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Patch foraging presents a sequential decision-making problem
widely studied across organisms — stay with a current option or
leave it in search of a better alternative? Behavioral ecology has iden-
tified an optimal strategy for these decisions, but, across species,
foragers systematically deviate from it, staying too long with an op-
tion or “overharvesting” relative to this optimum. Despite the ubiq-
uity of this behavior, the mechanism underlying it remains unclear
and an object of extensive investigation. Here, we address this gap
by approaching foraging as both a decision-making and learning
problem. Specifically, we propose a model in which foragers 1) ra-
tionally infer the structure of their environment and 2) use their un-
certainty over the inferred structure representation to adaptively dis-
count future rewards. We find that overharvesting can emerge from
this rational statistical inference and uncertainty adaptation process.
In a patch leaving task, we show that human participants adapt their
foraging to the richness and dynamics of the environment in ways
consistent with our model. These findings suggest that definitions
of optimal foraging could be extended by considering how foragers
reduce and adapt to uncertainty over representations of their envi-
ronment.
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Many real world decisions are sequential in nature. Rather1

than selecting from a set of known options, a decision-2

maker must choose between accepting a current option or3

rejecting it for a potentially better future alternative. Such4

decisions arise in a variety of contexts including choosing an5

apartment to rent, a job to accept, or a website to browse. In6

ethology, these decisions are known as patch leaving problems.7

Optimal foraging theory suggests that the current option8

should be compared to the quality of the overall environment9

(1). An agent using the optimal choice rule given by Marginal10

Value Theorem (MVT(2)) will leave once the local reward11

rate of the current patch, or concentration of resources, drops12

below the global reward rate of the environment.13

Foragers largely abide by the qualitative predictions of14

MVT, but deviate quantitatively in systematic ways - staying15

longer in a patch relative to MVT’s prescription. Known as16

overharvesting, this bias to overstay is widely observed across17

organisms (3–10). Despite this, how and why it occurs remains18

unclear. Proposed mechanisms include a sensitivity to sunk19

costs (9, 10), diminishing marginal utility (3), discounting of20

future rewards (3, 10, 11), and underestimation of post-reward21

delays (5). Critically, these all share MVT’s assumption that22

the forager has accurate and complete knowledge of their en-23

vironment, implying that deviations from MVT optimality24

emerge in spite of this knowledge. However, an assumption25

of accurate and complete knowledge often fails to be met in26

dynamic real world environments (12). Relaxing this assump-27

tion, how might foragers learn the quality of the local and28

global environment?29

Previously proposed learning rules include recency-weighted 30

averaging over all previous experiences (3, 13) and Bayesian 31

updating (14). In this prior work, learning of environment 32

quality is foregrounded while knowledge of environment struc- 33

ture is assumed. In a homogeneous environment, as is nearly 34

universally employed in these experiments, this is a reasonable 35

assumption as a single experience in a patch can be broadly 36

generalized from across other patches. However, it may be 37

less reasonable in more naturalistic heterogeneous environ- 38

ments with regional variation in richness. To make accurate 39

predictions within a local patch, the forager must learn the 40

heterogeneous structure of the broader environment. How 41

might they rationally do so? Here, we show that apparent 42

overharvesting in these tasks can be explained by combining 43

structure learning with adaptive planning, a combination of 44

mechanisms with potentially broad applications to many com- 45

plex behaviors performed by humans, animals, and artificial 46

agents (15). 47

We formalize this combination of mechanisms in a com- 48

putational model. For the structure learning mechanism, we 49

use an infinite capacity mixture model (16, 17), and for the 50

adaptive planning mechanism, we use a dynamically adjust- 51

ing, uncertainty sensitive discounting factor (18). The infinite 52

capacity mixture model assumes that the forager treats struc- 53

ture learning as a categorization problem — one in which they 54

must discover not only a particular patch’s type but also the 55

number of patch types there are in the environment. The 56

categorization problem is itself cast as Bayesian inference in 57
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Fig. 1. Structure learning improves prediction accuracy. A. With structure learning A simulated agent’s posterior probability over the upcoming decay rate on each
planet is plotted. If the forager’s prior allows for the possibility of multiple clusters (α > 0), they learn with experience the cluster-unique decay rates. Initially, the forager is
highly uncertain of their predictions. However, with more visitations to different planets, the agent makes increasingly accurate and precise predictions. B. Without structure
learning If the forager’s prior assumes a single cluster (α = 0), the forager makes inaccurate and imprecise predictions - either over or underestimating the upcoming decay,
depending on the planet type. This inaccuracy persists even with experience because of the strong initial assumption. Uncertainty adaptive discounting. C. The effect of
γcoef The entropy of the posterior distribution over patch type assignment is taken as the forager’s internal uncertainty and is used to adjust their discounting rate, γeffective.
The direction and magnitude of uncertainty’s influence on the discounting rate is determined by the parameter, γcoef . The more positive the parameter is, the more the
discounting rate is reduced with increasing uncertainty, formalized as entropy. If negative, the discounting rate increases with greater uncertainty. D. The effect of γeffective

on overharvesting Increasing γbase increases the baseline discounting rate while increasing the slope term increases the extent the discounting rate adapts in response
to uncertainty. E. Overharvesting increases with α and γcoef in single patch type environments Simulating the model in multiple single patch type environments with
varying richness, we find that increasing α and γcoef , holding γbase constant, increases the extent of overharvesting (PRT relative to MVT). The richness of the environment
determines the extent of the parameters’ influence, with it being greatest in the poor environment.

