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Making plans for upcoming actions is a computationally demanding process. To mitigate
these demands, individuals can build extensive internal models of their environment—states,
actions, and their sequential relationships—that allow for plans to be developed with minimal
computational costs. Initially, these models reflect elaborate networks of learned associative
relationships, which can be used to generate plans for reward through more iterative
computations such as trajectory sampling. After sufficient experience, compressed forms of
thesemodels can efficiently capture long-range sequential structure, allowing them to be used
for rapid planning even in pursuit of novel or changing rewards. Here, we review recent work
on the multitude of representations that can support different forms of planning. We discuss
how cognitive graphs, a framework with roots in both cognitive psychology and computer
science, can provide a unifying view of these representations and their relationships to one
another. Conceptualizing internal models as forms of graphs situates them on a spectrum
where different kinds of structured sequences can be queried to support both planning and the
formation of iteratively more compressed predictive representations. We discuss how each of
these kinds of cognitive graphs are created during learning, and used to transfer and generalize
knowledge across environments. Taken together, this review highlights the significant impact
that the various associative structures of memory have on planning.

Keywords: cognitive graph, planning, reinforcement learning

Planning is a common, and complex, form of
decision making. It requires both representing
actions, along with their precedents and con-
sequences, and sequencing them appropriately.
This process consists of offline stages, during
which predictive representations of the environ-
ment are formed and refined, and online stages,
where extant representations of relevant past
experience are interrogated, and their predictions
for the outcomesof planned choices are arbitrated.

The term“representation”usedhere refers tohow
elements of agivendecisionproblemare encoded in
memory and associated with each other. Choices
are strongly influenced by the format in which the
decisionelementsarearrangedwhenpresented toan
individual—for instance, risk attitudes often vary
considerably when options are presented as explicit
frequencies, rather than summary probabilities
(Kahneman & Tversky, 1979). More recently,
researchers have begun to systematically exploreT

hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Jungsun Yoo https://orcid.org/0000-0001-8341-9226
Elizabeth R. Chrastil https://orcid.org/0000-0003-

2544-0152
Aaron M. Bornstein https://orcid.org/0000-0001-

6251-6000
The authors have no conflicts of interest to disclose. The

authors thank Bruce McNaughton and Jeffrey L. Krichmar for
insightful discussions. This work was supported by the National
Institute of Aging (Grant R21AG072673) to Aaron M.
Bornstein and the National Institute of Neurological Disorders
and Stroke (Grant R01NS119468) to Elizabeth R. Chrastil.
Jungsun Yoo played a lead role in investigation and

writing–original draft and an equal role in writing–review
and editing. Elizabeth R. Chrastil played a supporting role
in conceptualization, project administration, supervision,
writing–original draft, and writing–review and editing.
Aaron M. Bornstein played a supporting role in conceptual-
ization, project, writing–original draft, and writing–review
and editing and a lead role in project administration and
supervision.
Correspondence concerning this article should be

addressed to Jungsun Yoo, Department of Cognitive
Sciences, University of California, Irvine, 3151 Social
Science Plaza A, Irvine, CA 92697-5100, United States.
Email: jungsuy@uci.edu

1

Decision
© 2024 American Psychological Association
ISSN: 2325-9965 https://doi.org/10.1037/dec0000249

https://orcid.org/0000-0001-8341-9226
https://orcid.org/0000-0003-2544-0152
https://orcid.org/0000-0003-2544-0152
https://orcid.org/0000-0001-6251-6000
https://orcid.org/0000-0001-6251-6000
mailto:jungsuy@uci.edu
https://doi.org/10.1037/dec0000249


how choices depend on theways inwhich decision-
relevant information, such as state spaces, are
represented internally by the decision-maker (Doya
et al., 2002; S.Wang et al., 2022). This work shows
that the choice of internal representations can have a
similarly dramatic influence on the outcome of a
decision. For example, individuals who remember
their local environment as a series of routes they
have taken (“egocentric” representation) may be
unlikely to try a novel route in the face of a detour,
unlike individuals who have integrated their
experiences to form a maplike (“allocentric”)
summary of the environment (Chrastil & Warren,
2014).This examplehighlightshow internal, unlike
external, representations, can be transformed from
one format into another given sufficient experience
and/or time; critically, this process can yield many
intermediate formats, where some information is
retained and other information is lost.
In the case of planning, representation format is

critical in part because much planning occurs ahead
of time, by constructing a semiflexible policy that
establishes the rules by which sequences of actions
are to be taken. In these cases, the selection ofwhich
kind of internal model provides the state space over
which the policy is defined, and thus critically
determines the actions ultimately taken (Ho et al.,
2022). The importance of representational format in
planning is further underscoredby its role in transfer
learning, which requires first identifying similar
situations from the past and subsequently selecting
the relevant aspects of that previously learned
structure. When experience in related environments
is extensive, allowing the agent to infer common
latent structure, onecouldapplycompact,“maplike”
representations that allow for efficient planningwith
minimal error (Geerts et al., 2022;Whittington et al.,
2020). However, as the overlap between well-
learned settings and the current environment
decreases, one must rely on approximations to
identify relevant instances of previous experiences
with the current or similar environments (Zhao et al.,
2022). Internal simulations informed by these sorts
of instance samples can be used for iterative,
vicarious evaluation of decision problems that not
only informs the decision at hand but allows the
agent to accelerate the inference of a more general
latent structure (George et al., 2021).
An implication of this representation-centric

view of planning is that a key problem for agents
to solve is how to summarize the available
experience in a way that best supports efficient
and effective planning and transfer learning.

