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Abstract

Computational cognitive models are powerful tools for enhancing the quantitative and

theoretical rigor of psychology and cognitive neuroscience. It is thus imperative that model

users—those who develop models, use existing models, or integrate model-based findings into

their own research—understand how these tools work, what limitations they have, and what

factors need to be considered when engaging with them. To this end, we have developed

φ-kit: a philosophical toolkit for informed, critical use of computational cognitive models in the

behavioral and brain sciences. By compiling insights from philosophy of modeling and feminist

philosophy of science, φ-kit explicates how the reasoning goals of a model builder

fundamentally shape every step of the model-based research process. We demonstrate the

utility of this philosophically-informed perspective by applying φ-kit to one of the most popular

and successful family of models in cognitive science: accumulator models of two-alternative

speeded decision making. The case study begins by investigating notions of optimality both as

a general concept and as formalized in accumulator models. Then, we show how different

commitments to model optimality (i.e., different reasoning goals) led to development of two

“competing” standard forms of the diffusion model and offer a principled heuristic for deciding

which form of the model to use. Finally, we demonstrate how insights from φ-kit, and the

philosophical method more broadly, inspired the development of a novel theory about

integration of expectations into decisions that synthesizes previously disparate findings into a

common conceptual framework, thus concretely demonstrating how philosophy can advance

neuroscientific practice.

Keywords: model specification, optimality, decision making, idealization, abstraction, formal

analysis
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Epigraph - in memoriam

There is no such thing as philosophy-free science; there is only science whose

philosophical baggage is taken on board without examination.

—Daniel Dennett, Darwin's Dangerous Idea, 1995

Introduction

Cognitive neuroscience and computational cognitive modeling both aim to advance

understanding of human cognition by linking behavioral measurements to latent factors

hypothesized to be causally relevant in generating that behavior. To do this, it is common to

create a controlled experimental environment where researchers measure how behavior

changes as a function of manipulating stimuli or task demands. Cognitive neuroscience then

correlates task-induced changes in behavior with different measures of neural activity (e.g.,

event-related potentials measured by EEG or blood-oxygen-level-dependent signals measured

by fMRI) to identify latent factors contributing to the behavioral effects. Cognitive modeling, on

the other hand, specifies a model structure—a set of mathematical objects and

operations—and uses behavior to estimate (1) how well that model structure captures

task-induced variability in behavior and (2) what values different model components must take

on in order to maximize that model’s fit to behavior. Much has been written about the

reciprocal, complementary relationship between cognitive neuroscience and computational

cognitive modeling (Cohen et al., 2017; Forstmann et al., 2011; Forstmann & Wagenmakers,

2015; Kelly et al., 2021; Palmeri et al., 2017; Turner et al., 2017). The burgeoning literature on

“model-based” cognitive neuroscience research largely emphasizes the inferential advantages

conferred by integrating these approaches—for example, using neural measurements to
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constrain parameter values or using fitted parameter values to guide interpretation of neural

measurements (Forstmann & Turner, 2024; Gluth & Meiran, 2019; Love, 2020; O’Connell &

Kelly, 2021; O’Doherty et al., 2007)—relative to using them in isolation (as in traditional

cognitive neuroscience or mathematical psychology).

In this article, we contribute to the growing literature on model-based cognitive

neuroscience by offering some philosophical perspectives on computational cognitive

modeling in cognitive neuroscience. Because models are so powerful and flexible, it is crucial

that model users—researchers who develop models, use existing models in their own

research, or use published model-based research to interpret their own results—understand

how these tools work and what factors to consider when engaging with them. To this end, we

have developed φ-kit: a philosophical toolkit crafted to promote informed, critical use of

computational cognitive models in the behavioral and brain sciences. φ-kit addresses basic

ontological questions about what a model is and how models relate to their targets (empirical

phenomena of interest) by summarizing some consensus views from philosophy of modeling.

We further explicate epistemological considerations that follow from these consensus views,

identifying different factors that shape and/or constrain what models can tell us about targets.

Throughout, φ-kit emphasizes the role of reasoning goals—how a user wishes to reason

about their target when using a model to do so—in assessing model performance and

interpreting model-based findings. This position follows logically from the consensus view on

models’ ontological status. We also hope that emphasizing the role of reasoning goals will

remind readers that model-based research involves a large degree of decision-making on the

part of the researchers, and offer some guidelines for thinking about what factors shape

particular decisions other researchers have made.
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We further demonstrate the utility of φ-kit by applying it to one of the most popular and

successful family of models in psychology and neuroscience: accumulator models of decision

making. We present the results of our philosophical explication as a case study comprised of

several lessons. The first two lessons examine the notion of optimality: what it means to claim

that a system is performing optimally, and how this notion is operationalized in accumulator

models. The next three lessons use an open debate in the literature to demonstrate how

reasoning goals shape the representational decisions researchers make when building and

evaluating models. Specifically, we investigate the topic of decision boundaries that collapse

over time and offer a principled heuristic for deciding whether to incorporate this feature into

one’s model. The case study concludes with two lessons demonstrating how insights from

φ-kit led to the development of a novel theory, which we implement as an accumulator model.

This theory—directly motivated by considerations about the goal-dependence of empirical

findings—offers a unifying explanation for previously disparate findings about effects of

expectations on decisions change as a function of time. Altogether, the case study

demonstrates how both the outputs and methods of philosophical analysis are indispensable

to the practice of computational cognitive neuroscience.

φ-kit: a philosophical toolkit for computational cognitive modeling

The consensus view in philosophy of modeling posits that models are representational

tools for reasoning whose performance is assessed by adequacy for purpose and not

verisimilitude (true or accurate representation of the natural world) (Frigg & Hartmann, 2020;

Parker, 2020). This is precisely the position captured in the famous aphorism “all models are

wrong, but some are useful” (Box and Draper, 1987, p. 424). The adequacy-for-purpose view of

models is a pragmatic solution to the fact that models are not truth-evaluable entities: they
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cannot be judged as true or false (Wimsatt, 1987). Models are not truth-evaluable because they

are representations of targets (i.e., objects or phenomena in the natural world), and thus

always1 involve some degree of falsity with respect to the target (Parker, 2020; Winsberg &

Harvard, 2024). While this might seem like a reason not to use models, it is precisely their

representational nature that makes models useful. A representation that is perfectly verisimilar

to a target is just a clone of that target, which is not always a helpful tool for scientific

reasoning about the target.2 When verisimilitude is cast aside as a guiding principle, the goal of

modeling becomes identifying representations that are useful for reasoning about targets.

Whether a particular representation is useful for reasoning further depends on one’s inferential

or reasoning goal in using the model (e.g., predicting future behavior, identifying loci for causal

intervention, generating different types of explanations). In order to identify models that are

useful for a particular reasoning goal, one must understand (1) how representations permit

reasoning about the targets they represent and (2) what kinds of reasoning different

representations permit of their targets. We address these in turn.

Precisely how representations figure in scientific reasoning is an area of open research

in philosophy of modeling. For our purposes, it suffices to say that representations permit

reasoning about targets by providing scientists with a simplified, often idealized version of the

target that they can interact with as if it were the actual target. By omitting some properties of

2 This sentiment is captured by another famous aphorism “A map is not the territory it represents”
(Korzybski, 1933). Models are commonly analogized to spatial maps because maps provide an intuitive
concept of the utility of representation. Winsberg and Harvard (2024) use the example of a subway map,
which only needs to represent the order of stops and not necessarily the distance between them or details
about the path the train takes to get from one stop to another. Omitting these details from the
representation makes the subway map quickly and intuitively useful, but only for purposes of navigating
the subway system; navigating the actual city will require a more detailed (or less abstract) map.

