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ABSTRACT

We propose a flexible Bayesian approach for sparse Gaussian graphical modeling of multivariate time
series. We account for temporal correlation in the data by assuming that observations are characterized by
an underlying and unobserved hidden discrete autoregressive process. We assume multivariate Gaussian
emission distributions and capture spatial dependencies by modeling the state-specific precision matrices
via graphical horseshoe priors. We characterize the mixing probabilities of the hidden process via a cumu-
lative shrinkage prior that accommodates zero-inflated parameters for non-active components, and further
incorporate a sparsity-inducing Dirichlet prior to estimate the effective number of states from the data. For
posterior inference, we develop a sampling procedure that allows estimation of the number of discrete
autoregressive lags and the number of states, and that cleverly avoids having to deal with the changing
dimensions of the parameter space. We thoroughly investigate performance of our proposed methodology
through several simulation studies. We further illustrate the use of our approach for the estimation of
dynamic brain connectivity based on fMRI data collected on a subject performing a task-based experiment
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on latent learning. Supplementary materials for this article are available online.

1. Introduction

In this article we consider the problem of estimating sparse
Gaussian graphical models based on time series data. Time-
changing dependencies and sparse structures are often encoun-
tered when investigating multi-dimensional physiological
signals (Safikhani and Shojaie 2022), environmental and sensor
data (Lam and Yao 2012), as well as macroeconomic and
financial systems (Kastner and Huber 2020). Among existing
approaches, Song, Kolar, and Xing (2009) introduced a time-
varying dynamic Bayesian network for modeling the fluctuating
network structures underlying nonstationary biological time
series. Kolar et al. (2010) proposed a method for estimating
time-varying networks based on temporally smoothed ;-
regularized logistic regression. Danaher, Wang, and Witten
(2014) and Qiu et al. (2016) addressed the challenge of
estimating multiple related Gaussian graphical models when
observations belong to distinct classes, and Warnick et al. (2018)
and Quinn et al. (2018) employed Hidden Markov Models
(HMMs) for the estimation of recurrent brain connectivity
networks during a neuroimaging experiment. Other procedures
for modeling the temporal evolution of dynamic networks
include change-point detection methods (Cribben, Wager, and
Lindquist 2013; Xu and Lindquist 2015) and time-varying
parameter models (Lindquist et al. 2014; Zhang et al. 2021).
Change-point techniques provide a data-driven approach for

the temporal partitioning of the network structure into segments
of adaptable length. However, these methods do not provide a
system for identifying potentially recurring network patterns
over time. Time-varying parametric methods offer a principled
way of modeling dynamic correlations but are computationally
intensive.

We propose a flexible Bayesian approach for sparse Gaussian
graphical modeling of multivariate time series. In order to rep-
resent switching dynamics, we assume an unobserved hidden
process, underlying the time series data, which at each time
point exists in one of a finite number of states. We account for
the temporal structure of this hidden process by assuming a
Discrete Autoregressive (DAR) process of order P (Biswas and
Song 2009), which flexibly incorporates long-term dependencies
by considering the P previous lags of the process. Given the state
of the latent process, we model the observations as conditionally
independent of the observations and states at previous times
and generated from state-specific multivariate Gaussian emis-
sion distributions. Under the multivariate Gaussian assumption,
networks can be estimated by the graphical models induced by
the state-specific inverse covariance matrices. We capture these
spatial dependencies by modeling the state-specific precision
matrices via graphical horseshoe priors.

The DAR hidden process construction we adopt is reminis-
cent of higher-order HMMs, where the present state depends not
only on the immediately preceding state but also on prior states
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further back in time. First-order HMMs, which constrain the
temporal dynamics of the hidden state sequence to be Marko-
vian, have been successfully applied in many scientific fields,
including neuroimaging (Warnick et al. 2018; Quinn et al. 2018),
climate (Holsclaw et al. 2017) and animal behavior (DeRuiter
et al. 2017), to cite a few. While higher-order HMMs have been
suggested (Cappé, Moulines, and Rydén 2005), they require the
estimation of transition probability matrices that grow expo-
nentially in size as the order increases, making their estimation
challenging (see, for a discussion, Sarkar and Dunson 2019). In
our proposed model, the state-switching behavior of the pro-
cess is captured by the time-varying mixing probabilities of the
DAR process. To model these probabilities, we propose a non-
parametric zero-inducing cumulative shrinkage prior. Building
upon the construction of the finite Dirichlet process (DP; see
Ishwaran and James 2001), the proposed prior accommodates
zero-inflated parameters, to account for non-active components,
and employs cumulative shrinkage (Legramanti, Durante, and
Dunson 2020) to handle increasing model complexity. This
construction ensures that if a parameter in the DAR model
is zero, then all subsequent lag parameters are also zero. This
results in a flexible and computationally efficient framework for
learning the time-varying mixing probabilities and the effective
order of the process, as opposed to learning the entire transi-
tion matrix, as required in HMM modeling. Such reduction in
the number of parameters leads to a substantial computational
advantage. It also allows to learn the number of lags in a data-
driven fashion. Related sparsity-inducing prior constructions
have been developed by Heiner, Kottas, and Munch (2019) for
the simplex model, and by Tang and Chen (2019) for zero-
inflated generalized Dirichlet multinomial regression models.
These constructions are specific to those models and less flexible
than our approach, which models the ordering of the lags as
the process evolves in time while promoting lower-order com-
plexity. We complete our modeling framework with a sparsity-
inducing Dirichlet prior that allows estimation of the effective
number of hidden states in a data-driven manner. Drawing
inspiration from the literature on overfitted finite mixture mod-
els (Rousseau and Mengersen 2011; Malsiner-Walli, Frithwirth-
Schnatter, and Griin 2016), we consider more states than strictly
necessary, while employing a prior that effectively constrains
the model’s complexity. This promotes sparsity while leading to
more interpretable inferences.

For posterior inference, we take a fully Bayesian approach and
develop a sampling procedure that accommodates the multiple
model selection problems, namely the number of DAR lags and
the number of states, while cleverly avoiding having to deal with
the changing dimensions of the parameter space. Specifically, we
implement a Gibbs sampler that alternates between updating the
DAR parameters, the sparse emission parameters, and the latent
state sequence. To update the DAR probabilities, we leverage the
stick-breaking construction of the DP by augmenting the space
with auxiliary indicator variables and design a joint sampling
scheme that alternates between adding or removing the sticks of
the zero-inducing DP formulation. Our zero-inducing cumula-
tive shrinkage prior significantly accelerates the proposed sam-
pler, particularly in regard to the forward-backward algorithm
for updating the latent state sequence. Estimates of the number
of hidden states and DAR order are determined based on the

most frequently occurring number of active states and DAR
order observed during MCMC sampling, respectively.

We thoroughly investigate performance of our proposed
methodology through several simulation studies. We further
illustrate the use of our proposed approach to estimate dynamic
brain connectivity networks based on functional Magnetic
Resonance Imaging (fMRI) data. Identifying the dynamic
nature of brain connectivity is critical for understanding our
current knowledge about human brain functioning. In our
application, we consider data collected on a subject performing
an experiment aimed at understanding neural representations
that are formed during latent learning. Inferred networks by our
method identify distinct regimes of functional connectivity, that
can be mapped onto cognitive interpretation.

The rest of the article is organized as follows. Section 2
introduces the proposed model, including the DAR process
and the proposed prior structures, and the MCMC algorithm
for posterior inference. Section 3 contains results from the
simulation studies and Section 4 illustrates the application
to fMRI data on latent learning. Section 5 provides con-
cluding remarks. The Julia software sggmDAR, which imple-
ments our proposed methodology is available on GitHub at
https://github.com/Beniamino92/sggmDAR.