The type of summary representation best suited to
each situation thus depends on the complexity of
the environment, the amount of experience the
agent has in it, and the time and computational
resources available to evaluate candidate policies;
these quantities are often dynamic or not known
ahead of time, thus licensing the agent tomaintain
multiple representations that can be leveraged to
different degrees in different settings (Doya et al.,
2002; S. Wang et al., 2022).
We propose that these many distinct forms of

internal representations—associative relationships—
canbe fruitfullyunderstoodas typesofgraphs (Butts,
2009). Here, environmental states are represented
as nodes and the transitions between them are shown
asvarious typesof edges (Lynnet al., 2020;Schapiro
et al., 2013), depending on the information avail-
able (Chrastil &Warren, 2014). The edges could be
either unidirectional when describing causality or
irreversible transitionsor couldbebidirectionalwhen
these conditions are not assumed. For instance, a
decision tree is a specific example of a graph that
encodes sequential, or unidirectional, relationships
between states (Bertsekas, 2012). Formalizing these
structures as graphs canallowresearchers to formally
connect seemingly disparate types of planning, to
reason about their related algorithmic and imple-
mentational properties (Zhang et al., 2021), and to
determine how and which information is transferred
(“consolidated”) from one format to another, for
example, during sleep (Feld et al., 2022).
Graph-like forms are useful in planning range

between extremes—at the one end, sets of
instances of individual pairwise associations; at
the other end, compact, long-range multistep
contingencies—with many points along the
spectrum between these (Chrastil & Warren,
2014, Figure 1). Recent work supports the
simultaneous creation and updating of multiple
graph-like knowledge structures in support of
planning. These internal models are distinguished
by their content, format, and also in what they
entail for the dynamics of their learning and use in
deliberative decision-making (Bornstein & Daw,
2012, 2013; Doya et al., 2002; Smith & Graybiel,
2013; Tambini et al., 2023). Below, we review
findings that suggest that they influence the
behavior in accordance with their suitability to
the task at hand and that the apparent shift in
behavioral control from one form to other is
characterized by the transformation of information
between representational formats, with attendant
trade-offs in function and fidelity.
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Theoretical (Weber & Johnson, 2006) and
empirical (Otto et al., 2022;Palminteri et al., 2015;
Wu et al., 2021) work supports the idea that
the evaluation of an option depends in part on
how that option is remembered—for instance, if
it is remembered as part of a set of related
options, with ranked preferences within that set
(e.g., a favored restaurant among those of similar
cuisine), or if its visible features are associated
with other latent features (e.g., a food attribute
linked to allergic reactions). Foundational
work has demonstrated that successive memory
retrievals are related to the underlying associative
structure of memory (Howard & Kahana, 2002),
supporting a formof trajectory sampling (Gershman
& Daw, 2017; S. Wang et al., 2022), and that the
content of extended memory retrieval at the time of
choice has a meaningful influence on preferences
(Bornstein & Norman, 2017). Taken together, this
work supports a critical influence on the choice of
the associative structure of memory. Therefore, it is
important to understand the different forms this

structure can take and to identify commonalities and
points of divergence relevant to choice behavior.

Cognitive Graphs

These associative structures can be understood
as forms of cognitive graphs, which range from
“uncompressed” to “compressed” (Figure 1). The
most uncompressed form, in which states are
encoded as experienced sequences with minimal
latent structure inference, conceptually aligns
with previous articulations of “cognitive graphs”
(Chrastil & Warren, 2014; George et al., 2021;
Muller et al., 1996), and that is proposed to
support types of model-based reinforcement
learning (Daw et al., 2005; Gershman & Daw,
2017; Lengyel & Dayan, 2007). A cognitive
graph can be characterized as a directed graph
(Muller et al., 1996), with nodes representing
states and edges indicating state transitions.
These edges may be labeled, augmenting
the topology with local metric information
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Figure 1
A Graphical Illustration of the Two Extremes of Representations as a Function of Compression: An
Uncompressed Cognitive Graph (Left) and a Fully Backed-Up Cognitive Graph (Successor Representation
Used as an Example Here; Right)

Note. Left: Numbers indicate labels of a node, or a discrete state, in a cognitive graph. Edges between two nodes depict the
transition between two states. Right: A backed-up version of a cognitive graph that fully captures future trajectories from a
given node (state). Row identification numbers (ID; i) indicate the current state, and column IDs ( j) indicate the successor
state. The values in the matrix represent the expected general future occupancy of j from i and are color-coded for
visualization. Note that while future occupancy statistics preserve the coarse community structure, route information is
diminished (e.g., the adjoining gateway nodes, such as 3 and 11 for the cluster of States 5–9, are only slightly distinguished).
See the online article for the color version of this figure.
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(Chrastil & Warren, 2014; Warren, 2019). They
may also be weighted, reflecting the transition
probability between states (George et al., 2021;
Natarajan & Kolobov, 2022; Sutton & Barto,
2018). A cognitive graph is formed through
learning how different sequences of state transi-
tions connect at intersections (Stiso et al., 2022),
enabling agents to flexibly navigate conceptual
and spatial networks by recombining the seg-
ments in novelways (Mark et al., 2020; Peer et al.,
2021; Warren, 2019). Additionally, their abstract
nature supports counterfactual simulations and
generalizations to novel environments, thereby
accelerating the learning process (G. Zhu et al.,
2020). Though the entire continuum of represen-
tations is graph-structured, we will, for clarity,
refer to the most uncompressed extreme form as
“full” or “flexible” graphs and the most compact
representations as “backed-up” or “compressed”
predictive representations.
At the other end of the spectrum, backed-up,

predictive representations contain information that
is fully predictive of the N-step consequence of
taking a given action a in the current state s (Figure
1, right). To elaborate, a standard model of choice
describes preferences between options as formed
after a unitary expected value is computed by
combining the reward distributions implied by each
options’ features (Rangel et al., 2008). These
values—both unitary and the components—can
be represented in different ways, each of which has
different implications for the preference construc-
tion process. Backed-up representations enable fast,
cheap evaluation of N-step plan outcomes, using
an operation akin to matrix multiplication (though
the neural instantiation of this process has yet to be
fully described; Gershman, 2018, and may be
approximated by sampling; Gershman et al., 2012).
For example, model-free reinforcement learning of
action values (Sutton & Barto, 2018) captures this
unitary value as a recency-weighted average of the
discounted total reward obtained in past episodes
where the agent took the given action in the given
state. Here, the outcome values of multistep actions
are mediated by a discount factor, δ, applied at
each update operation. An alternative approach to
constructing unitary values is to use a backed-up
representation of the discounted N-step state
occupancy alone, irrespective of the reward
obtained, which allows decoupling the environ-
mental state dynamics,whichmaybemore stable,
from reward contingencies that may fluctuate more
often or be entirely trial-unique. Such successor