1 One exception is scale models of physical structures (e.g., a three-dimensional replica of a building).
These models have the ability to accurately represent each component of the target, just at a smaller
physical scale. We don't address them here because scale models are of a different type (i.e., concrete or
material) than those that are the focus of this toolkit (formal/mathematical), and are more commonly used
in engineering than neuroscience.
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the target and idealizing others, models create representations of targets that “selectively

attend” to components of the target that the user wishes to reason about (Portides, 2021). The

behavior of this hypothetical target can then be compared to that of the actual target to see

how adequately that representation captures properties of the target about which the modeler

aims to reason. In formal modeling, a common practice is to construct several possible models

of a target process and use quantitative metrics (e.g., Bayesian information criterion; Schwarz,

1978) to identify the model that most succinctly accounts for the observed data.

Different types of representations permit different types of reasoning about targets.

Some representations are physical (e.g., whiteboard drawings, scale replicas, awake behaving

rodents), and others are abstract (e.g., mathematical equations). All of these representations

can function as models, and surveying the types of reasoning each permits is far beyond the

scope of this paper. Interested readers can consult Winsberg and Harvard (2024) and Frigg and

Hartmann (2020) for helpful reviews on this topic. The present article is concerned with the

types of reasoning facilitated by formal (and/or mathematical) models. These models are

commonly implemented via code or software, making them computational as well. The

distinction between a formal model and its implementation is important but beyond the scope

of this paper; we refer readers interested in these considerations to Guest and Martin (2021)

and Cooper and Guest (2014). Finally, we restrict our focus in the toolkit to formal cognitive

models of the kind historically developed in the field of mathematical psychology (Batchelder,

2010). Models of this type are commonly thought to instantiate formal theories about the latent

cognitive structures and processes driving behavior (Grahek et al., 2021; Guest & Martin, 2021;

Navarro, 2019; Press et al., 2022; van Rooij & Baggio, 2021).
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A consensus view in the meta-scientific literature is that formal models enhance the

rigor of behavioral sciences by allowing modelers to reason about their targets using the

quantitative and conceptual precision of formal languages (Devezer et al., 2021; Grahek et al.,

2021; Guest & Martin, 2021; Lee et al., 2019; Robinaugh et al., 2021; Smaldino, 2020; van Rooij

& Blokpoel, 2020). Formal languages, by design, do not inherently refer to objects or properties

in the natural world—this is precisely what makes formal models abstract. In order to reason

about a target with a formal model, a model user (i.e., a human who builds or interprets a

model) has to decide how they will map components of the model onto components of the

target: for example, deciding that the coupled differential equations in the drift diffusion model

represent the evolution of a belief rather than the flow of ions into a neuron. This mapping is

known as the model’s construal, whereas the mathematical objects and equations comprising

the formal representation are called the model’s structure3 (Andrews, 2021). In the case study,

we show how recognizing the difference between model structure and construal can offer

clarity about when one ought to make particular representational decisions.

Although structure and construal are separable properties of a model, the model’s

structure places important constraints on the space of plausible construals. For example, one

cannot reasonably construe a model structure with no temporal dynamics as representing the

evolution of some quantity over time—the model simply does not have the representational

resources to support this kind of reasoning about the target. The solutions in this case are

either to change one’s reasoning goals so that they no longer include dynamics of the target’s

behavior, or modify the model structure so that it can represent how the relevant features might

change over time. This simple example highlights the necessity of aligning mathematical

representation with one’s reasoning goals when engaging with a model, which in turn requires

3 Although see Levenstein et al. (2023), who embed construal into their definition of a model!
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that users have a clear idea of what exactly their reasoning goals are when they engage in

model building, development, and testing.

With some notable exceptions (Blohm et al., 2020; Kording et al., 2018), reasoning goals

have been relatively underappreciated in computational neuroscience. Discussions about the

epistemic utility of different models have largely focused on the type of model instead of the

type of reasoning it permits. An example of this can be found in Dayan and Abbott (2005), who

distinguish among descriptive, mechanistic, and interpretive (more commonly called normative)

models in neuroscience. On their taxonomy, descriptive models accurately and compactly

summarize large amounts of data, mechanistic models describe how functional and anatomical

properties of the nervous system produce different behaviors, and normative models use

formal principles to investigate why nervous systems operate how they do. These “types of

models” can be straightforwardly translated into reasoning goals: describing effects of

experimental manipulations on the target’s behavior, identifying mechanisms that underlie

those changes in behavior, and investigating why the target responded in the specific way that

it did (instead of some other way). It is important to note, however, that the variety of possible

reasoning goals is much broader than indicated by this taxonomy (see Kording et al., 2018 for

an empirical survey4 and Wimsatt’s (1987, pp. 7–8) “Twelve things to do with false models”).

Two of these broader goals, for example, are (1) exploration of unconceived alternative

explanations for empirical phenomena (Stanford, 2006; Wimsatt, 1987) and (2) identifying

4 It is worth noting that—because their paper focuses on “goals” broadly construed, rather than “reasoning
goals” specifically—some goals in the Kording et al. (2018) are better understood as epistemic values
within the context on this article. For example, they define compactness, analytic tractability,
interpretability, and beauty as goals of modelers, whereas we consider them values of the modelers. We
take these ideals to be values instead of reasoning goals because they apply to a model’s structure rather
than its intended construal.
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endpoints in the space of possible explanations, where the “true” explanation that lies between

the endpoints is too complex to specify or analyze (Wimsatt, 1987).

After deciding on a reasoning goal, model-builders must undertake a series of

representational decisions—deciding what to represent in the model and how to represent it

(Harvard & Winsberg, 2022; Winsberg & Harvard, 2024)—in order to create a model that is

adequate for their purpose. Answers to the first question determine the level of abstraction at

which the model operates. There are two relevant senses of abstraction at play here: one

pertaining to the level at which the research question is posed (e.g., asking about single cells or

whole-brain activity), and one pertaining to the level of detail or specificity in the mathematical

representation (e.g., whether neurobiological details will be rendered). Importantly, questions at

the same level of physical abstraction can be addressed with models at different levels of

mathematical abstraction. Memory retrieval, for example, can be successfully modeled using

relatively abstract models based in signal detection theory (Schurgin et al., 2020) or more

detailed models based in theoretical principles specific to the process of memory retrieval

(Howard & Kahana, 2002). Again, the “correct” model here is simply the one that better aligns

with one’s reasoning goals—in this case, whether one is interested in reasoning about how

memory retrieval is instantiated as a domain-general decision process or as a unique cognitive

phenomenon that requires additional theoretical considerations.

Considering how to represent components of the target mathematically is at the heart

of model building. One of the first steps here is deciding on (or developing) a formal framework

within which the model will be built. Formal frameworks consist of axioms/postulates (i.e.,

statements accepted as true), mathematical objects, and rules governing interactions between

and transformations of the mathematical objects. Formal frameworks can be thought of as
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providing a “grammar” for formal theory development.5 Any representation built using the tools

of a particular formal framework must abide by the axioms of that framework in order for the

model to be valid.6 But because axioms function to promote mathematical expressivity (the

ability to write down particular ideas in math) rather than verisimilitude, model builders are often

forced to construct idealized—rather than veridical—representations.

Philosophy of modeling distinguishes between two types of idealization which we will

call omissive and disortive.7 Sometimes referred to just as the process of abstraction (Jones,

2005), omissive idealizations are those that omit particular features of the target in order to

better align the model with the formal framework (e.g., modeling neurons as a sigmoid function

in neural networks when we know that their functions are more complex than a sigmoid

transform). Distortive idealizations, on the other hand, deliberately misrepresent properties of

the target in order to make it more mathematically tractable (e.g., assuming observers have full

or perfect knowledge of their environment when we know that these conditions hardly ever

obtain in the real world). Most models include both types of idealizations. A concrete example

can be found by foreshadowing our argument in the case study. The formal framework

underpinning a prominent family of perceptual decision-making models requires particular

distortive idealizations that logically imply particular omissive idealizations. These omissive

idealizations, in turn, largely preclude any formal consideration of the role that uncertainty

about one’s expectations might play in expectation-guided perceptual decisions.

7 These types of idealization have historically been called “Aristotelian” and “Galilean”, respectively
(Cartwright, 1983; Winsberg & Harvard, 2024), in honor of the scientists whose research heavily involved
use of the eponymous idealization.