2. Sparse Modeling of Multivariate Time Series Data
via Cumulative Shrinkage DAR

In this section, we describe the proposed latent variable
approach for modeling sparse multi-dimensional time series.
Lety = {yt}Ll, ¥y, = Ot,....¥) € RP, be the observed D-
dimensional time series data, with T indicating the number of
time points. We envision an unobserved, latent hidden process
underlying the observations and assume that, at each time point,
the process assumes one of a finite number of states, represented
asy = {yt}le, with 4 € {1,...,M} and M denoting the
(unknown) finite number of latent states. Given the value of
v1, the observations y, are assumed to be independent of both
the observations and states at previous time points. We further
assume that the state-specific emissions follow a D-variate
Gaussian distribution
M
Yol v kR~ TG ND (0 27D, ()
j=1

with state-specific means g; and precision matrices @;, j =
L...,M,t = 1,...,T. Here, 1(;(y:) denotes the indicator
function, which equals 1 if y; = j, and 0 otherwise. Conditional
dependencies can be inferred from the off-diagonal entries of the
precision matrices. Specifically, for a given state j, if the entry w; ;
is zero, the corresponding variables y;; and yy are conditionally
independent given the other variables.

2.1. State Dynamics via Discrete Autoregressive Processes

In order to learn the dependence structure between time points,
represented by the sequence y, we design an approach that
employs a discrete autoregressive process, with a cumulative
shrinkage prior that enables a computationally efficient estima-
tion of the order of the process. More specifically, we assume


https://github.com/Beniamino92/sggmDAR

that the evolution of the hidden state sequence y; follows a
Discrete Autoregressive (DAR) process of order P (Biswas and
Song 2009), a framework originally introduced in the context
of multi-lag finite-state Markov chains by Pegram (1980), and
subsequently adapted to categorical time series modeling by
Biswas and Song (2009). The DAR process allows the hidden
sequence to incorporate long-term dependencies by considering
the previous P lags. Formally, the conditional distribution of y;
given the past values y;_;,,—p is expressed as

PWelVi—1—ps @, ) = G111y (V) + G2l (V) + - -
+ ¢P]l{y,,p} (7/[) + ¢0 TCyys (2)

where ¢ = (¢y,...,¢p) andw = (71,. .., 7). We denote with
{qjj}fzo the autoregressive probabilities, with ¢g = 1 — Z]}')=1 b,
while the state innovation probabilities {m}?i | are defined as
w = p(yy = i), fori = 1,...,M, and allow the pro-
cess to transition to any of the M states, including those not
observed in the previous P lags. Here, 1(;(i) is an indicator
function equal to 1 if i = j and 0 otherwise. According to
(2), at each time point ¢, the model selects a latent state y; €
{1,...,M}, and assigns probabilities based on how this state
relates to the past P values of the sequence. Specifically, the
probability of choosing a particular state i € {1,..., M} is given
by the sum of two components: an autoregressive component
and an innovation component. The autoregressive probabilities
{9 }]le govern the recurrence structure, so that if y; = y;_; for
any j € {L,...,P}, then state i receives mass ¢;. That is, the
model assigns probability ¢; to each state i that matches y;—;.
In this way, the latent sequence favors persistence or recurrence
of recently visited states. Complementing this, the innovation
probability ¢ allows for exploration beyond the observed his-
tory. With probability ¢, the model selects a state independently
of yi—1,..., yi—p, according to the innovation distribution s,
which assigns nonzero probability to each of the M possible
states.

The transition probabilities in the DAR process can be rep-
resented by a multi-dimensional array. The dimensions of this
array are determined by the number of autoregressive lags, P,
and the number of hidden states, M. As an illustration, when P =
2, the transition probabilities are described by an [M x M x M]
array, say 7. The individual components of this array, denoted
as 1)1, represent the probability p(yr = jlyi—1 = i, y1—2 = )
for ,i,j € {1,..., M}, as defined in (2). However, as the num-
ber of lags P increases, the dimensionality of this array grows
exponentially. Therefore, the DAR characterization simplifies
inference by allowing us to focus only on making inferences on
the ¢ parameters, as opposed to learning the entire transition
matrix, which is the case with HMM models, for example. In
fact, when dealing with higher order HMMs, the task involves
estimating M? parameters for the transition arrays. In contrast,
our proposed method streamlines this process by estimating
(M + P) parameters, resulting in a substantial computational
advantage.

2.1.1. Zero-Inducing Cumulative Shrinkage Prior for
Learning Time Dependence

The time-varying mixing probabilities of the DAR model,

denoted as ¢;, characterize the state-switching behavior of
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the process. To model these probabilities, we propose a
nonparametric zero-inducing cumulative shrinkage prior that
accommodates zero-inflated parameters to account for non-
active components, and that employs cumulative shrinkage
(Legramanti, Durante, and Dunson 2020) to handle increasing
model complexity. This prior modifies the stick-breaking
construction to allow for an increasing probability of setting
¢; = 0 as j increases. In addition, our formulation enforces
that once s becomes zero for a specific j, j = 1,2,...,P,
subsequent lags obey the condition p(¢j1x = 0|¢; = 0) = 1,
k = 1,...,P —j. To formally introduce our prior, we need to
define a binary latent process, namely an “active order” latent
indicator, denoted as z; € {0,1},j = 1,...,P. If z; = 0,
then ¢; is almost surely nonzero. However, when the first j
such that z; = 1 occurs, then ¢; = 1 — ]l;i ¢rand z; = 1
almost surely for | = j + 1,...,P. More formally, the mixing
probabilities ¢; are generated via a modified stick-breaking
construction,

j—1
gi=vi [[a-w), forj=1,...P, 3)
=0

with ¢g = vo, where the stick-breaking weights v; are mixtures
of a Beta distribution and a spike at one,

vj | zi ~ (1 — zj) Beta (ay, b)) + z; 81, (4)

with 8, denoting a point mass at {x}, j =
specifying vo ~ Beta(ay, bp).

For zj = 0, (3)-(4) define the stick-breaking construction
typical of the Dirichlet process. If at some point zj = 1 occurs,
then v = 1, and ¢; = ]_[]l;(l)(l —v) = 1-— ij;i o1
For all remaining lags, our construction ensures ¢ = 0,
I =j+1,..., P. More specifically, to enforce the desired behavior
and promote lower order model complexity, we leverage the
increasing shrinkage prior construction of Legramanti, Durante,
and Dunson (2020) and assign increasing probability mass
to selecting the spike component as the order of the DAR
grows. In particular, we assume zj|vo.j-1 ~ Bern(§)) with

1,...,P, and by

probability & = Zj;l ¢; increasing with the lag j, where
z1lvo ~ Bern(vp). See also Zhang et al. (2021), where an
increasing shrinkage prior is used in a VAR model. Our
construction ensures that p(zy = 1llzz-; = 1) = 1 and
p(dr = 0]¢—1 = 0) = 1. We define the effective order of
the DAR process as the random element P = infie(1,..p{zj =
1}, that is the number of “active” lags of the DAR process.

The proposition below demonstrates the aforementioned
property.

Proposition 1. Let¢ = {¢j € Ay : j = 0,...,P} with Ay =
{d1:0 < ¢ <1, 2# = 1}, be constructed according to
(3),andv = {vi}f:o andz = {zi}f:1 be specified as in (4). Under
these assumptions, the cumulative shrinkage DAR formulation
implies that p(zj1; = 1|z =1) = Lforj=1,...,P.