representations (or their mirror, predecessor repre-
sentations; Jeong et al., 2022) compress occupancy
of sequences following or preceding a given
state (Dayan, 1993), which can be used to derive
biological cell response types matching those
observed in subfields of the hippocampal forma-
tion (Stachenfeld et al., 2017). There are several
related formats that differ in what information is
included in the backed-up representation, such as
successor features (Barreto et al., 2017)—which
generalize the state-space learning approach to a
space over option dimensions (e.g., desirability
for food)—and first-occupancy representations
(Moskovitz et al., 2021) that only consider the
first-time visits to each state. Inspired by the need
to bridge the gap between behavioral economics
and reinforcement learning, a novel state represen-
tation named λ representation (λR) incorporates
the concept of diminishing marginal utility (Moss,
1984) into reinforcement learning by discounting
multiplevisits toa state.Usingadiscountparameter
λ, this formalization puts successor representations
(λ = 1, no discounting of multiple visits) and first-
occupancy representations (λ = 0) in a continuum
(Moskovitz et al., 2023).
Between the extremes of compressed versus

flexible-model representations, the cognitive graphs
with intermediate modes of approximation can also
be identified.We described above how the discount
factor allows the successor representation to be
parametrically distinguished from the outcomes of
Monte Carlo trajectory sampling from a full model.
Another axis along which these representations can
vary in their approximation of the full environment
dynamics is the degree towhich they reflect hierar-
chical structure. For example, agents may cluster
or abstract related states as intermediate “sub-
goals” that exist in multiple levels hierarchically
to plan efficiently (Noh et al., 2023; Tomov et al.,
2020).Compressioncanalsooccurbycompressing
actionsorpolicies intohigher level actions, referred
to as option or skill discovery (Sutton et al., 1999).
Automated discovery of options at multiple levels
has facilitated learning in artificial agents (R. Fox
et al., 2017). Likewise, humans appear to adopt
policy compression to balance cognitive costs and
maximize reward (Lai et al., 2022;Lai&Gershman,
2021). Similar to this, extracting a causal relation-
ship between events at various levels of granularity
couldbeseenasanabstractionor compressionof the
environment (Kinney&Lombrozo, 2023a, 2023b).
In this article, we initially delve into the

differences between planning predicated on the
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flexible recombination of action sequences and
planning employing compressed representations.
Subsequently, we propose cognitive graphs as a
potentially unifying framework supporting both
decisions based on sampling potential future
sequences and decisions based on full long-run
occupancy statistics. We discuss how these
functions require keymechanisms—in particular,
merging disjoint sequences and splitting aliased
states—offered by some implementations of the
cognitive graphs. We conclude with a discussion
of further research directions, in particular
understanding how the spectrum of forms of
cognitive graph may support distinct control
strategies. This, in turn, could potentially clarify
the differential use of types of control in different
stages of learning.

Planning as a Function of Representational
Compactness

Planning in a Markov Decision Process

For simplicity, planning is oftenconceptualized
within the context of a Markov decision process.
In a classical Markov decision process, the
environment in which an agent plan is character-
ized as a tupleof 〈S,A,T,R,π,γ〉,whereS is afinite
and discrete state space that comprised states, and
A is a set of actions that can be executed in
each state s∈ S. γ, within the half-open interval of
(0, 1], refers to the discount factor that represents
how future rewards are valued in comparison to
immediate rewards. The models consist of two
functions, where T(s, a, s′) is the transition
function for each s∈S anda∈A, andR(s,a, s′) is a
reward function that provides the immediate
reward or value obtained after taking action a in
state s and transitioning to state s′. π refers to the
policy or the probability distribution over poten-
tial actions that the agent may choose to take at a
certain state. We assume that an agent starts from
an initial state s0 and executes a sequence of
possible actions in the successor states (s′) up to a
terminal or goal state s ∈ SG. The agent’s goal in
planning is to learn and execute actions based on
an optimal solution, or policy, that maximizes
the cumulative value from an initial state to a
goal state.
One of the most crucial components for

successful planning is having an accurate internal
model of the environment because themodel is used

for simulating or predicting behavior; inaccurate
modelscouldentail incorrectpredictionsandthereby
result in a chain of suboptimal actions (Talvitie,
2017). It is also important to adopt the most suitable
models for each specific context, given that the
optimal typeofmodel tousemayvarydependingon
the relationship of the model to the environment—
for instance, whether the model is known with
certainty to correspond exactly to the environment
(Jiang et al., 2015). Below, we delve into the kind
ofmodel utilization thatmay be optimal in scenarios
where agents are still in the preliminary phases of
environment interaction (the Planning With Un-
compressedRepresentations: Sampling Instances
section) or in circumstances where they possess
sufficient experience for compression of repre-
sentations to occur (the Planning With Backed-
Up State/Action Sequences section).

Planning With Learned Cognitive Graphs:
Uncompressed Versus Backed-Up

Models in planning capture statistical regular-
ities of the environment, and could be either given
a priori or learned fromexperience. If an agent has
full information about the transition structure of
the environment, then the agent is able to plan
even without experience. This is conceptually
relevant to a classical control problem or search
algorithm (Korf, 1987): for example, for the game
tic-tac-toe, an agent can be endowed with a
complete model (or a human can be verbally
instructed about the rules of the game). Given this
starting point, the player can construct a treelike
graph of possible future states and actions, and
perform a search to find the optimal decision
(Sriram et al., 2009). However, in more natural-
istic contexts, the dynamics of the environment
are unknown to us initially, and our internal
models develop and change with our experience
with the environment (Lengyel & Dayan, 2007;
Schrittwieser et al., 2020). We confine further
discussion to these latter, learned models of the
environment.
Cognitive graphs at different levels of compres-

sion could serve asmodels that can support different
forms of planning (Figure 2). Raw, uncompressed
cognitive graphs support planning via iterative
sampling of subsequent states or actions from a
given state, or node. Here, individual instances or
nodes haveminimal information about other nodes,
thusmaking it crucial to traversegraphsbasedon the
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relationship between nodes, or edges. Thus, in this
form of planning, the sampling algorithm is critical.
At the other extreme, actions and states in a

cognitive graph are fully backed-up—for instance,
successor or predecessor representations. In the
successor representation, each node–state contains
the expected future state occupancy given a current
state andaccording toagivenpolicy (Dayan,1993);
these can be thought of as integrated trajectories
sampled from the current state. Conversely, pre-
decessor representations can be thought of as
fully bootstrapped versions of eligibility traces, a
memory-like mechanism that assigns credit to past
states and actions from a given state (Bailey &
Mattar, 2022; Sutton & Barto, 2018). Predecessor
representations couldbe seenas ahindsight version
of successor representations in that it bootstraps the
possible trajectories that could have led to a current
state. Whether directed forward or backward,
once these bootstrapped representations converge,
the expected cumulative reward or credit can be

efficiently computed for planning, just by taking
the product of the representation and a separate
reward function. With fully backed-up cognitive
graphs, the need for edge-based sequences, or
sampling successor states, becomes negligible.