which these environmental features can only be inferred from58

rewards received. Within a patch the forager infers the proba-59

bility of a patch being of type k. This inference is dependent60

on their experience in the current patch, D, and in previous61

patches.62

P (k|D) = P (D|k)P (k)∑J

j=1 P (D|j)P (j)
[1]63

Where J is the number of patch types created up until64

the current patch, D is a vector of all the depletions observed65

in the current patch, and all probabilities are conditioned on66

prior cluster assignments of patches, p1:N .67

A priori, a patch type, k, is more likely if it has been com-68

monly encountered. However, there is always some probability,69

proportional to α, of the current patch being a novel type.70

P (k) =
{

nk
N+α if k is old
α

N+α if k is new
71

Where nk is the number of patches assigned to cluster k, α72

is a clustering parameter that can be interpreted as a forager’s73

prior over environment complexity, and N is the total number74

of patches encountered.75

The parameter α is key for allowing the representation of76

the environment to grow in complexity as experience warrants77

it. In a heterogeneously rich environment, allowing for the78

possibility of multiple patch types enables better predictions of79

future rewards (Fig. 1AB). Specifically, this informs prediction80

of the upcoming decay rate and hence determines the value of81

staying in the current patch:82

Vstay = rt ∗ dk [2]83

where rt is the reward received on the last dig and dk is the84

predicted upcoming decay, and k is the inferred patch type or85

cluster.86

dk ∼ N(µk, σk) [3] 87

Unless the forager has strong prior assumptions that there 88

is a single patch type, they will be uncertain regarding their 89

assignment of patches to types. 90

A rational decision-maker should account for this uncer- 91

tainty. Thus, we adjusted the discount factor on each choice 92

proportionally, capturing the suggestion that it is optimal for 93

a decision-maker using a mental model of the world to set 94

their planning horizon only as far as is justified by their model 95

certainty(18). We implemented this principle by setting the 96

effective discount factor on each choice to be a linear function 97

of the representational uncertainty, U , with intercept (γbase) 98

and slope (γcoef ) terms fit to each participant (Fig. 1CD). 99

γeffective = 1
1 + e(−γbase+γcoef∗U) [4] 100

We quantified representational uncertainty as the entropy 101

of the posterior distribution over the current patch type given 102

their experience in the current patch and previous assignments 103

of patches to types: 104

U = H(P (k|D)) [5] 105

This discounting formulation allowed us to test the nested 106

null hypothesis that discount factors would not be sensitive to 107

the agent’s fluctuating representational uncertainty. 108

The computed discounting rate is applied to the value of 109

leaving. 110

Vleave = rtotal
ttotal

∗ tdig ∗ γeffective [6] 111

where rtotal
ttotal

is the overall reward rate of the environment 112

computed by diving the total reward earned and the total 113

time spent. tdig is the time required to dig or harvest the 114

current patch. Together, these reflect the opportunity cost of 115

foregoing the current patch. 116
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We tested the model’s predictions with a novel variant of a117