Proof. Recall that zj | vo.j—1 ~ Bern (&;) with probability & =
Z]l;(l) ¢i,j=1,...P. Therefore, for j = 1,. .., P, we can write
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J
Pzjr1 = 1z = 0, vp) = Z(f), =v+ nl—v)+...
i=0 -
+y[[a—-w.
1=0
Thus, p(zj+1 = 0lzj = 0,v) = 1 — p(zj+1 = 1|zj = 0,vp;j) =
]_[Jllzo(l —vy). Forj = P, since vy = 1 a.s., we have Zf:o ¢ =

vo+ (L= vo) + - + v [[15 (1 = w) = 1. Thus, for j =
P+ 1,...,P—=1,p(zj41 = 1llvyp) = p(zjrilzi=1) =1. O

Given the one-to-one relationship between the sequence z;
and P, the process can be alternatively defined in terms of the
random quantity P, which is computationally convenient, as we
explain in Section 2.3. We note that the previous characteriza-
tion can also be extended to the case of P = oo. However, for
computational purposes, it is convenient to consider only a finite
number of terms, say, Pmax, and thus specify the autoregressive
coefficients as ¢ = (¢o,...,¢p,, ), Where ¢p,_ 1 —

fzm(;‘"*l ¢;. In implementations, this approach offers consid-
erable versatility when P,y is set to a moderately high upper
bound, and it is advisable to choose Pp,x such that it exceeds
the expected number of lags.

2.1.2. Sparsity-Inducing Dirichlet Prior to Infer State
Transitions and Space Size

As for the innovation probabilities 7, to facilitate a substan-
tial reduction in the effective number of states compared to
the maximum number, M = Mp,x, we draw insights from
recent literature on overfitted finite mixture models (Rousseau
and Mengersen 2011; Malsiner-Walli, Frithwirth-Schnatter, and
Griin 2016). Specifically, we assume a symmetric Dirichlet prior
T = (7y,...,7pm) ~ Dir (kg, ..., ko), where the concentration
parameter ko is set at a very small value, so that the marginal
densities of each 7;j are spiked around the values zero and one,
j = 1,...,M. This approach results in estimating a reduced
number of hidden states, denoted as M, which is significantly
less than M. Thus, unnecessary hidden states are effectively
removed from the posterior distribution. The hyperparameter
ko plays a crucial role. Here, we set ko = 0.001 following
the recommendation by Malsiner-Walli, Frithwirth-Schnatter,
and Griin (2016). In Section 2.4, we propose to estimate the
number of hidden states based on the most frequent number of
active states during MCMC sampling. By setting a large value for
M, our approach provides a simple and automated framework
for estimating the number of hidden states, without relying
on computations of marginal likelihoods, post-MCMC model
selection criteria, or reversible-jump MCMC.

2.2. Graphical Horseshoe Priors for the Precision Matrices

To induce prior sparsity in the state-specific precision matri-
ces s, we employ the graphical horseshoe (GHS) prior pro-
posed by Li, Craig, and Bhadra (2019). This prior uses normal
scale mixtures with half-Cauchy hyperpriors for the off-diagonal
entries of the precision matrix while using uninformative priors
for its diagonal elements. Specifically,

wjii X 1,
wijiti<1 ~ N0, )"]‘2’1‘]1']‘2))
Mjiti<t ~ CT(0,1),
7~ C*(0,1),

fori,] = 1,...,D,and j = 1,..., M. The global shrinkage
parameter 7; plays a crucial role in promoting sparsity across
the entire matrix £;, by shrinking the estimates of all the off-
diagonal values towards zero. On the other hand, the local
shrinkage parameters Ajii.;<; allow to preserve the magnitudes
of the nonzero off-diagonal elements, ensuring that the element-
wise biases do not become too large. This combination of global
and local shrinkage enables the GHS prior to induce sparsity in
the precision matrices while capturing the relevant dependen-
cies between the elements.

We complete the prior specification on the emission distribu-
tions by assuming Gaussian priors on the state-specific means,
that is, p(p;) ~ N(ILo»RO_l), forj=1,...,M.

2.3. Markov Chain Monte Carlo Algorithm

We now outline the MCMC algorithm we designed for posterior
inference. For notational convenience, we collect all parameters
except y as the set @ = {v,z,mw,u, R, 7, A} with A = {Aj}jz\i1
and A; = {)sz)l.l} the matrices of local shrinkage parameters
in the GHS prior, T = (11,...,7m) the global parameters,
n= (..., 0y, and @ = (R1,...,R;). We then write the
posterior distribution of @ conditional upon the current value of
y as

p@ 1y, y) o< L(8; y,y) p(v, 2) p(m) p() p(R, T, A),  (5)

where the conditional likelihood is factorized as
T
‘C(oa y) }’) = 1_[ P(Vt | YVt—1:t—P> v, Z, ”)P()’t | Yt> n, Sl) (6)
t=P+1

and where the joint prior p(v,z) of the indicator variables and
the stick-breaking weights can be expressed as

p-1 p
pw,2) = po) [ | pjlz) [ [ pzia1 Iv0y)s (7)
j=1 j=0

with
p(vjlzj) o Beta(ay, b,)' 77,
Pp(zj41]vo5) o Bern(1)3 Bern(§)' 7, (8)

and the conditioning on vg;—; induced by the cumulative
shrinkage parameter &;.

Since the posterior distribution is not available in closed
form, we develop a Gibbs sampler that alternates between: (i)
drawing the stick-breaking weights v and auxiliary indicators z.
For this, we design a Metropolis-Hastings algorithm similar to
Savitsky, Vannucci, and Sha (2011), that cleverly avoids having
to deal with the changing dimensions of the parameter space via
a joint update of the indicators and the weights; (ii) updating
the innovation probabilities  related to the sparsity-inducing
Dirichlet prior; (iii) sampling the multivariate sparse emission



parameters, that is the mean vectors in p, the precision matrices
in € and the global and local shrinkage parameters T and A;
(iv) updating the latent state sequence y, through a forward-
backward algorithm, which is significantly accelerated by the
proposed zero-inducing cumulative shrinkage prior formula-
tion. We now describe these updates in full detail.

« Update z and v: We perform a joint update of the indicators
z and weights v by designing a Metropolis-Hastings sampler
with birth and death moves, that increase or decrease the
order of the DAR process by one. Formally, let us define the
current number of active components P“'", stick-breaking

weights v = (vo, v, .. > Vpeurr_y> 1) and indicator vari-

ables z°“" = (0,0,...,0,1), of dimensions P“"" + 1 and
Peurr | respectively; note that z“" = 1 when P = 1. A
new vector of indicators z is drawn by proposing at random
one of the following two moves:

(i) birth move: Set PP"P = Peum 4 1 and construct z?"P
from z“" by adding a zero entry; for this move, the
proposed vector of weights is constructed as v/ =
(V0> V1s+ + s Vpeurr—15 Vpprop—15> 1) with Vpprop_, drawn from
the prior, that is vy, ~ Beta(ay, by), and vpn, set
equal to one. This move is accepted or rejected with
probability

. p(vprop) ZPTOP |}’,y, ) 1

o = minj1, >
p(vcurr)zcurr |},’y) ) Beta(Vj)prop_l |av) bv)

)

where the joint posterior distribution p(z, v|-) is easily

available by appropriate conditioning of the relevant vari-

ables in (5) and (6), that is

T
pw.zly,y ) xpm2) [] pi | vicra—ps o2 70),
t=P+1
(10)
with the DAR probabilities p(y¢|-) defined as in (2),
recalling that ¢ is a by-product of v and z using the
formulation presented in (4).

(i) death move: Set PP = Pem _ 1 and construct z?"
from z““" by removing a zero entry; here, vP" is
obtained from v " by replacing the component v ..,
with a one and setting Vi eurr equal to zero, namely
VPP = (Vo, V1, ..., Vpaur_,» 1). This is move is accepted
or rejected with probability the inverse of (9) with the
appropriate change of labeling.