Planning With Uncompressed
Representations: Sampling Instances

During the early stages of learning an environ-
ment, planning could be facilitated by instance-
based methods instead of relying on an explicit
model or rule-based methods. Take, for example,
the task of choosing a restaurant to dine in an area
that one has just moved to and thus has limited
experience with. It might be more effective to
decide based on a few recent dining experiences
rather than attempting to decide based on a general
summary of what little experience one has. A
model of decision making under uncertainty
captures this intuition as case-baseddecision theory
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Figure 2
A Graphical Illustration of Planning Based on the Suggested Spectrum of Representations—Specifically, the
Degree to Which They Are Precompiled—As a Function of Experience

Note. Nodes indicated with “s” represent starting points. Arrows, or directed edges, describe possible plans for the agent in
the starting node to execute. The gray clouds represent the form of model the agent is using to plan in a given phase. 1.
Sequence-based planning: This phase represents the early learning phase where an agent has not yet constructed an integrated
model of the environmental dynamics. Here, agents are assumed to plan based on sampling instances of previously
experienced trajectories. First, two sample trajectories are shown here, labeled “seq 1” and “seq 2.” From these two
trajectories, an agent is able to create a combined representation and plan efficiently with it (e.g., taking the shortcut as seen in
the red arrows). 2. Planning based on an uncompressed cognitive graph: After a few experiences, an agent is able to build
cognitive graphs by conjoining past trajectories. Agents are thought to iteratively sample the next actions based on the
cognitive graph. As agents gain more experience, simultaneously, a “diffusion-like” process is thought to take place such that
information about neighboring nodes is integrated into each node. 3. Planning with a fully compressed cognitive graph: After
sufficient experience, a compressed trajectory from a given node to each other node is available in a summary format. Rows of
such a successor representation are shown here. The availability of information in this representational format allows agents
to plan for novel or changing rewards in a statistically efficient manner. See the online article for the color version of this
figure.
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(Gilboa & Schmeidler, 1995), which suggests that
tomake decisions under uncertainty, people rely on
thememory of similar cases that hadworkedwell in
the past.
This nonparametric, kernel-based method

offers several cognitive advantages that could
potentially bolster decision efficiency and pro-
vides a better account of human decision making
compared to rule-based methods. For instance, a
small group of samples reduces memory load
(G. Barron & Erev, 2003), simplifies the decision
rule (Fiedler, 2000; Hertwig & Pleskac, 2010),
facilitates generalization to unseen observations
(H. C. Barron et al., 2013; Wimmer & Shohamy,
2012), and reduces time (C.R.Fox&Hadar, 2006;
Hertwig et al., 2004). Also, instance sampling has
been shown tobe a superior explanationof decision
behavior in several laboratory tasks (Bhatia, 2014;
Bornstein et al., 2017; Hotaling & Kellen, 2022;
S. Wang et al., 2022; Zhao et al., 2022). For
example, in a repeated decision task, the indivi-
duals appear to relyon small numbersof samples of
recent experiences. When intermittent reminder
probes were added to the task, manipulating the
apparent recency of past experiences, these probes
had a significant effect on a subsequent choice
(Bornstein et al., 2017). Critically, the choice of
instances is sensitive to current task demands:
Recent experiences may be more likely to be
sampled in an environment that does not have an
explicit structure, but the introduction of a periodic
structure can lead to more adaptive sampling of
relevant events (Plonsky et al., 2015).
An example of case-based decision theory

applied to reinforcement learning is episodic
control (Dayan, 2008; Lengyel & Dayan, 2007).
Episodic control enables the agents to make an
informed guess about the value of unseen states by
averaging the values of the stored past instances
that aremost similar to the current state.Thekernel-
based nonparametric approach that underlies case-
based decision theory improves the sample
efficiency since the same amount of observations
could be used to inform estimates about a greater
number of states, compared to classic reinforce-
ment learning, as well as providing a method for
generalization, which is particularly important in
continuous state spaces (Bhui, 2018; Gershman &
Daw, 2017). Simulation results show that this
advantage renders episodic control superior to
model-based or model-free control during initial
learning stages, as it accelerates the learning
process under a low-data limit compared to other

control methods (Blundell et al., 2016; Lengyel &
Dayan, 2007). One drawback of episodic control
is that the search process could be inefficient as
the number of episodes stored increases. For
scalability, neural episodic control uses deep
learning methods to embed the keys of each state
into a fixed-length vector (Pritzel et al., 2017).
Embedded inputs are then fed into a differentiable
neural dictionary or a learnable episodic memory
system that maps keys to values. The final value of
an observation is obtained by the weighted sum of
the values in the differentiable neural dictionary,
where the weights are computed by the similarity
between the current key and the keys of states in the
memory system.
Sampling-based accounts of human multistep

planning have also provided descriptive value in
at least two aspects. First, an extension of decision
field theory toward the realm of planning—
named decision field theory-planning (Hotaling,
2020)—can explain human planning behavior
better than backward induction, at least in
situations where multistep plans contend with
high-payoff variability. Here, the unreliability of
experience may be a critical factor favoring this
instance-based approach. In large, continuous,
and highly uncertain environments an agent
would require unrealistically extensive experi-
ence to develop stable, compressed, and predic-
tive representations. Silver and Veness (2010)
show that in these environments, asymptotically
optimal plans can be constructed using Monte
Carlo trajectory sampling over an iteratively
updated internal model. A second advantage of
representing the full, uncompressed, model of
the state space, with all its intermediate states is
that it supports effective exploration strategies: in
particular, one can perform “far” jumps across
state spaces to distal, weakly connected nodes
(J. Zhu et al., 2018); the resulting “Lévy flight”
behavior matches observations of biological
agents exploring novel environments (Hunt
et al., 2021) and performing memory search
(Rhodes & Turvey, 2007).
Research has shown that in an environment

based on graph-like reward structures (e.g.,
subway maps), people leverage learned graph
structure to guide sampling-based decisions (Wu
et al., 2019, 2021). Nevertheless, whether people
are able to spontaneously construct cognitive
graphs from sequential experiences in graph-like
structures and still leverage this to guide decisions
has not yet been directly investigated.
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Planning With Backed-Up
State/Action Sequences