serial stay-switch task (Fig. 2A; (3, 19)). Participants visited118

different planets to mine for “space treasure” and were tasked119

to collect as much space treasure as possible over the course of120

a fixed length game. On each trial, they had to decide between121

staying on the current planet to dig from a depleting treasure122

mine or traveling to a new planet with a replenished mine at123

the cost of a time delay. To mimic naturalistic environments,124

we varied planet richness across the broader environment while125

locally correlating richness in time. More concretely, planet126

richness was drawn from a trimodal distribution (Fig. 2B)127

and transitions between planets of a similar richness were128

more likely (Fig. 2C). Our model predicted distinct behav-129

ioral patterns from structure learning individuals versus their130

non-structure learning counterparts in our task. Specifically,131

within the multimodal environment, non-structure learners132

are predicted to underharvest on average, while structure133

learners overharvest. Furthermore, structure learners’ extent134

of overharvesting are predicted to vary across the task, fluc-135

tuating with their changing uncertainty — decreasing with136

experience and increasing following rare transitions between137

planets. In contrast, non-structure learners should consistently138

underharvest. We also compared the model’s predictions to139

those of two other models — a MVT model that learns the140

global and local reward rates through trial and error and a141

temporal-difference learning model (3). Both models assume142

a unimodal distribution of decay rates.143

We found that principled inference of environment structure144

and adaptation to this structure can 1) produce key deviations145

from MVT that have been widely observed in participant data146

across species and 2) capture patterns of behavior in a novel147

patch foraging task that cannot be explained by previously148

proposed models. Taken together, these results reinterpret149

overharvesting: Rather than reflecting irrational choice under150

a fixed representation of the environment, it can be seen as151

rational choice under a dynamic representation.152

Results153

Structure learning and adaptive discounting increase over-154

harvesting in single patch type environments. We examined155

the extent of over- and underharvesting as a function of the156

richness of the environment and the parameters governing157

structure learning (α) and uncertainty adaptive discounting158

(γcoef ). We simulated the model in single patch type environ-159

ments to demonstrate that overharvesting could be produced160

through these two mechanisms in an environment commonly161

used in patch foraging tasks. It is important to note that, be-162

cause of our definition of uncertainty, discounting adaptation163

is dependent on the structure learning parameter. We take un-164

certainty as the entropy of the posterior distribution over the165

current patch type. If a single patch type is assumed (α = 0),166

then the entropy will always be zero and the discounting rate167

will be static. In our exploration of the parameter space, we168

find that as α increases over harvesting increases. Similarly,169

increasing γcoef also increases overharvesting, however, only170

if α > 0 (Fig 1E). Additionally, the overall richness of the171

environment interacts with the influence of these parameters172

on overharvesting — α and γcoef ’s influence is attenuated173

with increasing richness. The environment’s richness also de-174

termines the baseline (when α = 0 and γcoef ≤ 0) extent of175

over- and underharvesting. Because our model begins with176

a prior over the decay rate centered on 0.5, this produces 177

overharvesting in the poor environment (mean decay rate = 178

0.2), optimal harvesting in the neutral (mean decay rate = 179

0.5), and underharvesting in the rich (mean decay rate = 180

0.8). In sum, we have shown, in multiple single patch type 181

environments varying in richness, that overharvesting can be 182