After each death/birth move, to enhance the mixing effi-
ciency of the MCMC algorithm, we further update each com-
ponent of the weight vector v using a one-at-a-time slice sam-
pler (Neal 2003). Slice sampling is particularly advantageous
for drawing samples from one-dimensional conditional dis-
tributions within a Gibbs sampling framework. Here, we
focus on multivariate targets by iteratively sampling each
variable. In particular, we obtain posterior samples from the
target function p(v;[v_;,-), for j = 0,..., P — 1, where
V_j = (Vo, e )Vj—la Vj+1’ . ’Vf’—l)'

We remark here that the order P of the DAR process is
not modeled as a random variable, but rather inferred directly
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from z and v, eliminating the necessity of employing a trans-
dimensional MCMC sampler (Green 1995).

Update x: We update the components of = with a one-
at-a-time slice sampler, drawing samples from the target

function p(mj|m_p,-), for j = 0,...,Mmax — 1, where

w_; = (W05 > W_1,TUg1>- - - > TMy,,)- Note that mpy is

automatically obtained from its simplex, that is maz,,,
Mmax71

=20 7.

Update ;, A, and 7: We use the augmented block Gibbs
sampler method proposed by Li, Craig, and Bhadra (2019).
We center the observations belonging to each state to its cur-
rent value of the emission mean, B> and consider a modified

set of observations denoted as Yj = —n v =jh
By doing this, we can closely follow the scheme proposed
by Li, Craig, and Bhadra (2019), which assumes zero-mean
multivariate normal distributions. We apply the Gibbs sam-
pler independently for each state j, fromj = 1 to Mmax and
subsequently update the global shrinkage parameter 7; and
its corresponding augmented parameter &. We refer to the
reader to Algorithm 1 of Li, Craig, and Bhadra (2019), for the
details of the GHS sampler.

Update p;: We sample the mean vectors p; from the cor-
responding full conditional, as is typical in the context of
Gaussian Bayesian regression settings (see e.g., Gelman et al.
1995). The posterior distribution is given by p;le,y,
N(;L;, SZ;), where

Q7 =Ry +N;®, and ui=QRopo + NjY)),
(11)
and Y; denotes the (N; x D)-dimensional matrix of observa-
tions assigned to state j, with Nj the corresponding number
of observations belonging to that regime.
Update y: We update the sequence of latent states y with
a block-wise approach that adapts the forward-backward
procedure employed by Fox et al. (2011) and Hadj-Amar et al.
(2021) to take into account temporal dynamics that extend
beyond a simple Markovian structure. Conditional upon ¢,
7, i, and R, we harness the dependence structure of the
DAR and develop an iterative sampling scheme based on the
following representation of the posterior distribution of the
hidden states

Py ly, ) =pnly: ) pGalynys ) - pWplVip_p o)
T
< [T pilvi_rpy - (12)

t:lS-‘rl

Under this factorization, we first sample y; ~ p(y11y, -), then,
conditioning on the value of y;, we draw y» ~ p(y2lv1, ¥, ),
and so on, where we update y; ~ p(ytly,_,.,_p>¥> ), given
the previous sampled states y, |, 3. Assuming M = Mpax,
the general form for the conditional posterior distribution of
the states in (12) is given by

Pt =jolvi—1 =jis- - > V,_p = jps > ")
e ¢ n{]}”,,,]l,]()}p(ytlyf =j0> ", Sz) :Bt-‘rl(i())) (13)

fort = P+ 1,...,T, andj; € {1,...,M}, ] = 1,...D,
where 1y;.,..j.jo} are the DAR probabilities of selecting state
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jo, given previous values ji,...,jp, as defined in (2), and
p(y, |-) are the multivariate spiked Gaussian emission densi-
ties specified in (1). Here, we define the backward messages
BiG1)) = pO.rlvi—1 = ji,-), as the probability of the
partial observation sequence from time ¢ to T given the state
j1 at time t — 1, conditioned on all the other parameters.
These messages can be recursively expressed as follows (see
Proposition 2, supplementary material)

M M M
B () = Z s Z Z M jpoe--sjasfitsfo}

jp=1  ja=ljo=1
P times
X plye = jos s @) Bry1(Go)s t<T, (14)
with Br41(-) = 1. Our zero-inducing formulation for the

DAR probabilities, described in Section 2.1.1, allows a sig-
nificant speed-up of the proposed sampler, since in (14) we
restrict summations to the active DAR terms only, rather than
using the entire multi-dimensional array 5. Additionally, we
specify the initial DAR probabilities 7. in (12) and (13) to
be uniformly distributed.

Following similar practices as in Fox et al. (2011) and Hadj-
Amar et al. (2021), we update only emission parameters for
those states that have at least 1% of the assignments, while
for those states that do not satisfy this condition we draw the
corresponding emission parameters from their priors. For the
GHS prior, we draw the diagonal entries of the precision matrix
using a diffuse prior w;; ~ U(0, 100).

We acknowledge that the proposed Bayesian procedure may
be susceptible to the label switching problem (Jasra, Holmes,
and Stephens 2005) due to the invariance of the likelihood
(6) under permutations of the mixture components’ labeling.
To mitigate this issue, we adopt a post-processing approach
using the Equivalence Classes Representatives (ECR) algorithm,
initially introduced by Papastamoulis and Iliopoulos (2013) and
later improved by Rodriguez and Walker (2014). The core idea of
the ECR algorithm is to categorize analogous allocation vectors
as mutually exclusive solutions to the label switching problem.
In this context, two allocation vectors are considered analogous
if one can be obtained from the other merely by permuting its
labels. The ECR procedure divides the allocation vectors into
analogous categories and identifies a representative from each
category. Consequently, during post-processing, the ECR algo-
rithm identifies the permutation corresponding to each MCMC
iteration. This permutation is then applied to reorder the match-
ing allocation with the aim of aligning it with the representative
of its category.

2.4. Posterior Inference

After obtaining the (possibly relabeled) MCMC output, we first
estimate the number of active DAR components by computing
the posterior probabilities p (13 = pl),p = 1,...,Pmax and
then identify the posterior mode as the value of P that maximizes
such posterior probabilities. Similarly, to estimate the number
of hidden states, we first calculate the posterior probabilities
pM=m|)form=1,..., Mma as

S
P(M =m|) = é Zn(M@ =m),  where
s=1
Mmax
Y AN #0),

=1

M© = (15)

with N; the number of observations assigned to state j, and
where the superscript (s) indicates the MCMC iteration for s =
1,...,S. We then calculate the posterior mode to obtain the final
estimate of the number of hidden states, M. Next, conditional
upon these estimates, we perform posterior inference on the
model parameters @, 7, ji, and € by averaging their sampled
values across the MCMC iterations with number of hidden states
M and DAR order P.

As for inference on the sequence of latent states, we per-
form both global and local decoding. Global decoding refers
to the determination of the most likely sequence of the entire
vector of latent states y = (J1,...,7r). We obtain such a
maximum a posteriori (MAP) estimate by using a variant of
the scheme described in (12). Given the estimated parameters
@, 7, ji, and , we iteratively maximize the posterior distri-
bution of the states, where at each time step t, we compute
decoding of the hidden state at time ¢, p(y; = j|y, -) refers to the
determination of that state which is most likely at that time. This
is achieved using

P =jlys ) < p(ve = js Y1l DPWegrrl ve =)
= ar1()Br+1 (),

where the backward messages are defined as B;(j) = p(y,.7|vi—1
= j,-) and the forward messages are expressed as o;(j) =
P W1.4—1>¥i—1 = jl|-). In order to leverage the recursive nature
of these messages, we also defined the DAR-forward messages
(i, jp) = P V14— V=1 = ji>-- > ¥,_p = jp | ). Further
details and the validity of these expressions are provided in the
supplementary material.

For inference on the graphs, since the GHS approach is a
shrinkage procedure, and thus it does not estimate the entries
as exact zeros, we use posterior credible intervals to perform
variable selection, as suggested by Li, Craig, and Bhadra (2019).
Specifically, we use a 95% interval from the estimated posterior
distribution of each off-diagonal element of the precision matri-
ces, so that if the interval corresponding to an entry includes
zero, that entry is assessed as non active. Note that Li, Craig,
and Bhadra (2019) employed a 50% symmetric credible interval,
arguing that such a procedure would have conservative proper-
ties, and would reduce false negatives while controlling for false
positive. However, in our experiments, a 95% interval seemed
to outperform the choice suggested by Li, Craig, and Bhadra
(2019).

