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Abstract
In complex and continuous environments, agents acquire
knowledge from experience by extracting structural – ei-
ther spatial or temporal – regularities from sequential ob-
servations. Cognitive graphs based on Hidden-Markov
Models (HMM) offer an efficient framework for elucidat-
ing the mechanisms of how agents learn latent environ-
ment structure. However, a leading algorithm implement-
ing this approach (“Clone-Structured Cognitive Graphs”;
CSCG) assumes a fixed allocation of neural resources
to this problem, which may undermine biological plau-
sibility and prove inefficient/inflexible for learning envi-
ronments of unknown complexity. Here, we replace the
fixed allocation of neural resources with a rational pro-
cedure that adapts the complexity of the internal repre-
sentation according to nonparametric inference of latent
structure. We demonstrate that, on the same benchmarks
used to validate the original algorithm, our modification
enhances efficiency without sacrificing performance. Our
result suggests that this adaptive construction of cog-
nitive graphs could potentially benefit learning in envi-
ronments with unknown state-space complexity, and may
thus provide a better explanation of behavior in resource-
constrained biological organisms.
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Introduction
In complex and continuous environments, agents acquire
knowledge from experience by extracting structural – e.g.
spatial or temporal – regularities from sequential observa-
tions. Hidden-Markov Models (HMM) offer an efficient frame-
work for capturing how agents learn such latent structure
(Mark, Moran, Parr, Kennerley, & Behrens, 2020; George et
al., 2021). Recently, an extension of the HMM framework,
called Clone-Structured Cognitive Graphs (CSCG), captures
the ability to infer latent structure in the presence of aliased
observations, using clones to distinguish latent states that
have overlapping perceptual attributes; this model demon-
strates the capability to transfer inferred structure across re-
lated tasks (George et al., 2021).

However, while this model captures behavior and function
with remarkable efficacy, it assumes a fixed allocation of neu-
ral resources (“clones”) to the problem (George et al., 2021),
which raises concerns in at least two aspects. First, the op-
timal number of clones in each environment is unlikely to be
known a priori. Second, we show here that learning efficacy
depends greatly on this number of pre-allocated clones per
observation. A potential solution to these issues is for individ-
uals to flexibly allocate neural resources in response to expe-
rience.

We introduce a more flexible variant of the HMM-based
cognitive graphs which creates new latent states as a function
of their statistical likelihood, and allocates representational re-
sources correspondingly. Specifically, we add an allocation

rule based an infinite mixture model. This procedure has been
shown to be a resource-optimal approach to clustering ob-
servations with unknown category structure (Dasgupta & Grif-
fiths, 2022). Within the context of CSCG, whenever an obser-
vation is encountered, the mixture model guides the allocation
of new resources according to a Chinese Restaurant Process
(or Dirichlet prior) that dictates the likelihood of the observa-
tion being assigned to a new latent cause (hence, allocating a
new clone).

We examine the impact of our model extension on effi-
ciency and accuracy, in a benchmark simulation environment
described in the original study (George et al., 2021). We show
that our extended model shows comparable performance, op-
erationally defined as the similarity of the inferred cognitive
graphs to the ground-truth transitional structure of the envi-
ronment, while being less demanding on memory resources
(number of allocated clones). As a result, we believe that
our approach provides a new avenue for biologically plausi-
ble, adaptive, representation learning which could be poten-
tially applied to explaining behavior in complex and continuous
environments.

Methods
To test the assumption that cognitive graphs created from
scratch can still recover the ground-truth environmental struc-
ture, we devised a series of experiments where we compared
our proposed vs. benchmark model under a spatial envi-
ronment which had been used for validating the benchmark
model (George et al., 2021).

Models
We compare two models – the benchmark HMM cognitive
graphs (CSCG) and our extension incorporating latent cause
inference.

Benchmark model Clone-structured cognitive graphs
(CSCG) as described in George et al. (2021) was used as a
benchmark model (refer to the Methods section of that paper
for details of this model). We assigned 70 clones per each
unique observation (280 in total) for the benchmark model, as
reported in the original paper.

