Psychophysiological Interaction and 
Lookahead Activity

In this section, we fit our model to the data described in the 
previous section and explore some different patterns of func-
tional connectivity that we uncover. As in the simulated data 
setting, our proposed BTV-PPI model allows us to identify sev-
eral classes of relationships between brain regions that the tradi-
tional PPI model cannot. The types of relationships the model 
can identify include pairs of regions that are functionally con-
nected with either constant or varying strength that is inde-
pendent of the experimental conditions as well as pairs of 
regions whose functional connectivity varies in response to 
experimental conditions.

Imaging was performed on the 3 T Siemens Allegra head 
only scanner with time resolution of 2.0 s per acquisition, across 
four sessions of 300 acquisitions each. Images were normalized 
into a template and resampled into 2� 2� 2-mm voxels in the 
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normalized template space (MNI). The voxels were then further 
combined into P ¼ 18 regions of interest (ROIs) by taking the 
mean BOLD signal of all voxel time series attributed to each 
ROI. The ROIs were defined anatomically according to the 
standard atlas (AAL). The regions selected were structures previ-
ously associated with learning, memory, and decision-making, 
along with several “control” regions, and separated bilaterally. 
We consider K ¼ 4 stimulus covariates of interest in the model:

� An indicator for the presentation of an image
� An indicator for the subject pressing a button
� The forward entropy under the slow learning rate: Hsð�Þ

� The forward entropy under the fast learning rate: Hf ð�Þ

Each stimulus covariate was convolved with the canonical 
HRF using the finite impulse response method, detailed in 
Section 2.1, to create the psychological regressors. PPI 
regressors were formed from the convolved product of each 
stimulus and each region’s BOLD response.

We fit our model to the data described above. The addi-
tive nature of the partial correlations in our model makes it 
possible to separate the contributions of physiologicial 
(background) connectivity and PPI effects before the selec-
tion of non-zero components described in Section 2.3.1 is 
performed. We show some examples of patterns of partial 
correlation for a single subject to illustrate the types of rela-
tionships the BTV-PPI model is able to capture.

3.4. Applied Results

We observe that the corresponding left and right sides of most 
brain structures across all subjects exhibit a strong degree of 
functional connectivity. For some brain regions this connectivity 
varies in strength independent of the experimental conditions. 
For instance, the left and right sides of the Anterior Cingulate 

Cortex region exhibit this pattern (Figure 5). By contrast, the 
left and right sides of the Hippocampus do not show this fluc-
tuating pattern; the partial correlation between these two 
regions remains fixed over the course of the experiment for this 
subject (Figure 6).

We also see pairs of brain regions with functional connect-
ivity that is modulated by the experimental conditions. For 
example, the total partial correlation between the left and 
right sides of the Caudate region for that same subject 
increases over the course of the experiment (Figure 7). This 
increase is not due to a change in the physiological (back-
ground) connectivity, which remains constant, but to the PPI 
effect of slow forward entropy. It’s not clear why the coordin-
ation of activity in the two sides of the Caudate region would 
increase in response to slow entropy; one possibility is that 
the region is being recruited for predictions when the alterna-
tive predictive system is uncertain, which would be consistent 
with extensive theoretical work on uncertainty-weighted arbi-
tration in multiple learning systems (Daw et al. 2005; 
Keramati et al. 2011; Lengyel and Dayan 2007; Wang et al. 
2022). This result could motivate future research into the role 
this region plays in predictive tasks where the reliability of 
learning changes differentially across a task.

As a further example of functional connectivity that 
changes in response to experimental conditions, consider the 
left Hippocampus and left Nucleus Accumbens (Figure 8), 
which exhibit a pronounced PPI effect corresponding to the 
press of a button. The direction of this effect is also interest-
ing. While the physiological connectivity is constant over the 
course of the experiment, the PPI effect of a button press 
negates that coordination or even causes the activity in the 
two regions to be anticorrelated, consistent with the quench-
ing of neural variability at response execution typically 
observed in decision-making tasks (Churchland et al. 2010). 
This observation is further consistent with prior work 

Figure 4. An example of lookahead entropy under the two assumed learning rates for a subject in the reaction time experiment of Section 3.3.
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suggesting that these regions have a coordinated role in 
motor control (Poldrack et al. 2001).

Finally, we note that many pairs of brain regions under 
consideration had no functional connectivity over the course 
of the experiment, even before the non-zero component 
selection process of Section 2.3.1. This aligns with an expect-
ation of sparsity among the functional connections within 
the brain. As an example, we include a graph of the compo-
nents of partial correlation between the left Anterior 
Cingulate Cortex and the left Caudate (Figure 9 ).

In Section 3.2, the simulation results, we compared the 
performance of different PPI model configurations by look-
ing at how well each of them estimated the known partial 
correlations. We did this by calculating the mean squared 
error between the estimated partial correlation and the 
truth. In this applied analysis we do not know the true par-
tial correlations so cannot calculate the MSE. To demon-
strate the advantage of using the BTV-PPI over the standard 
gPPI in this setting, we argue that the BTV-PPI model better 
explains each seed region’s BOLD activity than the gPPI so 

Figure 5. RT experiment: Partial Correlation between Left and Right Anterior Cingulate Cortex for a single representative subject. The physiological (background) 
connectivity varies over time, independent of the experimental conditions. We have included the 90% Credible Interval for only the Background functional connect-
ivity component. See Section 3.4 for details.