3. Simulation Studies

We investigate the performance of our proposed methodology
using simulated data, aiming to assess its ability to recover the
true DAR probabilities, emission parameters, and the correct
number of autoregressive lags and hidden states. We further
evaluate the robustness of the approach under model misspeci-
fication and its effectiveness on synthetic fMRI data.



3.1. Data Generation

We first consider a simulation framework where the data were
generated with underlying time-varying means and structured
precision matrices. We generated 30 distinct datasets from
model (1)-(2), each consisting of D = 15-dimensional time
series of length T = 2000, and assumed M = 5 latent states
and a DAR of order P = 2. The autoregressive probabilities
were set to ¢ = (0.1,0.75,0.15) and the innovations to
7z = (0.6,0.1,0.1,0.1,0.1). For each state j, the emission means

n; were independently simulated from a multivariate Gaussian

distribution with mean vector by = (—%, ces —Ll), 0, Ll), ces %)
and identity matrix as the covariance matrix, that is u; ~
N (bo, Ip), and where the simulated components of these vectors
were randomly shuffled. The state-specific precision matrices £2;
were assumed to be sparse with diagonal elements fixed to one
and off diagonal elements constructed using the following five
structures:

(i) Identity graph: this structure assumes that the components
are independent, that is the off-diagonal elements are all set
to zero.

(ii) Star graph: a configuration similar to the identity matrix,
except for the first row and first column, whose elements
are set to wj = —% ifi =1orl =1, and 0 otherwise.

(iii) Hub graph: this structure is organized into five blocks
(hubs) of the same size. For any I # i in the same block
as i we specify wj = wj; = —%5, and 0 otherwise.

(iv) AR(2) graph: in this structure the precision matrix displays
an autoregressive pattern of order two over the main diag-
onal. The entries are specified as w;; = % ifl=i—1,i+1,
wj = i ifl =i—2,i+ 2, and 0 otherwise.

(v) Random sparse graph: for this setting, the precision matrix
is generated by randomly selecting L%DJ off-diagonal
entries, and drawing each w;; uniformly from the interval
[—1.0,—0.4] U [0.4,1.0], while the diagonal elements are
fixed at 1, and the other entries at 0. Each of the off-diagonal
element is then divided by the sum of the off-diagonal
elements in its row, and then the matrix is averaged with
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its transpose, to produce a symmetric, positive definite,
matrix.

Partial correlation matrices corresponding to these five sce-
nario are displayed in Figure 1 (top row). A single realization
from the simulation setting described in this section is shown
in Figure 2 (top panel), with vertical bands representing the
true underlying state sequence. Here, we have further scaled
the time series realization, independently for each dimension
d = 1,...,D, in such a way that the corresponding standard
deviation of those observations { ytd};le is equal to one. We note
that the partial correlations are invariant under a change of scale
and origin, allowing a meaningful comparison between true and
estimated values of these matrices.

3.2. Parameter Settings

Results reported below were obtained by fixing the maximum
number of states to My,x = 10 and the maximum DAR order
to Pmax = 5. The DAR hyperparameters were chosen as ap =
1,bp = 10, and a, = 10, b, = 1, so that the prior probabilities
of innovation and autoregression were driven toward zero and
one, respectively. The hyperparameters for the emission vector
mean were specified as uy, = 0 and Ry = (1/10) Ip, so that
the mean components were a priori independent across differ-
ent dimensions and with fairly large variance, hence, reflecting
weakly informative beliefs.

Initial values of the MCMC sampler were chosen as follows:
the DAR parameters were sampled from the prior; the Gaussian
emission means were fixed to the centers of a k-mean clustering
and the covariance matrices were set to the identity. The GHS
parameters were set to one. MCMC chains were run for 4000
iterations, with 1200 iterations discarded as burn-in. The algo-
rithm took approximately 10 min to run, for each simulated time
series, with a program written in Julia 1.6 on an Intel” Core™
i5 2GHz Processor 16GB RAM. We verified convergence of
the MCMC sampler by: (i) analyzing the trace plots of the
parameters, for example the mean of the multivariate spiked
Gaussian emissions, observing no pathological behavior; (ii)
storing the values of the overall likelihood (6) and plotting the
corresponding trace, noting that it reached a stable regime; (iii)

1 2 3 4 5
™
L . T-.__ -
L l.. -
k N | BV
,y ’ .

Figure 1. Simulation study. (top) true state-specific partial correlation matrices; (bottom) estimated state-specific partial correlation matrices. These results are conditioned

upon the estimated modal number of states and autoregressive order.
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Figure 2. Simulation study. (top) time series realization (lines), with each dimension represented by a different line; vertical bands represent the true underlying state

sequence; (bottom) estimated time-varying probability plot.

_alllli.

0.50 0.75 1.00

0.50 0.75 1.00

7
¢j !
Figure 3. Simulation study. Posterior histograms of the DAR parameters. (left) autoregressive probabilities ¢;,/ = 0, . .. P, (right) innovation probabilities rj, j = 1, . ... M.

Dotted vertical lines denote true parameters. These results are conditioned upon the modal number of states and autoregressive order.

verifying the Heidelberger and Welch’s convergence diagnostic
(Heidelberger and Welch 1981) for the likelihood trace. We
report some of the results in the supplementary material.

3.3. Results

Our approach consistently estimated the correct number of
states M = 5 as the mode of the posterior distribution and
the number of active DAR probabilities as P = 2 with high
posterior probability, on all simulated replicates. For a single
replicate, in Figure 1 (bottom row) we show the estimates of the
state-specific partial correlation matrices, conditioned upon the
modal number of states and modal number of DAR parameters.
Our approach successfully retrieves the distinct patterns of the
true graphs. Figure 2 (bottom panel) displays a time-varying
probability plot, namely the local decoding of the hidden state
at time t, p(yy = jl9)j = L...,M, as described in
Section 2.4; these plots are constructed by plotting the local
probabilities (which add to 1) cumulatively for each t. The
proposed approach appears to correctly retrieve the true latent
state sequence. Additionally, Figure 3 displays the posterior
histograms of autoregressive and innovation probabilities, with

dotted vertical lines denoting the true generating values. Our
proposed method appears to provide a good match between
true and estimated values for the DAR parameters. In the sup-
plementary material (Section C.1), we further analyze state-
specific mean and variance values across different dimensions,
revealing distinct patterns in both location and dispersion across
states. These findings provide additional support for the model’s
ability to capture meaningful heterogeneity in the underlying
data distribution.