6 A familiar example here comes from the assumption of normally-distributed residuals at play in general
linear regression models. If one’s data do not exhibit normally-distributed residuals, then the results of the
general linear regression are not guaranteed to be valid.

5 Some common formal frameworks in psychology and neuroscience include signal detection theory,
sequential analysis, information theory, Bayesian inference, and Markov decision processes. Guest &
Martin (2021) offer a helpful analysis of how formal frameworks relate to theories and models in cognitive
psychology.
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Thus, we can understand models as the end-result of a series of representational

decisions made by model builders (Blohm et al., 2020; Harvard & Winsberg, 2022). After

choosing an appropriately specific model target, modelers have to decide what they want to

represent of their target and how they wish to represent those properties in the model

(Winsberg & Harvard, 2024). Doing so effectively requires that modelers specify their reasoning

goals in building the model. On the adequacy-for-purpose view, reasoning goals are at the

heart of the model evaluation process. Harvard and Winsberg (2022) further make the point

that a researcher’s reasoning goals reflect their epistemic values: for example, what they think

the science aims to achieve, how important particular methodological limitations are for

conducting particular inferences, and what is required for a good explanation given these

considerations. Adherence to a particular theory and/or model structure can also function as an

epistemic value that biases researchers’ evaluations of alternative models; we provide

examples of this in the case study. This phenomenon is commonly referred to as the theory- or

value-ladenness of scientific reasoning, which captures the facts that (1) scientific knowledge is

the product of human thought, and (2) human thought is fundamentally shaped by

idiosyncrasies of values and experiences regardless of how objectively any one individual aims

to reason (Boyd & Bogen, 2021). A common solution to the problem of value-ladenness is to

integrate a diversity of perspectives into the process of scientific inquiry (Longino, 1998), which

has been shown to mitigate biases introduced by individual scientists (Wu, 2023). We take this

to be true for modeling goals as well.

Altogether, the considerations above indicate that while there are some objective

heuristics that model builders can use to quantify the utility of their decisions (e.g., goodness of

fit, out-of-sample predictions, convergence criteria), the bigger question of which mathematical

13

https://paperpile.com/c/zgwak6/lN38+7fXq
https://paperpile.com/c/zgwak6/0uyM
https://paperpile.com/c/zgwak6/7fXq/?noauthor=1
https://paperpile.com/c/zgwak6/2a3M
https://paperpile.com/c/zgwak6/FeNQ
https://paperpile.com/c/zgwak6/1KIs


REASONING GOALS & REPS IN COMP COG NEURO

representation is adequate for purpose fundamentally reduces to one’s reasoning goals in

building the model. As we will show in the case study, disagreements and/or confusion about

which model is “correct” often reduce to unrecognized differences in reasoning goals among

researchers rather than objective properties of the models themselves.

Introducing our target: accumulator models of speeded decision making

We now turn to getting acquainted with the target of our case study: accumulator

models of decision making. This is a family of models that represent decision-making as a

process of evidence accumulation, or adding up information over time. Models in this family

are conceptually united by the sequential sampling framework in psychology and neuroscience

(Forstmann et al., 2016; Gold & Shadlen, 2007; Ratcliff et al., 2016; Shadlen & Shohamy, 2016),

which itself draws on the framework of sequential analysis in statistics (Barnard, 1946; Wald,

1945).8 The conceptual framework of sequential sampling posits that humans and other

animals make decisions by continuously sampling information from an evidence source,

extracting and integrating decision-relevant information over time, and committing to one of the

options once the accumulated evidence surpasses a threshold value. The formal framework of

sequential analysis permits specifying normative solutions to the accumulation process, and

thus can be used to build models that optimize the tradeoff between decision accuracy and

deliberation time (i.e., the speed-accuracy tradeoff). Importantly, however, not all models in this

family are normative. A major strength of the sequential sampling framework is the generality

and flexibility of its conceptual entities (e.g., “evidence”), both of which permit users to specify

8 An interesting and relevant bit of history is that two different goals led to independent developments of
the sequential analysis framework during World War II. One goal was enhancing efficiency of industrial
output (Barnard, 1946; Wald, 1945), and another was cryptanalysis to decode enciphered German
messages. This latter method was derived by Alan Turing, and the relationship of Turing’s framework to
sequential sampling is detailed quite nicely in (Gold & Shadlen, 2002).
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a wide range of models that can be construed at multiple levels of physical abstraction. For our

purposes, we can think of each model in the family as a formal theory about the the

architecture of the decision process (e.g., the shape of the decision thresholds, connections

among accumulation units, etc.) and the mechanism(s) whereby evidence is accumulated (e.g.,

continuous vs. discrete-time integration, loss of early information, corruption by noise, etc.).

Grounded in a rich history of development within mathematical psychology (Busemeyer

& Townsend, 1993; Laming, 1968; Link & Heath, 1975; Stone, 1960; Vickers, 1970),

accumulator models currently function as the default approach for formal modeling of reaction

times during decision making. This precedent was facilitated by the development of an

experimental paradigm that permits straightforward mapping of stimulus features onto

components of the models: random dot motion discrimination (Britten et al., 1992; Gold &

Shadlen, 2001). In this task, observers are presented with a display of stochastically moving

visual elements (usually dots), some proportion of which consistently move from one direction

to another (e.g. left to right). On each trial, observers report which direction of motion appeared

on the display, a judgment whose difficulty scales with the proportion of consistently moving

dots (i.e., the coherence of the stimulus; Palmer et al., 2005). This combination of a precise and

flexible psychophysical paradigm with a simple modeling framework created fertile grounds for

robust theory-guided research. Indeed, a series of careful early experiments on non-human

primates performing the random dot motion task revealed that both single-unit and population

level recordings from distinct cortical regions exhibit activity that strongly resembles and

correlates with dissociable conceptual components of accumulator models (Britten et al., 1996;

Gold & Shadlen, 2001; Roitman & Shadlen, 2002; Shadlen & Newsome, 2001). Since these

early findings, evidence accumulation has been used to link behavior with population-level
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neural responses in rodents (Brunton et al., 2013; Hanks et al., 2015), as well as intracranial

recordings, scalp oscillations, and BOLD signals in humans (Krueger et al., 2017; Polanía et al.,

2014; Weber et al., 2024).

While powerful, this wide range of empirical success is also a primary source of

confusion or misunderstanding about the claims a researcher aims to make when using this

kind of model, as well as what kind of data are relevant for testing their claims. These

challenges are exemplified by the vast literature and open debates about the appropriate

mathematical structure of models in this family (Donkin et al., 2011; Hawkins et al., 2015;

Khodadadi & Townsend, 2015; van Ravenzwaaij et al., 2012). A substantive barrier to progress

is the rather high degree of mimicry—identical behavioral predictions from theoretically different

structures—among the models (Bogacz et al., 2006; Donkin et al., 2011; Khodadadi &

Townsend, 2015; O’Connell et al., 2018). A related challenge comes from the fact that

conceptually different structures can also exhibit formal equivalence, meaning not only that

they make identical behavioral predictions, but also that they are mathematically

indistinguishable from each other. One example of this is the incorporation of a quantity that

changes in magnitude over the course of a single decision, sometimes called an “urgency

signal” (Churchland et al., 2008; Murphy et al., 2016; Thura et al., 2012). Conceptually, this

quantity can be incorporated either as a decrease in the decision boundary (such that it adjusts

the decision rule) or a gain on the decision variable (such that it modifies the internal

representation of evidence); but mathematically, it is impossible to specify model structures

that dissociate these possibilities.

For all of these reasons, accumulator models offer a strong example of (1) how models

can be used to investigate specific hypotheses about latent processes driving behavior, (2) how
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there can be disagreement about how scientists think the models should do that, and (3) how

scientists’ positions on (2) influence the representational decisions they make when building

and assessing competing models in this family. And, from a practical perspective, their

popularity and the dearth of critical perspectives in the model-based cognitive neuroscience

literature make them prime targets for philosophical explication. Toward this end, our case

study uses φ-kit to gain some traction on a long-standing stalemate about diffusion-to-bound

accumulator models: whether the decision rule remains fixed across trials while other

parameters can vary trial-by-trial (Ratcliff & McKoon, 2008), or if the decision rule changes

dynamically within a trial while other parameters remain constant across trials (Drugowitsch et

al., 2012).