Our proposed model At the beginning, each model started
with a randomly initialized transition matrix of dimension (A×
T ×T ; where A = actions, T = latent causes of the observa-
tions), with one latent cause (or clone) assigned for each ob-
servation. Upon perceiving a sequence of observations during
training, each new observation was stochastically allocated
to a new latent cause (or “clones”) according to a Chinese
Restaurant Process prior (Gershman & Niv, 2012), expressed
as:

P(ct = k|c1:t−1) =

{
Nk

t−1+a if k is an old cause
a

t−1+a if k is a new cause,
(1)

, where ct=the latent cause for data at time point t, and



Figure 1: Spatial environment

Nk=total number of allocations in cause k. For the simulations
described here, we examined behavior of the model under five
different values of the α parameter (0.2, 0.4, 0.6, 0.8, 1.0),
which governs the “stickiness” of the cluster (i.e., a higher α

value is more likely to assign an observation to a new latent
cause).

Experiments

Environments Each model was simulated in a spatial room
that had 6× 8 unique locations (cells; Fig. 1). In each cell,
the agent could perceive one of four unique observations as-
sociated with that cell (orange, light blue, teal, and pink), thus
making it a critical challenge for the agents to correctly iden-
tify the latent state (i.e., location) given aliased (perceptually
overlapping) observations and actions. There were 4 actions
that the agents could take in this environment (up, down, left,
right), which were modeled as edges that link the latent states
in cognitive graphs.

Training procedure The training data consisted of a se-
quence of 50,000 observations (i.e., pink, teal, sky blue, ...)
and actions (i.e., up, left, down, ...) produced by random walks
through the spatial environment. The models were trained
using an expectation-maximization algorithm, where the log-
likelihood of the inferred latent states given observations was
maximized (George et al., 2021). Specifically, each model
(our proposed and benchmark) was trained for 100 iterations.
Each experiment was performed with 100 different random
seeds, and the mean of the 100 simulations is reported.

Results

Performance

The performance of each simulation was assessed by (a) ac-
curacy: the similarity of the constructed latent cognitive graph
of the models with the ground-truth environment that produced
the observations, and (b) efficiency: the judicious use of neu-
ral resources in capturing the underlying structure. The first
was measured with two criteria: the similarity in the num-
ber of latent states recovered in the models vs. the ground-
truth number of states, and the graph edit distance (struc-
tural similarity) between the inferred and ground-truth graph

(a) Number of latent states (loca-
tions) recovered

(b) Graph edit distance (lower is
better)

Figure 2: Performance of proposed vs. benchmark model.
Individual data points represent the results from each experi-
ment, and the error bars indicate standard error.

(Abu-Aisheh, Raveaux, Ramel, & Martineau, 2015). Efficiency
was measured as the total number of allocated clones (latent
states).

We find that, for most values of the critical parameter (α),
our model recovered the underlying structure with comparable
accuracy to the original model, while consistently using fewer
neural resources.

Accuracy For nearly all tested values of α, the extended
model also resulted in a more accurate, or equivalently accu-
rate, reconstruction. Most of our model resulted in a smaller
absolute difference in the number of nodes, relative to the
standard CSCG (Fig. 2a; α0.4 : t(198) = 13.47, p < .001;α0.6 :
t(198) = 25.7, p < .001;α0.8 : t(198) = 37.2, p < .001;α1.0 :
t(198) = 27.83, p < .001). This was accompanied by gener-
ally lower graph edit distances for our model, relative to the
standard CSCG (Fig. 2b; α0.2 : t(198) = 38.42, p < .001;α0.4 :
t(198) = 22.58, p < .001;α0.6 : t(198) = 10.84, p < .001;α0.8 :
t(198) = 1.47, p = .07; for α1.0 graph edit distance was greater
than the benchmark: t(198) = 6.41, p < .001).

Efficiency Across all tested values of α, the extended
model used fewer nodes than the benchmark model (280
nodes; α0.2 : t(198) = 797.78, p < .001;α0.4 : t(198) =
528.05, p < .001;α0.6 : t(198) = 446.52, p < .001;α0.8 :
t(198) = 353.32, p < .001;α1.0 : t(198) = 304.08, p < .001).

Discussion

Augmenting CSCG with an adaptive procedure for adjusting to
complex structure improved its resource efficiency, while not
sacrificing accuracy of the inferred structure. This work raises
the possibility of a more biologically-plausible implementation
of the algorithm, which may prove a superior explanation of
human and animal learning. Future work will examine empir-
ical fit to human behavior in exploring large, graph-structured
spaces, as well as further augmenting the algorithm to im-
prove efficient coding of environmental regularities.
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