Next, we investigated the performance of our proposed
approach over the 30 replicated datasets and performed
comparisons with alternative methods. We focused on the
recovery of the state-specific precision matrices and compare
the proposed methodology, which will be referred to as
SggmDAR, to two alternative approaches. For the first approach,
which we call mvHMM, we fit a Bayesian multivariate HMM
with Gaussian emissions, with a Normal inverse-Wishart
prior on the state-specific emission parameters (uj, Xj) ~
NIW (pg, So/ko; Vo, So), where the hyper-parameters were
specified in a weakly informative manner, that is gy = 0,k =
0.1,vg = D + 2,89 = Ip. The number of states was set to
five (i.e., the truth). The transition probabilities were assumed
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Table 1. Simulation study.
Identity Star Hub AR(2) Random
sggmDAR 1.0(0.0) 0.995 (0.007) 1.0 (0.002) 0.969 (0.021) 0.958 (0.027)
Acc mvHMM 0.969 (0.032) 0.933(0.039) 0.933 (0.088) 0.822(0.138) 0.883(0.110)
glassoSlide 0.993 (0.018) 0.835 (0.047 0.805 (0.053) 0.690 (0.031) 0.714 (0.031)
sggmDAR 0(0.0) 0.995 (0.007 0(0.0) 0.995 (0.007) 0.997 (0.005)
Spec mvHMM 0. 969 (0.032) 0.942 (0.022 0. 933 (0.093) 0.840 (0.158) 0.924 (0.100)
glassoSlide 0.993 (0.018) 0.937 (0.052 0.879 (0.065) 0.899 (0.040) 0.869 (0.044)
sggmDAR - 0.979(0.028 0.998 (0.011) 0.919(0.055) 0.868 (0.087)
McCC mvHMM - 0.734(0.212 0.765 (0.210) 0.591 (0.297) 0.630(0.365)
glassoSlide - 0.140 (0.198 —0.019 (0.040) —0.017 (0.101) —0.004 (0.073)
sggmDAR - 0.981(0.025 0.998 (0.011) 0.936 (0.045) 0.883 (0.083)
F1 mvHMM - 0.761(0.194 0.747 (0.243) 0.683 (0.254) 0.683 (0.332)
glassoSlide - 0.193(0.189 0.081 (0.051) 0.125(0.078) 0.152(0.062)
SggmDAR - 0.994 (0.020 0.996 (0.020) 0.895 (0.071) 0.807 (0.124)
Sens mvHMM - 0.874(0.235 0.927 (0.245) 0.772(0.267) 0.732(0.356)
glassoSlide - 0.171(0.174 0.103 (0.072) 0.089 (0.063) 0.126 (0.059)
sggmDAR 0.002 (0.001) 0.034 (0.008 0.021 (0.007) 0.049 (0.011) 0.042 (0.011)
RMSE mvHMM 0.019(0.012) 0.073(0.013 0.080 (0.035) 0.116 (0.057) 0.087 (0.041)
glassoSlide 0.001 (0.004) 0.097 (0.003 0.162 (0.002) 0.205 (0.002) 0.155 (0.004)

NOTE: Accuracy, specificity, Matthew correlation coefficient (MCC), F1 score, sensitivity, and residual mean squared error (RMSE) of precision matrix estimates, for each state

j=1,..

M. Standard deviations over the 30 simulations are displayed in parentheses. Results are reported for sggmDAR, mvHMM, and glassoS1lide. Results for

sggmDAR are conditioned upon the modal number of states and autoregressive order. A hyphen is used for those metrics that cannot be computed due to the structure

of the underlying truth (e.g., TP+FN =0).

symmetric Dirichlet distributed, with concentration parameter
equal to one. Since this HMM approach does not estimate
precision entries as exact zeros, we once again used 95%
posterior credible intervals to perform edge selection. In the
second approach, named glassoSlide, we followed Allen
et al. (2014) and employed a sliding window to compute time-
varying sparse inverse precision matrices via graphical lasso
(Friedman, Hastie, and Tibshirani 2008) using the R package
glasso. In order to obtain an estimate of the latent state
sequence, the windowed estimates of the precision matrices
were then used as feature vectors in the k-means clustering
algorithm. Finally, sparse state-specific precision matrices were
estimated by applying graphical lasso to the MLE estimates of
the covariances relative to the set of observations corresponding
to each distinct state. The number of states was set to five
(i.e., the truth), while the size of the sliding window and the
magnitude of the penalization parameter were selected in such
a way to maximize model selection performances averaged over
the different states.

To assess model selection performances we computed accu-
racy, sensitivity, specificity, F1-score and Matthew correlation
coefficient (MCC), for each regime j = 1,..., M. In addition,
to evaluate estimation accuracy, we calculated residual mean
squared error (RMSE) of state-specific off-diagonal entries of
Vb St (00— o)’
Results from these measures are summarized in Table 1. Note
that MCC, F1, and sensitivity for the Identity state are not
presented since these metrics cannot be computed due to the
structure of the underlying truth (e.g., TP+FN = 0). Overall,
sggmDAR produced the best results both in estimation accuracy
and model selection performances. Though accuracy and speci-
ficity of glassoSlide are somewhat high, this frequentist
method is by far the worse, as illustrated by very low MCC
scores. We remark that, while both mvHMM and glassoSlide
need to specify the number of states in advance, our proposed

the precision matrices as RMSE; =

approach produces an estimate of this parameter. In the sup-
plementary material, we further investigate the performance of
our proposed methodology for data-generating emissions with
zero-mean, that is R = 0, for j ., M. The results
confirm the superiority of our approach over both mvHMM and
glassoSlide in terms of estimation and model selection
accuracy.Additionally, the supplementary material contains a
sensitivity analysis study that focuses on examining the impact
of the hyperparameters a,, b, associated with the zero-inducing
cumulative shrinkage prior (4). Results show that, for small and
moderate T, different combinations of the hyperparameters may
yield varying dynamics of the process. However, as T increases,
such differences are not noticeable.

3.4. Simulations for Varying T and D

Next, we investigated performance for different values of the
sample size T. For this, we generated 30 distinct time series for
different sample sizes, T = 100, 500, 1000, 5000, 10,000, assum-
ing M = 3 states and DAR order P = 2, with autoregressive
probabilities specified as ¢ = (0.2,0.5,0.3) and innovations set
tor = (0.5,0.3,0.2). The emission means were generated as in
the main simulation above, whereas the precision matrices were
constructed using patterns (i), (iii), and (v) from Section 3.1.
Here, to perform Bayesian inference we fixed the maximum
number of states to Mi,x = 3 and maximum DAR order to
Prax = 2. The hyperparameters were specified as in Section 3.1.
Figure 4 displays boxplots over the 30 simulations of the pos-
terior distributions of ¢ and =, for the different values of T,
conditioned upon the modal number of states and autoregres-
sive order. As it was to be expected, estimates for both ¢; and 7;
showed larger variability for small sample sizes. Conversely, as T
increases, the generating DAR dynamics became more apparent,
and our inference procedure is indeed able to retrieve the correct
parameters more accurately, for most cases.
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Figure 4. Simulation study. Boxplots over 30 simulations of posterior distributions for (left) autoregressive probabilities ¢;,/ = 0, . .. P, and (right) innovation probabilities
rr]-,j =1,..., M, for different sample size T = 100, 500, 1000, 5000, 10,000. These results are conditioned on the modal number of states and autoregressive order.

Finally, we explored the performance of our approach in a
scenario where the dimension D of the data is large. Here, we
focused on assessing the ability of our proposed method in
recovering the number of states, number of DAR parameters,
and true sparse precision matrices. We simulated 30 time series,
each consisting of D = 100-dimensional time series of length
T = 2000, with M = 3 and P = 2, and with the emissions gen-
erated as in Section 3.1 and the precision matrices for the three
states specified as Identity, Hub (with four blocks) and Random,
respectively. The innovations were set to # = (0.6,0.2,0.2),
while the rest of the data-generating parameters were set as in
Section 3.1. Here we report results obtained by specifying the
hyper-parameters as described in Section 3.1 and by running
MCMC chains for 4000 iterations, with 1200 iterations discarded
as burn-in.

As in the previous simulations, the correct number of states
and DAR order were identified as those with the highest pos-
terior probability for all replicated datasets. In the supplemen-
tary material, we report model selection and estimation accu-
racy performances for the off-diagonal component of the preci-
sion matrices, for sggmDAR, mvHMM, and glassoSlide. The
MCC scores highlight the advantage of choosing our proposed
method in large settings. Indeed, the number of parameters for
each individual state is substantial, as there are 4950 distinct off-
diagonal coeflicients to be inferred for each precision matrix.