BOX 1:

Among the dozens of existing sequential sampling models, one specification—the

diffusion decision model (or drift diffusion model; both abbreviated DDM)—has become the

standard form (Ratcliff et al., 2016). The model is specified by four free parameters: starting

point (red dot in Figure 2A), non-decision time (yellow line in Figure 2A), boundary/threshold

separation (green lines in Figures 2), and drift rate (blue arrows in Figure 2). The model also

relies on the concepts of momentary evidence (stimulus/environmental information sampled

over the course of a decision), diffusion (the amount of noise in an observer’s encoding of

momentary evidence), and a decision variable (the observer’s internal representation of

accumulated information; black and gray lines in Figure 2). The starting point variable defines

the point along the y-axis where the decision variable begins its process of evidence

accumulation, and thus is conventionally interpreted as quantifying the bias an observer has
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toward one of the two choice options. The non-decision time variable quantifies the time

needed for an agent to perform processes unrelated to evidence accumulation, like the time

needed to extract decisional evidence from momentary evidence and the time needed to

prepare a motor action after internally committing to a choice (i.e., the decision variable hitting

one of the thresholds). The threshold separation variable defines the quantity of accumulated

evidence required for an observer to commit to a choice, and thus is commonly interpreted as

reflecting the observer’s response caution or decision policy under different speed-accuracy

regimes. Finally, the drift rate captures the slope of the decision variable, and is often

interpreted as reflecting the “quality” (i.e., signal-to-noise ratio) of momentary evidence or, more

specifically, quantifying how much each piece of momentary evidence contributes to the

ultimate decision.

Although the DDM was initially developed using static values for the starting point, drift

rate, and non-decision time (Ratcliff, 1978), the contemporary standard form of the model

incorporates trial-level variability in each of these parameters. Starting point and non-decision

times are typically drawn from a uniform distribution, whereas drift rates are drawn from a

normal distribution (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). This variability allows

the model to better capture differences in RT distributions between correct and incorrect trials.

Drift rate variability captures slow errors, starting point variability captures fast errors, and

non-decision time variability improves model fits when there is a large degree of

across-condition variability in the 0.1 quartile of the RT distribution (Ratcliff & McKoon, 2008;

Ratcliff & Tuerlinckx, 2002). Following common parlance, we use “original DDM” to refer to the

model without trial variability, and “extended DDM” to refer to the model with trial variability.

Because the original DDM fails to capture important empirical properties of RT distributions,
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the extended DDM has become the current standard form. A popular alternative to the

extended DDM is a version of the model without trial-variability in the relevant parameters, but

with a boundary separation value that decreases over the course of a decision (Figure 2B). This

“collapsing bound” form of the model provides many of the same empirical advantages as the

extended DDM, but is specified in a way that posits a different underlying mechanism of the

speed-accuracy tradeoff: namely, that observers become more liberal in their decision

threshold as a function of elapsed decision time (Drugowitsch et al., 2012; Frazier & Yu, 2007).

FIGURE 2: Graphical depictions of two standard forms of a diffusion model of speeded

two-alternative choice. Both models assume that observers sequentially sample information,

accumulate the difference in evidence between the two choice options, and commit to a

decision once the accumulated evidence reaches a critical value defined by the decision

boundary/threshold. Standard interpretations of the key variables are provided in the main text.

(A) The extended drift diffusion model. This form of the model features parameters whose

values vary trial-by-trial but remain fixed within the course of a single trial. Starting point

(yellow) and non-decision time (red) values are drawn from uniform distributions and drift rates

(blue) are drawn from normal distributions. Threshold values (green) are constant within a trial,
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and can be allowed to vary as a function of experimental condition and/or participant. (B) The

diffusion model with collapsing decision boundaries. This form of the model features

parameters whose values are effectively fixed trial-by-trial and decision boundaries whose

values decrease (“collapse”) over the course of a single trial. Drift rate and, in some models,

starting point are permitted to vary as a function of experimental condition but are assumed to

have fixed effects across trials within an experimental condition.

Applying the toolkit to our target

Now that we are also familiar with key components of accumulator models, we can

begin applying the toolkit to our target. Throughout seven “lessons”, we investigate how

different reasoning goals—informed by different epistemic values among researchers—shape

the representational decisions those researchers made when building and evaluating

competing models of behavior. Lessons 0 and 1 explicate the concept of optimality and how it

is formalized in accumulator models, respectively. Lesson 2 highlights an informative mismatch

between the stated goals behind the original DDM and its contemporary status as the optimal

two-alternative decision making process. Lesson 3 then examines how different researchers

modified the original DDM after deeming it inadequate for their purpose, thus leading to the

stalemate about the “correct” form. Next, Lesson 4 demonstrates how the procedures one uses

to compare these two models are also shaped by the reasoning goals and epistemic values of

the researchers performing the model comparison. An intermediate summary integrates

insights developed throughout the lessons to provide a principled heuristic for deciding which

form of the diffusion model is suitable for one’s reasoning goals. Lesson 5 then advances an

argument that extant approaches for measuring and modeling expectations in perceptual
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decision making are critically limited by choices stemming from idealizations. Finally, Lesson 6

presents a novel model we developed to reason about principled decision processes in

less-idealized environments and shows that this model synthesizes two disparate observations

of time-varying effects of expectations on perceptual decisions.

Lesson 0: explicating optimality

Reasoning goals in the scientific study of decision making—and perceptual decision

making in particular—commonly invoke the notion of optimality. This term has a rather intuitive

meaning in everyday language: performing as best as possible. Scientific usage of this term,

however, requires appeal to a number of tacit assumptions about what the system ought to be

doing and how it ought to be doing that. Unsurprisingly, then, invoking optimality in one’s

research question or explanation can lead to talking-past among different research groups

(Rahnev & Denison, 2018) and/or conclusions that are not as strongly justified as the

researchers might believe (Eberhardt & Danks, 2011). A brief explication about the concept of

optimality can offer some salve for these issues; or at the very least, it will provide useful

foundation for issues considered in the rest of the case study.

Optimality is commonly used to ask and answer normative questions about one’s

target, i.e., investigating why it behaves in this particular way (instead of some other equally

plausible way). Recall that formal frameworks (e.g., sequential analysis) permit specifying

normative solutions to formally-specified problems (e.g., deciding between two possible

outcomes by accumulating evidence over time). A formal specification of the problem a system

is hypothesized to be solving is commonly called the objective function of that system.9 A

normative solution is one that optimally solves the problem, i.e., identifies the mathematical

limit of the system’s performance with respect to the objective function and the environment.

9 The objective function is also commonly called a cost or loss function.
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Normative models thus answer why questions by appeal to the objective function: the system

behaves this way (and not some other way) because this behavior optimizes this objective

function (and not some other objective function).

Lesson 1: defining optimality in accumulator models

Thus, the choice of objective function is a core representational decision in the process

of normative modeling. Because it defines the criterion of optimality against which the target

system will be compared, it is imperative to align the specification of objective function with the

type and scope of normative reasoning one wishes to perform with respect to the target.

Effectively all theoretical work on accumulator models assumes that decision makers aim to

optimize a speed-accuracy tradeoff. While this is a reasonable choice, contemporary work

rarely, if ever, offers explicit justification for choosing this objective function (e.g., Drugowitsch,

Moreno-Bote et al., 2012; Tajima et al., 2019). Absent explicit justification or discussions of

alternative notions of optimality, the literature risks losing sight of the fact that optimizing

speed-accuracy tradeoffs is not a necessary feature of accumulator models. We highlight

alternative approaches to optimality analyses in Lesson 4. But first, this lesson introduces the

two formalizations of speed-accuracy optimality at play in accumulator models.