Earlier, we introduced the concept of backed-up
representations as a way of incrementally learning
compact summaries of multistep contingencies.
Successor representations have been devised to
balance thepossible computational intractabilityof
fully model-based methods and the inflexibility of
computationally cheap model-free methods, pro-
viding a robust solution to this problem (Dayan,
1993). These compressed, predictive representa-
tions summarize the expected future occupancy
of the successor states from a current state given
a policy. Using successor representations com-
presses themultistepplanningprocess into a single-
step process since long-range outcomes of all the
possible future trajectories are considered at once
(Dayan, 1993). This not only reduces computa-
tional complexity but also facilitates generalization
and learning when adapting to variable reward
contingencies. Empirical evidence from studies
conducted on humans (Momennejad et al., 2017)
and artificial agents (Barreto et al., 2017) suggests
that using transition dynamics compressed in a
successor representation leads to faster adaptation
to value-function changes because only the reward
function requires relearning, thus significantly
enhancing learning efficiency.
Another example of compressing sequences of

observation, or states, is seen in robust predictable
control (Eysenbach et al., 2021). This algorithm is
explicitly encouraged tofind a compressed policy
by penalizing complexity, which is operationally
defined as the amount of information needed from
observations for a policy to make decisions. The
intuition behind this is that agents will rely less on
gathering information from observations as they
become better at predicting the future accurately.
Agents trained on compressed policies are less
susceptible to unknown or missing observations
(i.e., perturbations) since compressed policies
have been trained to use fewer bits of information
per observation.This leads to improvedopen-loop
control—producing a plan of action sequences at
the beginning and executing it without checking
the progress along the way.
In sum, compressed representations lower the

cost of planning by reducing complexity at the
representational level. This kind of representa-
tion also fosters open-loop planning by enabling

the execution of action sequences as a single
operation (Eysenbach et al., 2021). This could be
efficient in environmentswhere transition dynam-
ics are relatively well-known and unchanging. On
the other hand, when models of the environment
have not been fully developed yet, instance-based
control can be useful. In particular, sampling
trajectories of instances to preserve the sequential
nature of experiences provides a method with less
complexity and greater scalability, while still
maintaining high performance. In the following
section, we discuss how graph-structured repre-
sentations can improve trajectory-based planning.

Ways in Which Uncompressed Cognitive
Graphs Could Facilitate Planning

Recent approaches transform planning into a
graph-search problem (Liu et al., 2020; Savinov
et al., 2018). One study leveraged graph-based
representations to identify the landmarks or
subgoals in latent graphs and then performed
graph search on the nodes (Zhang et al., 2021).
Here, edges between the nodes are weighted with
“reachability” between nodes, making it as a
form of a labeled graph. In the domain of spatial
navigation, algorithms construct graphs based on
subgoals and then plan based on the constructed
graphs for efficiency (Bagaria et al., 2021).
It has also been found that people spontane-

ously construct graph-like representations when
observing a sequence of events, where these
latent graphs could be either correlational (Kahn
et al., 2018; Rmus et al., 2022; Schapiro et al.,
2013; Solomon et al., 2019, undirected graphs) or
causal (Gopnik et al., 2004; Gopnik & Schulz,
2004; Sommerville &Woodward, 2005a, 2005b,
directed graphs). Furthermore, people have been
shown to be able to capture the topological
structure of an underlying graph (i.e., identifying
bottleneck states; Schapiro et al., 2013; Solway
et al., 2014), even after the passive observation of
trajectories through the graph space. Intriguingly,
the general tendency to use plans over model-
free approaches appears to be correlated with
the ability to infer latent graph-based structure
from jumbled sequences of experiences (Rmus
et al., 2022), potentially underscoring the utility
of learning graph-structured representations in
planning.
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Mechanisms by Which Cognitive Graphs
Could Facilitate Planning

States and observations or instancesmay not be
mapped onto each other in a one-to-one fashion.
This phenomenon, referred to as perceptual
aliasing, could potentially destabilize control in
reinforcement learning (Whitehead & Ballard,
1991). To overcome this, the agents must employ
an accurate and parsimonious representation of
experience that is able to split identical observa-
tions into different underlying states or merge
seemingly different observations into a single
state for generalization, depending on the context
(Niv, 2019). In other words, correctly identifying
the underlying latent state associated with an
observation is crucial. Latent state inference thus
plays an important role in constructing cognitive
graphs—especially during early learning, when
the small amount of experience can lead to highly
uncertain estimates of the state structure, which
adaptive decision-makers must account for
(Harhen & Bornstein, 2023; Jiang et al., 2015).
When observations are aliased with respect to

the underlying latent states, inferring the genera-
tive structure requires interpreting each observa-
tion relative to the others; formally, conditioning
inference on some subset of the history of
observations, rather than just the one presently
available sensory input (Whittington et al.,
2022). Hidden Markov models (HMM) provide
a computational solution to latent state inference
by decoupling the transition structure of the latent
states (transitionmatrix) and the probability that a
givenobservationmapsonto latent states (emission
matrix; George et al., 2021;Mark et al., 2020); this
dichotomy is also dubbed as “stimulus–stimulus”
associations and “stimulus–context latent” asso-
ciations of content representations, respectively
(see S. Wang et al., 2022).
A clone-structured cognitive graph is a version