Figure 6. RT experiment: Partial Correlation between the Left and Right Hippocampus for a single representative subject. The physiological connectivity remains 
constant over the course of the experiment. We have included the 90% Credible Interval for only the Background functional connectivity component. See 
Section 3.4 for details.
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the partial correlations derived from the BTV-PPI’s esti-
mated time-varying coefficients must also be better. The 
MSE between the observed BOLD response in region i, 
YiðtÞ; and the estimated BOLD response Ŷ iðtÞ is 0.29 when 
the BTV-PPI model is used but 0.39 when the gPPI model 
is used. The proportion of the variation in BOLD activity 
explained by each model can also be used for comparison. 
This value is known as R2: When the BTV-PPI is used R2 ¼

0:70 but when the gPPI is used R2 ¼ 0:61 (see Supplemental 

Materials for more details). This shows that the BTV-PPI 
model better fits the data and we argue that it consequently 
yields better estimates of partial correlation.

4. Discussion

We have introduced a novel Bayesian model able to estimate 
potentially dynamic partial correlations arising both from 
drift in background functional connectivity and in response 

Figure 7. RT experiment: partial correlation between the left and right Caudate for a single representative subject. While physiological (background) connectivity 
remains constant, a PPI effect from slow entropy gradually increases over the course of the experiment. We have included the 90% Credible Interval for only the 
functional connectivity component associated with slow entropy. See Section 3.4 for details.

Figure 8. RT experiment: partial correlation between left Hippocampus and left Nucleus Accumbens for a single representative subject. A strong PPI effect is associ-
ated with a button being pressed. We have included the 90% Credible Interval for only the functional connectivity component associated with the press of a button. 
See Section 3.4 for details.
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to experimental stimuli. The method involves fitting P inde-
pendent linear regressions with time-varying coefficients and 
then using a non-marginal decision framework that identi-
fies structural zeros in the precision matrix of a Gaussian 
Graphical Model. This framework also enforces the assump-
tion of the undirected nature of functional connectivity by 
ensuring the symmetry of the precision matrix.

In simulations, our proposed BTV-PPI model performs 
comparably to the standard gPPI model in scenarios where 
partial correlations remain time-invariant but significantly 
outperforms the gPPI in scenarios where partial correlations 
vary over time. Importantly, we demonstrated how the gPPI 
model may erroneously infer a psychophysiological interaction 
between regions when, in fact, only a varying physiological 
connection is present. This highlights a critical limitation the 
gPPI model and underscores the need for approaches that can 
accurately account for such variability.

Additionally, we showed that the BTV-PPI model can 
accommodate continuous experimental predictors, expanding 
its applicability beyond block or event-related stimuli. We 
believe that this feature addresses a gap in current modeling 
frameworks and hope that future research explores the possi-
bility of time-varying continuous experimental conditions.

In an application of our model to a predictive learning 
experiment, we established the presence of distinct patterns 
of functional connectivity. Focusing on a single subject, we 
identified several unique patterns in the partial correlation 
between different brain region pairs. These patterns may be 
consistent with the dynamic arbitration between multiple 
decision and learning systems that has been proposed in the 
literature (Daw et al. 2005; Wang et al. 2022) and observed 
in behavior (Yoo and Bornstein 2024) but rarely observed in 
neural activity, perhaps due to insufficiently sensitive 

statistical tools. Notably, the patterns exhibiting dynamic 
partial correlation in either the physiological or PPI compo-
nents could not be captured by the gPPI model.

A key innovation of our model is its ability to estimate a 
precision matrix that describes multivariate data varying both 
in response to experimental conditions and incrementally, 
independent of those conditions. Furthermore, the model is 
able to disambiguate between those two sources of variability.

However a limitation of the proposed framework is that 
this model can be fully applied only to single subject’s data. 
Attempts to find patterns of partial correlation that are consist-
ent across all subjects in a study may face several challenges.

First, allowing each subject’s physiological connectivity to 
drift over time makes direct comparisons of partial correl-
ation time courses across subjects difficult. Although the mag-
nitudes of partial correlations may be generally comparable 
for specific brain region pairs, inter-subject differences may 
not be considered meaningful. Additionally, there may be sig-
nificant heterogeneity in the PPI responses to different stimuli 
across subjects. For example,in the reaction time experiment 
considered in Section 3.3, while one subject exhibited a strong 
change in partial correlation between the Hippocampus and 
Nucleus Accumbens associated with button presses, other 
subjects displayed a weaker or absent effect.

Consequently, we emphasize that the results of our applied 
analysis are not intended to suggest universal patterns of 
association but rather to demonstrate the model’s capacity to 
uncover distinct patterns where they exist. An important 
avenue for future research is the extension of these types of 
model-based frameworks for studying time-varying connectiv-
ity in complex experiments from subject-level models to 
group-level analyses.

Figure 9.  RT experiment: partial correlation between left Anterior Cingulate Cortex andleft Caudate for a single representative subject. There is no functional con-
nec-tivity over the course of the experiment. We have included the 90% CredibleInterval for all functional connectivity components to emphasize that they areall 
tightly centered around 0. See Section 3.4 for details.
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