The first formalization of a speed-accuracy tradeoff comes from the sequential

probability ratio test (SPRT) developed independently by Barnard (1946) and Wald (1945). In

SPRT, the decision variable is a running estimate of the log-likelihood ratio of one choice option

relative to another, and the threshold values are fixed across a decision. Shortly after its

introduction, SPRT was mathematically proven to minimize Bayes Risk: a weighted, linear sum

of decision time and error rate (Bogacz et al., 2006; Wald & Wolfowitz, 1948). Thus, the

speed-accuracy tradeoff formalized by SPRT is defined as minimizing the average time needed
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to produce responses at a fixed level of accuracy. Crucially, this proof assumes that the

“difficulty” of the decision (e.g., the signal-to-noise ratio in the stimulus) is identical for all trials

included in the estimate of average reaction time—i.e., that the decision environment is

homogenous (Moran, 2015). When the decision environment is heterogeneous (i.e., different

difficulty on each trial), SPRT no longer minimizes Bayes Risk and is therefore no longer

optimal.

Rather than minimizing Bayes Risk, it is currently more common for modelers to

assume that decision makers are maximizing their reward rate—average reward per unit of time

(Gold & Shadlen, 2001, 2002). If an experiment does not deliver performance-based rewards to

decision-makers, then correct and incorrect answers are modeled as rewards and

punishments, respectively. Importantly, the formalization of time in this criterion sums up all the

temporal components of the decision environment: decision time, non-decision time, inter-trial

interval, and potential time penalty for delays. This more granular representation of time gives

reward rate optimality a number of advantages relative to Bayes Risk. First, and most saliently,

the validity of reward rate as a criterion of optimality does not require that decision difficulty

remains fixed across trials. Next, its representation of time permits theoretically and empirically

investigating how different environmental dynamics shape choice behavior. Further, by invoking

the notion of reward, it aligns accumulator models more closely with other formal models of

decision making (e.g., expected utility theory) which enhances the prospects for inter-theoretic

model building. Additionally, it has been argued to represent a more ecologically valid concept

of optimality for human and animal decision makers (Balci et al., 2011; Moran, 2015). Finally, it

has the practical advantage of being parameter-free: assuming that decision makers optimize
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reward rate does not require specifying how much weight a particular agent places on

accuracy vs. speed (Bogacz et al., 2006).

Intermediate summary: lessons on optimality

The previous two lessons had several aims. Lesson 0 briefly explicated the notion of

optimality to ground future discussions in the case study and invite critical reflection on its use

as an explanatory concept. Lesson 1 then introduced two standard formalizations of optimality

in accumulator models to provide concrete examples of considerations in Lesson 0. Together,

the lessons aim to highlight that the specific conception of optimality in any modeling

framework is a choice submittable to the same interrogations we perform on other

experimental and/or modeling choices, despite it prima facie seeming like a fixed property of a

particular model. Additionally, we aimed to demonstrate that a concept as simple as optimizing

the speed-accuracy tradeoff can be formally expressed in a number of different ways, each of

which yield subtly different claims about exactly what the target system ought to be doing. As

we will show in the rest of the case study, careful consideration about how one’s conceptual

reasoning abilities are constrained by representational decisions required by formalization and

specification is imperative for critical and informed model-based neuroscience research.

Lesson 2: incidental optimality of the DDM

The paper introducing the original DDM (Ratcliff, 1978) is titled A theory of memory

retrieval. On the first page, Ratcliff (1978; p. 59) states his reasoning goal: “The theory

presented in the present article is concerned with providing an account of processes

underlying retrieval from memory.” He goes on to write, “The theory presented here has been

designed to deal with all aspects of the data in each paradigm (accuracy, response latency,

and latency distributions) and has been designed to apply over a range of paradigms” (Ratcliff,
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1978, p. 60). Thus, it is exceedingly clear that the original goal behind developing the DDM was

to specify a descriptive model of memory retrieval. The words “optimal” and “normative” do not

appear anywhere in the text. However, the DDM currently functions as the normative solution to

speeded decision making, particularly of the perceptual variety (Bogacz et al., 2006). When and

how did this shift occur?

In a highly influential paper, Bogacz et al. (2006) conducted a systematic mathematical

analysis of popular accumulator models, comparing them to each other and to different

optimality criteria. They showed that the original DDM is the continuous-time equivalent of

SPRT, making it the optimal procedure for minimizing Bayes Risk. The authors also showed

that for other criteria of optimality (e.g., reward rate and balancing reward with accuracy), there

is a unique value of the DDM threshold that optimizes the decision process according to that

criterion. Further, they found that five of the six alternative accumulator models all reduce to the

original DDM when their parameters optimize reward rate (Bogacz et al., 2006). These results

offer strong evidence for the optimality of the DDM, both in terms of choice behavior and

decision dynamics.

Thus, a model that was explicitly developed to provide a task-general description of

memory decisions, and later to offer mechanistic insight into the formation of domain-general

speeded two-alternative decisions, was also found to provide a normative solution to the

speed-accuracy tradeoff in two-alternative decision making. We find this story particularly

remarkable because across the sciences, and perhaps especially in the cognitive sciences, it is

rarely the case that a mathematical model developed for description also provides a normative

solution—normative solutions are typically pursued as ends in their own right. And from an
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inferential perspective, the optimality results raise substantive implications for targets

successfully modeled by the DDM: they optimally accumulate evidence over time.

Lesson 3: The value-ladenness of model specification

In this lesson, we review how different groups of researchers have modified the original

DDM after deeming it inadequate for purpose. We focus on the development of the two current

standard forms of accumulator models—the extended DDM (e.g., Ratcliff and McKoon, 2008)

and a diffusion model with collapsing boundaries (e.g., Drugowitsch, Moreno-Bote et al.

(2012)—highlighting how stated differences in reasoning goals have resulted in the two

standard forms.

As reviewed above, representational choices in the DDM have been grounded in the

reasoning goal of providing a unified mathematical description of core empirical properties of

two-alternative decisions. In particular, the model has been developed such that it can

reproduce differences in the shapes of reaction time distributions for correct and incorrect

decisions. This goal explicitly motivated the addition of trial-variability in drift rate and starting

point in the extended DDM: “The key feature of the model that allows it to deal with the

complexities of error response times is the assumption that parameters of the model (drift rate

and starting point) are variable from trial to trial.” (Ratcliff and Rouder, 1998, p. 356). Further,

the goal of adding variability in the non-decision term was to enhance the model’s ability to fit

values in the 0.1 quantile of RT distributions across conditions in a task (Ratcliff & Tuerlinckx,

2002), which it successfully accomplished. Thus, the current standard form of the DDM—one

with trial variability in drift rate, starting point, and non-decision time—reflects a series of

representational decisions anchored in the goal of developing a unified, statistically robust

mathematical description of the empirical properties of two-alternative choice behavior.
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This series of representational decisions can be contrasted against those on display in a

highly influential paper by Drugowitsch, Moreno-Bote et al. (2012). The conceptual launching

point for these authors was inadequacy of the assumptions under which the DDM optimizes

the dynamics of two-alternative deliberation. Specifically, the authors modified two key

assumptions underlying previous proofs of DDM optimality: homogeneity of decision

environments (assumed by Wald & Wolfowitz (1948) for optimality of SPRT) and no cost for

accumulating evidence (assumed by Bogacz et al., 2006). Their stated goal in doing so was to

“provide a formalism to determine the optimal behavior given a total description of the task, the

rewards, and the costs” (Drugowitsch, Moreno-Bote et al., 2012, p. 3612; emphasis added). To

do this, they specified a heterogeneous environment and a reward rate function that

incorporated a small cost for each sample drawn over the course of a decision. Using

techniques from dynamic programming (i.e., the Bellman equation), Drugowitsch, Moreno-Bote

et al. (2012) found that the optimal solution on these assumptions is to accumulate evidence

according to the diffusion process10 and dynamically adjust the separation of choice thresholds

during the course of a decision (Figure 2C). Importantly, this form of the model does not require

trial-variability in drift rate, starting point, or non-decision time; the goodness-of-fit advantage

provided by variability in these parameters was achieved by the time-varying decision

boundary alone.11

11 For the sample of participants in the task reported in Drugowitsch, Moreno-Bote et al. (2012). The
authors did not compare performance against the extended DDM. Subsequent work has shown that
collapsing boundaries coupled with trial-variability in drift rate enhances model fits relative to collapsing
boundaries without drift variability (Murphy et al., 2016; O’Connell et al., 2018).