of the HMM that conditions the transition of
latent spaces on actions (George et al., 2021). To
elaborate, a given observation is explained in
terms of two components: a transition tensor
which accounts for the action-conditioned transi-
tions between latent states and an emissionmatrix
that assigns probabilities to the latent states given
an observation. Within the transition tensor, each
latent state in a sequence is identified in relation to
its previous latent state and action, andwhenever a
new context—or a new combination of previous
latent state and action—is encountered, a new

clone is created. Clone-structured cognitive graphs
have been able to capture phenomena thought to
be important to structure learning in both spatial
(George et al., 2021) and nonspatial (Swaminathan
et al., 2023)domains: splitting, the ability to recover
the ground-truth space from aliased observations,
as well asmerging, the ability to stitch overlapping
latent states together from two disjoint observa-
tions. Thus, the clone-structured cognitive graph
is an exciting proposal for how an agent can
simultaneously learn both the structure (i.e., nodes)
of theenvironmentaswell as its transitiondynamics
(i.e., edges).Within the frameworkwediscuss here,
the resulting representation is considered uncom-
pressed, as it is attempting to capture the full,
flexible environment model. Backed-up represen-
tations can be built by querying the resulting graph,
as it stabilizes with sufficient experience (Wittkuhn
et al., 2022).
Another variant of the HMM-based cognitive

graph explicitly assumes the idea of predefined
schemas for identifying the transition structure.
Here, it is postulated that the transition dynamics
emerge from predefined structural forms such as
hexagonal grids or community structures (Mark
et al., 2020), which could be grounded in the wider
notionof inherent basis sets (Kemp&Tenenbaum,
2008; Luettgau et al., 2023; Tenenbaum et al.,
2011) or generative grammar of sequences (Dragoi,
2024).The idea thatcognitivegraphsareconstructed
using the prior knowledge of structures could be
empirically supported by results that human transfer
learning is best explained by thesemodels (Luettgau
et al., 2023; Mark et al., 2020). The hippocampal–
entorhinal system has been proposed to underlie
decoupling, or factorizing, structure, and sensory
observations (Whittington et al., 2018). Here, the
medial entorhinal cortex contains grid cells (Hafting
et al., 2005) that provide a basis set along which
the transition structure is defined, and the lateral
entorhinal cortex supports sensory representations.
The conjunctive code of the transition structure
and “emission” is hypothesized to be reflected in
the hippocampus (Whittington et al., 2018). These
distinct representational forms each play a critical
role in the use of hippocampal replay to infer
compositional structure across environments,
permitting the construction of more compressed
representations that can support efficient plan-
ning in novel environments (Kurth-Nelson et al.,
2023). An area for future research is whether
endowing artificial agents with this representa-
tional decomposition and algorithmic approach
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to replaying and recombining structure elements
can allow them to perform an efficient approxi-
mation to graph compression.
Below, we describe how cognitive graphs

support both merging and splitting in sequences
of observations, andwhat specificmechanisms an
unfolded graph could provide to facilitate early-
stage learning.

Merging: Fast Generalization by
Extrapolating Trajectories

Associative memory could be seen as the
building block of cognitive graphs. One such
instantiation is transitive inference, which is an
example of leveraging the relational information
of instances for faster generalization, observed in
humans and animals (Bryant & Trabasso, 1971;
Davis, 1992; Gillan, 1981). When an agent
experiences A > B and B > C, the unobserved
relationship between A > C can be inferred
without direct experience (Eichenbaum et al.,
1999). This can be achieved through forming
supraordinate representations, comparable to
cognitive graphs, such that A > B > C, which
has been found to be supported by the hippocam-
pus (Dusek & Eichenbaum, 1997; Greene et al.,
2006; Zalesak & Heckers, 2009). Similarly,
disparate fragments of event trajectories can be
fused together, creating graph-like formations by
leveraging the intersections of these trajectories
(Eichenbaum&Cohen, 2014; Rmus et al., 2022).
From these graphs, inferences can be made
between the instances that were not directly
experienced together, supporting flexible recom-
bination and fast generalization (Eichenbaum,
2004).After learning sequences of objects that are
generated based on the graphs that are either
hexagonal or community-structured, humans are
able to infer unobserved links using the transition
structure of the latent graphs (Mark et al., 2020).
This study provides direct evidence that people
are able to extract long-run transition structures
from sequences of events and also are able to
transfer it for generalization.
Implementing this associative memory-based

cognitive graph leads to efficient planning algo-
rithms. For example, an episodic reinforcement
learning algorithm called Episodic Reinforcement
Learning with Associative Memory (ERLAM)
augmented with associative memory showed
increased sample efficiency compared to bench-
marks (G. Zhu et al., 2020). In ERLAM,

experienced trajectories are reorganized into graphs,
which speeds the propagation of value learned
from one instance to other related instances, thereby
enhancing sample efficiency. In addition, clone-
structured cognitive graphs introduced earlier have
been shown to be capable of performing transitive
inferences (George et al., 2021). This capability
was demonstrated in the spatial domain, in agents
navigating a larger environment divided into
discrete “rooms.” Here, two separate rooms are
stitched together to form an overlapping region.
Agents navigate each room separately and are
tested on whether they can travel from a nonover-
lapping region of one room to a region exclusive
to the other room. Results show that agents are
able to construct a latentmap by stitching sequential
observations from two disjoint episodes; over-
lapping observations from different trajectories are
correctly assigned to the same hidden state.
In addition to conjoining separate sequences,