produced through a combination of mechanisms — structure 183

learning and uncertainty adaptive discounting. 184

Model-free analyses. 185

Participants adapt to local richness. We first examined a predic- 186

tion of MVT — foragers should adjust their patch leaving 187

to the richness of the local patch. In the task environment, 188

planets varied in their richness or how quickly they depleted. 189

Slower depletion causes the local reward rate to more slowly 190

approach the global reward rate of the environment. Thus, 191

MVT predicts that stay times should increase as depletion 192

rates slow. As predicted, participants stayed longer on rich 193

planets relative to neutral (t(115) = 19.77, p < .0001) and 194

longer on neutral relative to poor (t(115) = 12.57, p < .0001). 195

Experience decreases overharvesting. Despite modulating stay 196

times in the direction prescribed by MVT, participants stayed 197

longer or overharvested relative to MVT when averaging across 198

all planets (t(115) = 3.88, p = .00018). However, the degree 199

of overharvesting diminished with experience. Participants 200

overharvested more in the first two blocks relative to the final 201

two (t(115) = 3.27, p = .0014). Our definition of MVT assumes 202

perfect knowledge of the environment. Thus, participants 203

approaching the MVT optimum with experience is consistent 204

with learning the environment’s structure and dynamics. 205

Local richness modulates overharvesting. We next considered how 206

participants’ overharvesting varied with planet type. As 207

a group, participants overharvested only on poor and neu- 208

tral planets while behaving MVT optimally on rich planets 209

(Fig. 3A; poor - t(115) = 6.92, p < .0001; neutral - t(115) = 210

9.00, p < .0001; rich - t(115) = 1.38, p = .17). 211

Environment dynamics modulate decision time and overharvesting. 212

We also asked how participants adapted their foraging strategy 213

to the environment’s dynamics or transition structure. Upon 214

leaving a planet, it was more common to transition to a planet 215

of the same type (80%, “no switch”) than transition to a 216

planet of a different type (“switch”). Thus, we reasoned that 217

switch transitions should be points of maximal surprise and 218

uncertainty given their rareness. However, this would only be 219

the case if the participant could discriminate between planet 220

types and learned the transition structure between them. 221

If surprised, a participant should take longer to make 222

a choice following a rare “switch” transition. So, we next 223

examined participants’ reaction times (z-scored and log- 224

transformed) for the decision following the first depletion 225

on a planet. We compared when there was a switch in planet 226

type versus where there was none. As predicted, participants 227

showed longer decision times following a “switch” transition 228

suggesting they were sensitive to the environment’s structure 229

and dynamics (Fig. 3B; t(115) = 2.65, p = .0093). 230

If uncertain, our adaptive discounting model predicts that 231

participants should discount remote rewards more heavily and, 232

consequently, overharvest to a greater extent. To test this, we 233

compared participants overharvesting following rare “switch” 234
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Fig. 2. A. Serial stay-switch task. Participants traveled to different planets and mined for space gems across 5 6-minute blocks. On each trial, they had to decide between
staying to dig from a depleting gem mine or incurring a time cost to travel to a new planet. B. Environment structure. Planets varied in their richness or, more specifically, the
rate at which they exponentially decayed with each dig. There were three planet types — poor, neutral, and rich — each with their own characteristic distribution over decay
rates. C. Environment dynamics. Planets of a similar type clustered together. A new planet had an 80% probability of being the same type as the prior planet (“no switch”).
However, there was a 20% probability of transitioning or “switching” to a planet of a different type.