3.5. Additional Simulations

We conducted further simulations to assess the robustness of our
model under two complementary settings: (i) a model misspec-
ification scenario, where data are generated from a stationary
vector autoregressive (VAR) process; and (ii) a realistic synthetic
fMRI dataset designed to mimic experimental BOLD signals
under structured noise conditions. These simulations provide
insight into how the model behaves when its assumptions are
violated and how well it performs in capturing task-driven neu-
ral dynamics. Full details are provided in the supplementary
material (Sections F and G).

3.5.1. Misspecified Model

VAR is a popular model for both task and resting state fMRI,
commonly used to capture temporal dependencies in neural
time series. To explore the model’s robustness under model
misspecification, we generated multivariate time series from
a stationary first-order VAR process with either sparse or

dense autoregressive coefficient matrices. We summarize here
the major findings. A complete description of the simulation
setup and additional diagnostic plots are provided in the
supplementary material (Section F).

In the sparse setting, where dependencies among dimensions
are limited, the model consistently favored a single latent regime,
with an estimated number of states M = 1. This outcome
reflects the relative homogeneity of the time series structure
under sparsity, which does not induce detectable changes in
statistical properties over time. In contrast, under a dense VAR
structure, where most components influence one another, the
model identified multiple regimes, with M = 3. Despite the
absence of true regime-switching in the data-generating process,
the inferred latent states captured subtle shifts in the local mean
and variance, as well as changes in the estimated connectivity
patterns. Residual diagnostics, including standardized residuals
and Q-Q plots, confirmed the adequacy of the model fit, with
deviations confined to minor departures in the tails. These
results highlight the model’s capacity to adapt to a variety of
temporal structures, effectively extracting interpretable latent
states even under substantial model misspecification.

3.5.2. Simulated fMRI Data

To further assess the performance of our model in a realistic
neuroimaging context, we generated synthetic fMRI data using
the neuRosim package in R (Welvaert et al. 2011), which
provides a principled framework for simulating blood-oxygen-
level-dependent (BOLD) signals under controlled experimental
and noise conditions. This simulation mimics a block-design
experiment in which an external stimulus is applied every 80
sec and persists for 40 sec. The BOLD response is constructed
using a canonical double-gamma hemodynamic response func-
tion (HRF), and several structured noise components-namely,
temporal drift, physiological oscillations, and scanner-induced
artifacts-are independently added to each brain region. The
resulting signal is standardized to reflect typical preprocessing
steps in fMRI analysis.

Figure 5 displays this process: panel (a) shows the final simu-
lated multivariate fMRI time series; panel (b) presents the clean
BOLD signal prior to noise addition; and panel (c) shows the
posterior state probability plot obtained from our model. In this
setting, the proposed approach correctly infers M = 2 latent
states, with state transitions that align closely with the stimulus
schedule-despite the unsupervised nature of the analysis. This
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Figure5. Simulated fMRI Data. (a) Simulated fMRI time series obtained by summing
the clean BOLD signal with structured noise components and standardizing each

region; (b) True underlying BOLD signal convolved with a canonical double-gamma
HRF; (c) Estimated time-varying state probability plot.

confirms the model’s ability to recover task-related structure in
high-dimensional noisy time series data.

The model’s estimated state-specific mean and variance
profiles (reported in the supplementary material, Section G)
highlight interpretable differences between the two inferred
states. One state corresponds to higher overall activation
across regions, while the other reflects baseline or resting
activity. These findings demonstrate the method’s ability to
isolate functionally relevant brain states. Additional diagnostics,
including standardized residuals and Q-Q plots, further confirm
the model’s goodness-of-fit, suggesting that the proposed
framework effectively characterizes stimulus-driven neural
dynamics even under complex noise conditions.

4. Application to fMRI Data

Identifying the dynamic nature of brain connectivity is criti-
cal for understanding and advancing our current knowledge
about human brain functioning. Functional magnetic resonance
imaging (fMRI), which measures brain activity by detecting
changes associated with blood flow, has become a successful and
effective instrument for studying how the brain functions. Here
we consider the problem of estimating brain connectivity, that
is, statistical dependence between fMRI time series in distinct
regions of the brain. Recent evidence has shown that the inter-
actions among brain regions vary over the course of an fMRI
experiment, suggesting that brain connectivity is a dynamic
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process (Cribben, Wager, and Lindquist 2013; Lindquist et al.
2014; Xu and Lindquist 2015; Vidaurre, Smith, and Woolrich
2017; Vidaurre et al. 2018; Warnick et al. 2018). In this context,
our proposed modeling framework is particularly well suited to
address two key challenges in the analysis of fMRI data. First, the
number of distinct cognitive or connectivity states that manifest
during the course of the task is unknown and likely to vary across
individuals or experimental conditions. Rather than assuming
a fixed number of states, our model infers the number of latent
regimes in a data-driven fashion using a sparsity-inducing prior.
Second, the temporal structure governing transitions between
these regimes may involve dependencies that extend beyond
first-order Markovian assumptions. Employing a DAR process
of unknown order allows for more flexible and biologically
plausible switching dynamics. Together, these features enable the
identification of meaningful patterns in brain connectivity that
evolve over time, offering insight into latent cognitive processes.

We apply the proposed model to fMRI data from a subject
performing a task-based experiment where the interest is to
identify the neural representations that are formed during latent
learning of predictive sequences (Bornstein and Daw 2012). In
this experiment, participants carried out a task in which they
observed a sequence of black-and-white natural scene images.
They were instructed only to press a keyboard key (“d”, “f”, “j,
“K”) that they had previously been trained to associate with each
image. Throughout the trials, the series of pictures were gener-
ated according to a first-order Markov process, though the par-
ticipants were not aware of this structure. This form of task has
been used to examine the cognitive and neural architecture of
latent learning and the use of learned representations in support
of predictive lookahead, a core computational process support-
ing decision-making in humans and animals (Strange et al. 2005;
Harrison, Duggins, and Friston 2006; Bornstein and Daw 2013;
Hunter, Bornstein, and Hartley 2018; Morris, Bornstein, and
Shenhav 2018; Rmus et al. 2022; Yoo, Bornstein, and Chrastil
2024). Here, response times indicated the degree to which the
participant implicitly expected the currently presented image,
on the basis of the previously presented one. A consistent finding
in these tasks is that participants implicitly learn the sequential
structure, and that neural regions signal the degree to which they
anticipate the upcoming image in the sequence. Several stud-
ies have identified more than one representation of sequential
structure, each of which has an influence on behavior as esti-
mated across the entire experiment. However, it is unclear how
these multiple representations are arbitrated among to influence
behavior—for example, as a weighted mixture at the single-
trial level (Wang, Feng, and Bornstein 2022; Khoudary, Peters,
and Bornstein 2022; Nicholas, Daw, and Shohamy 2022), in
alternation according to regimes of task statistics (Poldrack et al.
2001; Daw, Niv, and Dayan 2005; Lengyel and Dayan 2007; Yoo,
Bornstein, and Chrastil 2024), or as a fixed proportion that varies
according to individual differences such as in memory encoding
precision Noh et al. (2023). Full details of the experiment are
provided in Bornstein and Daw (2012).

The scanning session proceeded with four blocks consisting
of 275 fMRI acquisitions. For the analyses of this article we
concatenated the four blocks and subtracted the mean of
each block. D = 18 lateralized regions of interest (ROIs)
were selected on the basis of prior findings using this task
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Figure 6. Application to FMRI data. (top) BOLD time series data from one partici-
pant, with each brain region represented by a different line; vertical bands represent
the estimated state sequence. (bottom) estimated time-varying state probability
plot.