associativememory binds seemingly independent
choice options together into a temporal context,
so that learning the value of a chosen option
also influences the value of unchosen options
(Biderman & Shohamy, 2021). This is referred to
as counterfactual reasoning, another example of
associative memory accelerating learning since
information about an instance can be propagated
to related experiences. Counterfactual reasoning
is observed in reinforcement learning: humans
not only deploy “factual” information through
direct trial-and-error but also incorporate counter-
factual learning (Boorman et al., 2011; Fischer &
Ullsperger, 2013). Interestingly, counterfactual
learning engages cognitive graphs for bothmodel-
based and model-free learning (Moran et al.,
2021). In this process, the model-free values
of options are positively reinforced by direct
rewards and negatively influenced by the value
of counterfactual options. Associative memory
strength between options in reinforcement learn-
ing is correlated with how much learning about
one option influences other unchosen options
suggesting that counterfactual learning operates
on a cognitive graph where edge weights are
defined by associative memory strength between
items (Biderman et al., 2023). An open question
is whether factual and counterfactual learning
are performed on the same cognitive graph.
Some evidence points to a single representation
supporting both kinds of reasoning (Boorman
et al., 2009; Fischer &Ullsperger, 2013), whereas
other evidence supports these forms of learning
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update distinct representations (Kishida et al.,
2016; Li & Daw, 2011; Lohrenz et al., 2007). A
common finding is that individuals are generally
biased toward reinforcing their own choices
(“confirmation bias,” or the tendency to collect
information partially according to the preexisting
belief or action; Nickerson, 1998), in a way that
they incorporate more information when the
chosen option is more rewarded (i.e., greater
learning rate for positive prediction errors of
factual options) and when the unchosen option
turns out to be less rewarding (i.e., greater learning
rate for negative prediction errors of counterfac-
tual options; Palminteri et al., 2017). Asymmetric
updating in the other direction (more negative than
positive) has been observed in individuals diag-
nosed with psychiatric disorders (e.g., depression;
Rouhani & Niv, 2019); though this pattern has
itself been shown to arise from the individual
differences in representational precision (Harhen
& Bornstein, 2024).
ERLAM provides an example of leveraging

counterfactual combinatorial trajectories to facilitate
the learning of artificial agents (G. Zhu et al.,
2020). In this algorithm, trajectories are reorganized
into graphs by merging the common elements
(nodes) of the two trajectories. This agent would
have an advantage over an agent who uses pure
episodic memory in cases such as right after
experiencing two intersecting trajectories that each
lead to reward (e.g., A > B > C > reward) and no-
reward (e.g., D > B > E > no-reward); while the
ERLAM agent will be able to leverage the graph to
plan an unexperienced route (e.g., D > B > C >
reward), an agent that only relies on episodic
reinforcement learning would associate D with
reward only after the direct experience. Recently,
expected eligibility traces have been introduced
as a form of leveraging counterfactual trajectories
to accelerate learning (van Hasselt et al., 2021).
Eligibility trace is a mechanism in reinforcement
learning that provides a hindsight credit assign-
ment with regard to the current state by keeping a
trace of past experiences weighted by their
recency (Singh & Sutton, 1996; Sutton &
Barto, 2018). Expected eligibility traces improve
the limitation of eligibility traces—that only one
directly experienced trace is updated each time—by
considering multiple counterfactual sequences that
could have preceded a current state. Mirroring the
relationship between the full forward model and
successor representations, the predecessor represen-
tation is the fully backed-up version of the state tree

supporting expected eligibility traces (Bailey &
Mattar, 2022).

Splitting: Recovering Latent Structure From
Aliased Sequences

It is possible that two different states are
“aliased” or mapped onto overlapping observa-
tions. In this situation, as opposed to the example
above, agents should be able to create a graph
that merges two sequences—A >D > C and B >
D > E—an agent should be able to split D into
two different nodes according to their contexts.
Clone-structured cognitive graphs are able to
accurately reconstruct correct latent graphs from
sequences of aliased sensory observations by
making clones of observations (George et al.,
2021). Impressively, clone-structured cognitive
graphs are not only able to both split aliased
observation into latent states but also able to
merge the reconstructed graphs as in transitive
inference.
Indeed, as implied above, these are exactly the

sorts of environments in which clone-structured
cognitive graphs have an advantage over backed-
up representations. Specifically, when presenting
a clone-structured cognitive graph agent with a
sequence of aliased observations from a graph
with community structure (e.g., Figure 1, left),
the agent is able to recover the modular structure.
However, an agent that used a successor
representation was not able to recover this
structure (George et al., 2021). This suggests
that environments in which modular structure is
important to the task at hand benefit from having
available less-compressed representations of
experience. This idea aligns with the finding
that sequences of observations generated by a
modular versus lattice graph—where the two
graphs only differ in terms of their higher-order
structure—lead to more robust latent represen-
tations (Kahn et al., 2023).

Discussion

Multistep planning is a critical ability for
autonomous organisms. Extensive research has
identifiedmultiple kindsof planning, eachwith their
own benefits and appropriate to specific situations.
These distinct approaches rely on different repre-
sentational substrates andhave different algorithmic
commitments.Whichkindofplanningan individual
performs in a given setting can dramatically change
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the outcome of their decisions. Therefore, it can be
valuable to judgment and decision-making research
to understand how to characterize the commonali-
ties, differences, and appropriate uses of each form
of planning. Here, we suggest that these seemingly
distinct representational forms that support planning
can be described as varying types of cognitive
graphs, where these various manifestations of
graphs exist along a spectrum of compression.
At one end of the spectrum, fully uncom-

pressed representations capture every element
of an associative network in detail. This full-
featured model of the environment allows for
flexible trajectory sampling at the timeof decision
and supports plans that are robust to changes in
contingency and reward structure. In addition,
this kind of uncompressed representation is a
necessary first step for buildingmore compressed
representations because the latent structure (edges)
in compressed representations requires inferring
across multiple experiences (Lynn & Bassett,
2020; Wittkuhn et al., 2022). Since observations
are often aliased, uniquely characterizing their
latent state (nodes) and structure (edges) requires
them to be placed in a sequence (Whittington et al.,
2022). Network model simulations show that
uncompressed sequences of events are necessary
for building latent graphs that enable complex
functions such as rapid value propagation (G. Zhu
et al., 2020) or extracting higher order structures
(George et al., 2021).
At the other extreme, a fully compressed

graph—such as the successor and predecessor
representations—captures summary-level statistical
structure. These graphs are formed by “boot-
strapping”—a repeated sampling of the full model
to identify the long-run relationships between each
pair of nodes in the network. These representations
allow for fast, cheap multistep planning as they
cache previous trajectory samples into a compact
matrix format. Their factorized form, separating
transition (edge) information from reward values,
allows for replanning in the face of changing
reward outcomes. However, the kind of planning
they support is not robust to changes in contingency
structure—these must be relearned, slowing plan-
ning until stable estimates can be obtained again.
This is because backed-up representations like
the successor representation are conditional on the
specific policy that generated the compressed
graphs; in other words, if the goal changes, the
optimal action in each state should be relearned,
thereby not transferable (Lehnert et al., 2017).