10 It’s worth noting that when the assumption of constant task difficulty is relaxed (i.e., when the decision
maker does not know exactly what the strength of evidence on that trial is), the decision variable can no
longer be interpreted as encoding the log-odds of either choice being correct (Drugowitsch, Moreno-Bote
et al., 2012, p. 3622). This is a subtle but crucial point for construing diffusion models applied to data
acquired in heterogeneous environments (i.e., the majority of contemporary experimental conditions).
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Thus, we find ourselves with two model structures of the same target process. The

models make highly similar predictions about most aspects of the data but specify qualitatively

distinct neurocognitive architectures underlying two-alternative decision making. The theories

formalized in these models reflect the reasoning goals of the researchers who built them. In the

DDM, which was originally motivated by a reasoning goal to unify empirical phenomena,

researchers put the data first and iteratively adjusted the model structure until it maximally

explained empirical properties of a broadly-scoped target. Crucially, the subsequent

representational changes broke the normative status of the original model: trial-variability in

starting point, drift rate, and non-decision time make the DDM no longer equivalent to SPRT,

and thus no longer the optimal procedure for minimizing Bayes Risk (Moran, 2015). Contrast

this approach with that of Drugowitsch, Moreno-Bote et al. (2012) who explicitly pursued a

formal structure that permits normative reasoning about the target system under slightly less

idealized assumptions. Their form of the model resulted in model fits on par with those

generated by the extended DDM in similar task environments, and also provides

representational resources to capture an increasingly-documented neural phenomenon: a

time-varying gain on the responses of neurons postulated to encode the decision variable

(Churchland et al., 2008).

As scientists, we are likely tempted to ask which of these competing models is true. Our

toolkit suggests that this is the wrong question; or at least, that the question is ill-posed. We

expand upon this position in the next lesson.

Lesson 4: The value-ladenness of model comparison

One way to conceptualize the contrast drawn in Lesson 3 is between representational

decisions based on statistical vs. theoretical considerations. This lesson continues along that
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theme to conceptually analyze the practice of model comparison, a central but often

under-discussed step in the process of model-based scientific inference. We begin by

reviewing a controversial paper comparing diffusion models with fixed and collapsing bounds

(Hawkins et al., 2015), and then contrast its approach to a paper using formal reasoning to

compare the utility of different model structures (Moran, 2015).

In response to the growing popularity of collapsing-bound accumulator models,

Hawkins et al. (2015) undertook a large-scale quantitative comparison of model performance

on a variety of perceptual decision making datasets. The authors took great care to ensure the

statistical robustness of their results, utilizing data from different research groups and species,

specifying multiple forms of collapsing bounds models, and running several computationally

intensive sensitivity analyses. Further, they reported that three different quantitative metrics of

model performance—Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC),

and nested likelihood ratio tests—all returned similar results, which was their justification for

reporting only the BIC values in the published manuscript. Importantly, BIC is a heuristic metric

that aims to approximate Bayes Factors and tends to overpenalize model complexity (when

complexity is formalized as the number of parameters in the model12). This made it a

particularly fraught choice for their first round of analyses, where the collapsing bounds models

were all specified in a manner that made them between 1.3 to 2 times as complex as the

extended DDM (Hawkins et al., 2015). Even with this “stacked deck”, the collapsing bounds

models appeared favored by BIC for datasets acquired from non-human primates.

In a second experiment, Hawkins et al. (2015) performed the same model fitting

analyses but removed trial-variability in drift rate, starting point, and non-decision time for the

12 See Villarreal et al. (2023) for thought-provoking alternative conceptualizations of complexity that do not
appeal to the number of parameters in a model.
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collapsing bounds models. These changes much better aligned their specifications of

collapsing bounds with the theoretical justification behind this form of the model: recall that

Drugowitsch, Moreno-Bote et al. (2012) did not need to invoke any trial-varying parameters to

explain the data in their study. Readers are encouraged to compare the “Posterior Model

Probability” visualizations in Figures 5 and 6 of Hakwins et al. (2015) to appreciate how

drastically these specification changes altered the pattern of results. Primate data that

previously strongly supported collapsing bounds now seemed either mixed or to prefer fixed

bounds, and human data appeared to favor each form roughly equally (Hawkins et al., 2015,

Figure 6). This categorical shift in results underscores the role of alternative models in the

model comparison process: they serve as a “control condition”, effectively defining the context

wherein the performance of a particular model will be assessed. Because most common

quantitative metrics return relative measures of model performance, it is imperative that

alternative models are specified in a way that maximally aligns the comparison with the users’

reasoning goals. Further, it is crucial that consumers of model-based research findings keep a

critical eye toward the alternative models against which a “primary” model’s performance is

assessed.

By taking a large, data-driven approach to model comparison, the goal of Hawkins et al.

(2015) can be interpreted as identifying the true underlying structure of the decision process.

However, as suggested above, we take this aim to be misguided. Each of the competing forms

facilitates a different type of reasoning about one’s target and reflects different epistemic

commitments of the researchers who developed the model. Fixed boundaries with trial-varying

parameters provide a statistically robust explanation of a wide range of behavioral data, which

broadly reflects reasoning goals in mathematical psychology as a field. Collapsing boundaries
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without trial-variability provide a normative solution to two-alternative decisions in a

heterogeneous environment. They also generate representational resources that can

accommodate neurobiological findings not predicted by the DDM: . This form of the model

broadly reflects the reasoning goals of theoretical neuroscientists who seek to understand the

formal principles linking brain and behavior. Fortunately, it is always possible to compose a

model containing a mixture of these components (e.g., Murphy et al., 2016), although

integrating trial variability into starting point, drift rate, or non-decision time would sacrifice the

normative guarantee of the collapsing boundaries.

We can contrast Hawkins et al.’s (2015) quantitative approach to model comparison to

that undertaken by Moran (2015). In a thought-provoking paper, Moran offers a conceptual and

mathematical analysis of the optimal decision policy in biased and heterogeneous

environments. He begins by showing that Bayes Risk and reward rate are functionally

equivalent criteria of optimality, such that any procedure that optimizes one also optimizes the

other. This analysis underscores core mathematical properties of the DDM: it is the optimal

solution in homogeneous environments and it ceases being optimal in any environment once

the trial-varying parameters are incorporated. He further affirms that the optimal solution in

heterogeneous environments is collapsing boundaries (Moran, 2015). Then, he conducts an

analysis that showcases the utility of formal reasoning: asking how to optimally make decisions

in a biased and heterogeneous environment if the underlying architecture is assumed to be the

DDM. In other words, identifying which parameterizations maximize—rather than

optimize—reward rate with a process known to suboptimal in that environment. Moran (2015)

found that the DDM must incorporate environmental bias both as a shift in the starting point

and as a bias on the drift rate. This result contradicts those reported by (van Ravenzwaaij et al.,
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2012), who took a quantitative, simulation-based approach and found that bias only needs to

be represented in the starting point parameter. Crucially, it was by performing the formal

analysis that Moran (2015) identified an oversight in the simulation results: all of their

specifications used a fixed value for the threshold, a parameter that varies both across

conditions and individuals and that is crucial for titrating speed-accuracy tradeoffs.

Intermediate summary: different tools for different goals

The past three lessons highlighted how reasoning goals shape every step of

model-based research, and underscored the importance of keeping these reasoning goals in

mind when evaluating models and model-based findings. In doing so, we were able to identify

a principled heuristic for deciding whether to use an extended DDM or a diffusion model with

collapsing boundaries: if you wish to reason normatively about decision making in

heterogeneous environments, then your model must include collapsing boundaries. The

extended DDM was optimized for empirically fitting behavioral data, and thus provides a

statistically robust and useful tool for describing how properties of decision making systems

change as a function of stimuli or task demands.