(Bornstein and Daw 2012, 2013) as those most sensitive to one
or more of the identified representations of sequential structure
(dorsal and ventral striatum, hippocampus), to the degree
of conflict between the representations (anterior cingulate
cortex), or to the stimulus content (scene images; ventral visual
stream regions). The observed time series correspond to the
preprocessed and standardized blood-oxygen-level-dependent
(BOLD) signals recorded from each of the selected brain
regions, serving as proxies for local neural activity across time.
We scaled each dimension d = 1,...,D, to have variance
one. In our analysis, we seek to identify distinct regimes of
functional connectivity that can be mapped onto cognitive
interpretation—specifically, to identify the manner in which
multiple representations combine to control behavior. Since we
do not have prior information on the cognitive states that are
manifested during the experiment, we assumed that the number
of the states is unknown, as well as the latent learning structure
driving the switching of regimes. We set the hyperparameters
of the model as described in Section 3.1 and ran MCMC
chains with 4000 iterations, 1200 of which were discarded as
burn-in.

The BOLD time series data for the D = 18 selected ROIs
are shown in the top panel of Figure 6, along with the estimated
latent state sequence. Our model identified a mode at K = 2
distinct states and a DAR order P = 2, with estimated values
of innovations and autoregressive parameters 7 = [0.50, 0.50]
and (i) = [0.08,0.87,0.05], respectively. The bottom panel of
Figure 6 displays the time-varying probability plot, namely the
local decoding of the hidden state at time ¢, p(y; = j|y,), for
t=1,...,T,asdescribed in Section 2.4. These probabilities are
represented with a different color for each of the two inferred
states, and they cumulatively add to one for each t. The state
probability plot displays a clear transition from state 1 to state
2, approximately halfway through the task.

The top panel of Figure 7 shows the estimated state-specific
partial correlation matrices, for the two estimated states, and the
bottom panel the corresponding estimated connectivity graphs,
with edges identified through the procedure described in Sec-
tion 2.2. State 1 has relatively stronger connectivity between
hippocampus (HC) and anterior cingulate cortex (ACC), with

mean difference between states across ROI pairs equal to 0.028;
whereas State 2 shows stronger connectivity between Caudate
and ACC, with mean difference between states across ROI pairs
equal to 0.048. Across all ROI pairs, the average difference in
partial correlation values between states is 0.002. In the supple-
mentary material, Section C.2, we provide additional analysis
of the fMRI data, including state-specific mean and variance
estimates, standardized residual diagnostics, and ACF/PACF
plots to further assess model fit and temporal structure. These
results show that while mean activation remains largely stable
across states, variability differs meaningfully, suggesting distinct
dynamic regimes. Residual diagnostics, including standardized
residuals and Q-Q plots, further support model adequacy, indi-
cating no major misspecification and approximate normality of
the residuals. Together, these findings suggest that our model
effectively captures the dominant temporal structure of the data,
achieving a balance between flexibility and interpretability in the
context of dynamic brain connectivity.

These observations are consistent with findings in the lit-
erature that at least two distinct networks mediate expecta-
tions in this task: one centered on hippocampus and thought to
encode stimulus-stimulus predictive relationships (e.g., “cogni-
tive maps”), and the other centered on striatum and thought to
encode response-response sequences (Bornstein and Daw 2012,
2013). Each has different dynamics with regard to the predictive-
ness of the learned sequences: activity in the hippocampal net-
work scales with increasing uncertainty about the next item in
the sequence, consistent with its proposed role in “pre-fetching”
upcoming states in support of decision-making (Johnson and
Redish 2007); separately, activity in the striatal network decreases
with uncertainty about the next item in the sequence, consistent
with observations that this structure is more strongly activated
by highly predictive associations (Smith and Graybiel 2016). The
observation that the network regime corresponds to shifts in
its connectivity with anterior cingulate cortex is consistent with
theoretical accounts of this region as signaling the “expected
value of control,” mediating the influence of internal repre-
sentations on behavior (Shenhav, Botvinick, and Cohen 2013).
The transition between hippocampal and striatally-mediated
regimes is consistent with extensive empirical findings that these
regions “trade-oft” in control of behavior across highly repeated
tasks, with hippocampus driving responses early on and stria-
tum taking over when sequences are more well-practiced (Pol-
drack et al. 2001; Lengyel and Dayan 2007).

5. Concluding Remarks

We have presented a flexible Bayesian approach for estimating
sparse Gaussian graphical models based on time series data.
In order to represent switching dynamics of the time series
data, we have assumed an unobserved hidden process under-
lying the data, with observations generated from state-specific
multivariate Gaussian emission distributions. We have modeled
the temporal structure of the hidden state sequence based on
a DAR process, as a flexible approach to incorporate temporal
dynamics that extend beyond simple Markovian structures. We
have modeled the time-varying mixing probabilities capturing
the state-switching behavior of the DAR process via a cumu-
lative shrinkage nonparametric prior that accommodates zero-



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS

State 1 State 2
= % S % . .
o ] 9} s 5 %) S =1 o) s B
Q < Q < 9] = €] =
2eE 48 2522E ¢ B 2eE o8 2§52e2E .8 35
2%2 388235 S538¢Fs 588 835455988 83955
t ® o+ 28 85Cc 7S o0ogc a3 o3 B G202 8 B o o s e
SR S8S 5o R808s8Sc G0 5822828836582 2852883
PEL PRl QS IR U NS I g T O - Al S e e B e e A = Al = A = = =4
. L_ant_cing .
| L_caudate .
L_fusiformGyr .
L_he
L_lat_occ . |
. . L_lingualGyr .
. L_nacc Va'“em
. L_parahipCtx .
L_putamen . 05
. R_ant_cing . 00
:J R_caudate . -0.5
R_fusiformGyr . -
. R_he
R_lat_occ
. R_lingualGyr .
R_nacc
R_parahipCtx
R_putamen .
-
State 1 E 8 State 2 = 8
= S 3 S
e 3 > e 3
% & 3 = “ % & ¢
e Q ~f 7 2 (] ~ 7
¢ % 3 ~ 5 < %% ¥ 5
\ ® o & “os, e o O
"%, ® ® o &, ® ° S
% & % &
0, N 0, «F
® o’ ‘® o
~Ouzg, R ~but, |02
m, o ‘am, o
en @ o\ €N @ o
R_ant_cing @ @ L_ant_cing R_ant_cing @ @ L_ant_cing
- R
e ote 9
R/Ga“d “ame, ,Ga“d Dwa”?en
of e, o® %
& % N A
& ® ° %, & ° ° %,
o ° %0 < ° 0
7 o L3 4 2 o % %
N 8 il ‘2 < 8 foul 2
& 4 @ 2 < S 2 %
& 5 k: S
1 6 1 6
@ Q o 9]

Figure 7. Application to FMRI data. (top) estimated partial correlation matrices, for each of the two inferred states. (bottom) estimated state-specific connectivity graphs.

inflated parameters for non-active components. The proposed
formulation ensures that if a parameter in the DAR model is
zero, then all subsequent lag parameters are also zero, yielding
a flexible and computationally efficient modeling framework for
estimating the time-varying mixing probabilities as well as the
effective order of the process. This considerably speeds up the
posterior sampler, especially in regard to the forward-backward
scheme for updating the latent state sequence. We have addition-
ally integrated a sparsity-inducing Dirichlet prior to estimate
the effective number of states in a data-driven manner. At the
network level, we have assumed a graphical horseshoe prior
to induce sparsity in the state-specific precision matrices. We
have thoroughly investigated the performance of our methods
through simulation studies and performed comparisons with
competing approaches. We have further illustrated our proposed
approach for the estimation of dynamic brain connectivity based
on fMRI data collected on a subject performing a task-based
experiment on latent learning.

Supplementary Materials

Supplement: We include further details about backward and forward mes-
sages for our sampling algorithm. We also report results from additional
simulations, sensitivity analyses and convergence diagnostics of the
MCMC.

Software: sggmDAR - a Julia software implementing the methodology
outlined in the article, accompanied by a comprehensive tutorial
designed to guide users through replicating the findings detailed in
the article. The software sggmDAR is also available on GitHub at
https://github.com/Beniamino92/sggmDAR.
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