Linear reinforcement learning, which incentivizes
learning a “default” policy distributed uniformly
across possible successor states, is a framework that
addresses this limitation and explains flexible
replanning in humans (Piray & Daw, 2021).
These different kinds of representations are

learned simultaneously, which allows the agent to
arbitrate between themost reliable representations at
a givenmoment (S.Wang et al., 2022). In situations
of highuncertainty, such as during the early phase of
reinforcement learning where there is not enough
data toconstruct a reliablemodel (Lengyel&Dayan,
2007) or in volatile environments (Nicholas et al.,
2022), consulting on a subset of episodic samples
provides a more reliable approximation of the
value of observations. Arbitration between different
representations has been proposed to be reflected
in discontinuous “jumps” of subjective evidence
(“jump-diffusions”) in evidence accumulationmod-
els, where these sudden jumps during the sequential
evidence sampling could indicate alternations to
other sets of representations (S. Wang et al., 2022).
The constantly changing ensemble of representa-
tions that lead to these jumps is hypothesized to
occur in a bottom-up manner, akin to product-of-
experts in machine learning (S. Wang et al., 2022).
Bywhichmechanismdoes compressionhappen,

such that more experience gradually leads to
more compression?Onepossiblemechanismcould
be the diffusion of information between nodes
through a replay of events. The transition from the
uncompressed graph to the fully backed-up form
occurs via repeatedly sampling and aggregating
features from neighboring nodes, analogous to
message-passing algorithms (George et al., 2021;
Hamilton et al., 2017; Parr et al., 2019). At the
beginning of the learning process, the cognitive
graph resembles an undiffused graph where a
node, or a given state, holds limited information
about others, thus requiring the agent in a state to
explicitly traverse edges to infer about other
states. At the same time, uncompressed graphs
provide full representations of the contingency
structure between states and actions, which allow
for flexibility at the cost of greater computation
time and behavioral variability. With more experi-
ence, thecognitivegraphsundergoa transformation
into a bootstrapped representation where informa-
tion about future states is aggregated into each
adjacent state, making explicit edge-based infer-
ences between states less important. Caching these
distal outcomes subserves rapid planning, while
still retaining sensitivity to changes in reward
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availability. However, without additional me-
chanisms, it also confers a relative insensitivity
to contingency changes that may be undesirable
in novel or volatile environments. Replay of
events could be a biological instantiation of
message passing, given that the construction
of backed-up representations is mediated by on-
task replay in humans (Wittkuhn et al., 2022). A
possible future direction for researchwould be to
investigate whether replay contributes to main-
taining and arbitrating betweenmultiple kinds of
representations.
One interestingdirection toexpand this conceptof

representational spectrum would be to test whether
different modes of control arise as a function of the
degree of compression (Moskovitz et al., 2022).
Recall that agents using compressed representations
should be adept at open-loop control because they
can in principle select action sequences into a single
operation. This eliminates the need for intermittent
replanning during action execution (Eysenbach et
al., 2021). However, if agents plan by sequentially
sampling the next actions using uncompressed
cognitive graphs, taking small steps could be more
efficient than open-loop control, since themodel has
not been compiled yet to provide reliable future
trajectories from a state. This edge-based planning is
conceptually more similar to closed-loop planning,
where an agent stops at each transition to replan.
This leads us to the overarching question of whether
the utility of using closed-loop versus open-loop
planning aligns with the degree of compression in
cognitive graphs. This alignment would be similar
to the evolution of an episodic control system to a
model-based, and then finally tomodel-free systems
(Lengyel & Dayan, 2007; Yoo & Bornstein, 2024).
Basedon an interpretation that the seeminglymodel-
free behaviors could actually be action sequences
(Dezfouli & Balleine, 2012, 2013), an interesting
hypothesis is that themodel-free systemat the endof
the spectrum could be in fact representing action
sequences formed by an open-loop control, likely a
result of using highly compressed models.

Conclusions

To conclude,we highlight the kind of representa-
tions that could be used to support instance-based
planning at early stages of learning—uncompressed
cognitive graphs—and suggest that they could be
in a spectrum, rather than discrete concepts, with
backed-up representations at the other end. Further

research may investigate whether this spectrum of
representations directly induces a continuum of
planning algorithms, such as closed- versus open-
loop control.

Citation Diversity Statement

Recent work in several fields of science has
identified a bias in citation practices such that
articles from women and other minority scholars
are undercited relative to the number of such
articles in the field (Bertolero et al., 2020; Caplar
et al., 2017;Chatterjee&Werner, 2021;Dion et al.,
2018; Dworkin et al., 2020; Fulvio et al., 2021;
Maliniak et al., 2013; Mitchell et al., 2013;
X. Wang et al., 2021). Here, we sought to
proactively consider choosing references that
reflect the diversity of the field in thought, form
of contribution, gender, race, ethnicity, and other
factors. First, we obtained the predicted gender of
the first and last author of each reference using the
databases that store the probability of a first name
being carried by a woman (Dworkin et al., 2020;
Zhou et al., 2020). By this measure (and excluding
self-citations to the first and last authors of our
current article), our references contain 5.35%
woman (first)/woman (last), 13.0% man/woman,
18.59% woman/man, and 63.05% man/man. This
method is limited in that (a) names, pronouns, and
social media profiles used to construct the
databases may not, in every case, be indicative
of gender identity and (b) it cannot account
for intersex, nonbinary, or transgender people.
Second, we obtained predicted racial/ethnic cate-
gory of the first and last author of each reference by
the databases that store the probability of a first and
last name being carried by an author of color
(Ambekar et al., 2009; Sood & Laohaprapanon,
2018). By this measure (and excluding self-
citations), our references contain 7.12% author
of color (first)/author of color(last), 11.21%White
author/author of color, 20.16% author of color/
White author, and 61.51% White author/White
author. Thismethod is limited in that (a) names and
FloridaVoterData tomake the predictionsmay not
be indicative of racial/ethnic identity and (b) it
cannot account for Indigenous and mixed-race
authors or those who may face differential biases
due to the ambiguous racialization or ethnicization
of their names.We look forward to futurework that
could help us to better understand how to support
equitable practices in science.
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