Lesson 5: The theory-ladenness of experimental design

In this lesson, we demonstrate one of the potential pitfalls of model-based empirical

research: unwitting entrenchment of model representations and/or assumptions into standard

experimental design choices. Unlike contemporary concerns with experimental protocols in

psychology (e.g., that their lack of theoretical grounding compounds issues of replicability

(Guest & Martin, 2021; van Rooij & Baggio, 2021)), this problem emerges when a research area

has a relatively long history of theory-guided methodological development. When testing a new

theory, researchers have good reason to make experimental design choices that maximally
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align features of the empirical environment with assumptions and representations at play in

their model, as this provides the most direct and sensitive test of predictions (see Simen et al.,

2009 and the footnote13 for an example). These maximally-aligned conditions guide

considerations for subsequent research, effectively establishing a paradigm for how to measure

behavior such that it can be meaningfully analyzed with the model. While such a paradigm can

accelerate theory-driven discovery, it can also obscure the degree to which model assumptions

shape researchers’ conceptualizations of their targets of study—a problem that becomes

compounded over time. We take the integration of expectations into accumulator models as

our example of this phenomenon.

Expectations consist of knowledge about the prior probability that one of the two

choice options will be correct and/or rewarded on each trial. Understanding how expectations

shape choice behavior is a core explanatory target for accumulator models, with theoretical

work on the topic pre-dating publication of the original DDM (Edwards, 1965; Link & Heath,

1975). Edwards (1965) showed that, without loss of optimality, expectations can be

incorporated into the SPRT as a shift in the starting point reflecting the odds of each of the two

options. This decreases the distance between the starting point and decision boundary for the

preferred option, leading to faster responses for visual evidence concordant with the

expectation. Expectations continued to be modeled in this manner throughout the

development of the DDM and other accumulator models (Gold & Shadlen, 2007; Ratcliff &

McKoon, 2008), with empirical work largely supporting this model specification (Simen et al.,

2009). Importantly, formalizing expectations as a shift in the starting point leads to the

13 In the context of perceptual decision making, this can mean ensuring that stimuli on each trial are
independent and identically distributed (the “i.i.d.” assumption) and presenting observers with evidence
that changes continuously instead of discretely in time (if positing diffusion instead of sequential
sampling).
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interpretation that expectations bias the decision process before the onset of visual evidence

and exert no effects thereafter; that is, they exert a static effect on decisions.

As we saw in previous lessons, optimal parameterizations of the DDM can change

considerably when idealizing assumptions are relaxed. The starting point formalization of

expectations is no exception. Both Bogacz et al. (2006) and Moran (2015) theoretically

demonstrated that when the assumption of environmental homogeneity in the SPRT is relaxed

(i.e., when postulating a heterogeneous decision environment), expectations must be modeled

both as a shift in the starting point and an offset on the drift rate in order to maximize reward

rate. Despite this being the optimal solution when the DDM is applied in heterogeneous

environments, ongoing research often diminishes effects of expectations on the drift rate (e.g.,

Ratcliff and McKoon, 2008) or posits changes in drift rate and starting point as competing

explanations (e.g., Mulder et al (2012)) instead of complementary contributions to optimal

performance. Importantly, modeling expectations in the drift rate leads to the interpretation that

expectations bias the dynamics of evidence accumulation, such that evidence will be

accumulated faster for decisions with expectation-congruent evidence. However, this is

different from expectations exerting dynamic effects on evidence accumulation (i.e., those that

vary as a function of time within a single decision).

Our argument is that the optimality of the shift-in-starting-point approach has largely

precluded considerations of the possibility that expectations exert dynamic effects on

decisions. This oversight has propagated primarily through experimental design choices that

translate distortive idealizations from the model to the task in order to maximize researchers’

ability to detect signatures of optimal decision making behavior. Specifically, the standard

practice for manipulating expectations in perceptual decision tasks is to (1) equip observers
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with perfect knowledge of the prior probability and (2) manipulate that probability on the level of

blocks rather than individual trials (Hanks et al., 2011; Kelly et al., 2021; Mulder et al., 2012;

O’Connell & Kelly, 2021; Ratcliff & McKoon, 2008; Simen et al., 2009; van Ravenzwaaij et al.,

2012). These idealizations are distortive because, in real life, (1) observers estimate the prior

probability by aggregating across similar previous experiences (Seriès & Seitz, 2013) and (2) the

relevant expectation for a particular choice often changes from decision-to-decision (Bornstein

et al., 2023). These idealizations can also be considered omissive in the sense that (1)

expectation learning is completely omitted from the experimental protocol and (2)

decision-level variability in expectations is omitted from the decision environment. Another way

to frame this latter point is that the current approach measures behavior in

expectation-homogeneous decision environments.

As we have seen throughout this case study, relaxing the idealization of environmental

heterogeneity greatly changes the form of the optimal model. Specifically, when decision

difficulty changes trial-by-trial, the optimal solution is a dynamic adjustment of the decision

boundary. In the next lesson, we present a novel theory suggesting an analogous solution for

environments where the expectation changes trial-by-trial: dynamic integration of expectations

into the decision process (Khoudary et al., 2022).

Lesson 6: the utility of interdisciplinary approaches to theory-guided empirical research

This lesson introduces the accumulator model we built to formalize our theory about

how expectations ought to be integrated into perceptual decisions if those expectations are

based on small samples of experience and the decision environment is fully heterogeneous

(i.e., decision difficulty and expectation vary trial-by-trial). Further, we show how this model

synthesizes two disparate empirical findings of time-varying effects of expectations into a
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common theoretical framework. Although the model has not been shown to maximize reward

rate in fully heterogeneous environments, it still offers a normative explanation for dynamic

effects: namely, that they are driven by the uncertainty estimation required for statistically

optimal inference.

The model assumes that decision makers have learned, through experience, that

different stimuli (“cues”) predict one of two possible outcomes (“images”) with unique

probabilities. For example, a decision maker could learn that cues A, B, and C predict image X

being the correct choice with probabilities 0.8, 0.65, and 0.5. Because there are only two

possible outcomes, learning these probabilities for image X also means learning that cues A, B,

and C predict image Y with probabilities 0.2, 0.35, and 0.5. The model assumes no loss or

distortion of these learned expectations as a function of elapsed time between learning and

decision making. One of the core conceptual contributions of the model is to posit that, during

cued perceptual decision making, decision makers engage in a process of evidence

accumulation in order to set their expectation on each trial. The model further posits that this

accumulation process does not terminate once visual evidence becomes available; instead,

decision makers continuously sample information from memory in parallel to vision until a

decision is made.

As reviewed in Lesson 1, there is precedent within the DDM literature to model memory

retrieval as a process of evidence accumulation (Ratcliff, 1978). Further motivation for this

mathematical representation comes from the notion of memory sampling in accumulator

models of value-based decision making (Wang et al., 2021). This family of models posits that

when humans and other animals make choices based on the subjective value of two different

outcomes (e.g., deciding what to eat for dinner), they sequentially sample past experiences
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from memory to generate predictions about how valuable each choice is to them (Shadlen &

Shohamy, 2016). Our model extends that idea to apply to prior probabilities in perceptual

decision making. Crucially, on this formalization, expectations function as an additional source

of evidence that is dynamically updated over the course of a decision.

Theoretical and empirical work in multisensory integration has shown that when

decisions require combining information from multiple sources of evidence (e.g., vision and

hearing), humans perform the statistically optimal procedure of producing a precision-weighted

multisensory judgment (Alais & Burr, 2004; Ernst & Banks, 2002; Knill & Saunders, 2003; Landy

et al., 2011), where precision is formalized as the variance of the evidence-generating

distribution. Our model thus proposes that an internal, dynamically-updating estimate of the

precision of each evidence source (memory and vision) drives the integration of expectations

with sensory evidence by specifying, at each point in time, how much the decision maker

should weigh evidence coming from that source. More directly, we propose that the decision

variable in fully heterogeneous perceptual decision environments is a precision-weighted sum

of samples from parallel streams of memory and visual evidence. A formal description of the

model is provided in the Supplementary Materials.

In addition to providing a normative solution to cued perceptual decision making in fully

heterogeneous environments, this model also offers a unifying explanation for

previously-reported dynamic effects of expectations. These effects were observed by different

research groups using different experimental protocols, and together they offer complementary

pieces of evidence in support of a dynamic precision-weighted evidence accumulation

process. The first comes from Hanks et al. (2011), who found behavioral and neural evidence

that human and non-human primate observers increase their weighting of the prior probability
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as a function of elapsed time for a given decision. Because this effect occurs later on in the

decision process, we will refer to it as a “late effect” of expectations. Importantly, this result

was observed in expectation-homogeneous decision environments where observers had

perfect knowledge of the prior probability. This context made the finding particularly influential,

as it challenged extant theories about the integration of expectations (Moran, 2015; van

Ravenzwaaij et al., 2012).

The second result comes from Bornstein et al. (2023), one of the first studies to test

how learned expectations influence behavior in expectation-heterogeneous decision

environments. First, the authors showed that humans can learn usable expectations through a

small amount (~25 trials) of cue-image pairings. Then, they showed that the resultant behavior

from cueing these expectations on a trial-by-trial basis was best described by a multi-stage

diffusion model, where the terminal state of a memory accumulator set the starting point for

vision accumulator on each decision. Finally, Bornstein et al. (2023) found that when the

learned cue contained probabilistic information about the correct choice (e.g., scene A with

70% probability) and deterministic information about the uncertainty in the upcoming visual

evidence (e.g., low signal-to-noise ratio), humans sampled from memory in an

uncertainty-adaptive manner. A crucial design decision facilitated this observation: introducing

inter-stimulus intervals (ISIs) between the onset of the memory cue and visual evidence, the

durations of which varied across trials. This allowed Bornstein et al. (2023) to observe that, for

as many as 30% of trials where the expectation over accuracy was high and the expectation

over signal quality was low, observers opted to make a decision before perceiving any visual

evidence at all. Further, this effect was driven by an fMRI measure of memory sampling:
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reinstatement of target-specific patterns that were greater over time when the cue signaled

low-quality visual evidence. We call this an “early effect” of expectations.

Figure 3 shows that our model can reproduce both of these effects when the relevant

differences in the experimental designs are taken into account (i.e., including a delay between

cue and sensory evidence for the Bornstein results). Figure 3A shows that a late effect can

result from dynamic precision-weighted integration of parallel streams of memory and visual

evidence. Each sample of visual evidence contributes to the observer’s estimate of visual

evidence precision, which in this case is at chance (50%). As the observer’s certainty about

this precision estimate increases over the course of the decision (Figure 3C), it becomes

increasingly clear that visual evidence is insufficiently informative to make a choice. The

decision variable (in yellow) thus becomes increasingly biased toward the choice predicted by

memory (precision=0.8 in this simulation) over the course of sampling, leading to a late effect of

expectations. Figure 3B shows that, when provided with probabilistic information about the

correct choice and deterministic information about the evidence quality, a dynamic

precision-weighted integration process also captures the early effect. During the anticipatory

memory sampling period (preceding the dashed vertical line), the observer accumulates

evidence from memory which offsets the starting point of the decision variable at visual

evidence onset. Then, only a small amount of visual evidence samples are needed to confirm

the state of the world predicted by the expectation (choice outcome X with decision quality Y),

and the observer can make a decision much earlier on than if they did not have time to sample

from memory in anticipation.

Thus, the model that we built to reason about principled solutions to cued decision

making in less-idealized environments also offers a unifying explanation for observations that
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were previously explained by two different theories (i.e., model structures). This lesson thus

highlights one of the primary pathways whereby formal modeling advances neuroscience:

motivating the development of novel theories by relaxing idealizing assumptions of existing

models. As we saw in Lesson 3 (The value-ladenness of model specification), there are at least

two ways that modelers can engage in the project of building less idealized models. Following

Ratcliff et al. (1998, 2001), one can replace mathematical representations required by particular

distortive idealizations with representations that are more numerically flexible and enhance the

model’s ability to fit data from a wider range of decision environments. Alternatively, one can

choose which idealizations they wish to relax and develop a mathematical representation that

aligns with how they wish to reason about the less-idealized target. In the case of Drugowitsch,

Moreno-Bote et al. (2012), the goal was to identify a mathematical structure that optimized

reward rate in heterogeneous environments. In our case, the goal was to develop a

mathematical representation of a principled—not necessarily optimal—procedure whereby

dynamic effects of expectations might emerge. We achieved this by first identifying the

idealizations that were inadequate for our purpose, and then constraining our mathematical

representations to those that have previously found empirical support in neighboring literatures.

In doing so, we demonstrate the utility of interdisciplinary approaches to formal theory

development in computational cognitive neuroscience.
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FIGURE 3: Simulated single-trial outputs from the model. In all figures, memory evidence

(expectations) is plotted in blue, vision evidence is plotted in orange, and the decision variable

is plotted in yellow-brown. (A) Simulated trial where the effect of expectations increases as a

function of elapsed decision time, replicating the main result from Hanks et al. (2011). (B)

Simulated trial where anticipatory memory sampling expedites deliberation about a highly noisy

visual stimulus, replicating a core finding of Bornstein et al. (2023). (C-D) Dynamic evidence

precision estimates driving integration of the late and early effects, respectively. Formally, these

distributions are the time-evolving posterior Beta distributions quantifying the observer’s belief

about the variance of each evidence-generating distribution (memory and vision).

41



REASONING GOALS & REPS IN COMP COG NEURO

Summary and Future Directions

In this article, we summarized some core ideas in philosophy of science, and

philosophy of modeling in particular, in the service of developing a philosophical toolkit for

computational cognitive neuroscience. The toolkit explicates what is meant by the famous

aphorism that “all models are wrong, but some are useful” (Box and Draper, (1987, p. 424),

p.424), and shows how the adequacy-for-purpose view of models places a user’s reasoning

goals at the heart of the modeling process. We then applied this toolkit to an open question in

the accumulator model literature: whether to use a DDM with trial variability in drift rate, starting

point, and non-decision time (Ratcliff et al., 2016) or one where these parameters are fixed

across but the decision thresholds decrease during the course of a decision (Drugowitsch et

al., 2012). We traced the evolution of these forms with an eye toward the reasoning goals

behind representational decisions that departed from the original DDM, and demonstrated

concretely the utility of a philosophical toolkit for guiding scientific decision-making: if one

wishes to reason normatively about perceptual decision making in heterogeneous

environments, then one must use the form of the model with collapsing decision boundaries.

We then demonstrated how philosophical insights about idealization assisted in identifying an

oversight in the literature on cued perceptual decision making, which in turn inspired the

development of a novel theory about how expectations dynamically affect perceptual

decisions.

There is still much work to be done on the philosophical foundations of computational

cognitive neuroscience. We hope that the ideas developed in this article can serve as a starting

point for future investigations into the role of reasoning goals in shaping formal models outside

the domain of perceptual decision making. We also hope that gaining recognition of how
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reasoning goals permeate the entire process of model-based empirical research will call

readers to reflect on the reasoning goals that motivate their scientific practices, and consider

how differences in reasoning goals might be at play when finding oneself in a disagreement

about the validity of a particular analytic approach. Altogether, this article aimed to remind

readers that computational models—although mathematical in nature—are still scientific tools

created by humans whose decisions are inevitably shaped by the values and goals they bring

to the problem. Feminist philosophy of science advises that the best way to manage this

value-ladenness of representational decision making is to encourage a diverse range of

reasoning goals and model types, rather than prescriptively assign higher value to certain goals

or specifications relative to others. After all, in the words of Sutton and Barto (2018, p.50), “at

present, such representational choices are more an art than a science”. Encouraging

(reasonable) creativity in the building of scientific representations is one of the most

straightforward ways to accelerate empirical progress in cognitive neuroscience.
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