transitions to their overharvesting following the more common235

“no switch” transitions. Following the model’s prediction,236

participants marginally overharvested more following a change237

in planet type (t(115) = 1.86, p = .065). When considering238

only planets that participants overharvested on on average239

(poor and neutral), overharvesting was significantly greater240

following a change (Fig. 3C; t(115) = 4.67, p < .0001).241

Computational Modeling.242

Structure learning with adaptive discounting provide the best ac-243

count of participant choice. To check the models’ goodness of244

fit, we asked whether the compared models could capture key245

behavioral results found in the participants’ data. For each246

model and participant, we simulated an agent with the best247

fitting parameters estimated for them under the given model.248

Only the adaptive discounting model was able to account for249

overharvesting when averaging across all planets (Fig. 4A,250

t(115) = 8.87, p < .0001). The temporal-difference learning251

model predicted MVT optimal choices on average (t(115) =252

1.30, p = .19) while the MVT learning model predicted under-253

harvesting (t(115) = -7.26, p < .0001). These differences were254

primarily driven by predicted behavior on the rich planets255

(Fig. 4B).256

Model fit was also assessed at a more granular level (stay257

times on individual planets) using 10-fold cross validation.258

Comparing cross validation scores as a group, participants’259

choices were best captured by the adaptive discounting model260

(Fig. 4C; mean cross validation scores — adaptive discounting:261

16.55, TD: 22.47, MVT learn: 32.31). At the individual level,262

64% of participants were best fit by the adaptive discounting263

model, 14% by TD, and 22% by MVT learn.264

Adaptive discounting model parameter distribution. Because the265

adaptive discounting model provided the best account of choice266

for most participants, we examined the distribution of individ-267

uals’ best fitting parameters for the model. Specifically, we268

compared participants’ estimated parameters to two thresh- 269

olds. These thresholds were used to identify whether a par- 270

ticipant 1) inferred and assigned planets to multiple clusters 271

and 2) adjusted their overharvesting in response to internal 272

uncertainty. 273

The threshold for multi-cluster inference, 0.8, was computed 274

by simulating the adaptive discounting model 100 times and 275

finding the lowest value that produced multi-cluster inference 276

in 90% of simulations. 76% of participants were above this 277

threshold (Fig 5A). Thus, most participants were determined 278

to be “structure learners” using our criteria. 279

The threshold for uncertainty-adaptive discounting was 280

assumed to be 0. A majority of participants, 93%, were above 281

this threshold (Fig 5C). These participants were determined 282

to be “adaptive discounters”, those who dynamically modu- 283

lated their discounting factor in accordance with their internal 284

uncertainty. 285

We next looked for relationships between parameters. Un- 286

certainty should be greatest for individuals who have prior 287

expectations that do not match the environment’s true struc- 288

ture, whether too complex or too simple. Consistent with this, 289

there was a non-monotonic relationship between the structure 290

learning and discounting parameters. γbase and γcoef were 291

greatest when α was near its lower bound, 0, and upper bound, 292

10 (γbase: β = 0.080, p < .0001; γcoef : β = 0.021, p < .0001). 293

An individual’s base level discounting constrains the range 294

over which uncertainty can adapt the effective discounting. 295

Reflecting this, the two discounting parameters were positively 296

related to one another (τ = -0.33, p < .0001). 297

Parameter validation. Correlations with model-free measures of 298

task behavior confirmed the validity of the model’s parameters. 299

We interpret α as reflecting an individual’s prior expectation 300

of environment complexity. α must reach a certain threshold 301

to produce inference of multiple clusters and consequently, 302

sensitivity to the transitions between clusters. Validating this 303
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Fig. 3. Model-free results A. Planet richness influences over and underharvesting behavior. Planet residence times (PRT) relative to Marginal Value Theorem’s (MVT)
prediction are plotted as the median (± one quartile) across participants. The grey line indicates the median while the white cross indicates the mean. Individuals’ PRTs
relative to MVT are plotted as shaded circles. In aggregate, participants overharvested on poor and neutral planets and acted MVT optimally on rich planets. B. Decision
times are longer following rare switch transitions. If a participant has knowledge of the environment’s planet types and the transition structure between them, then they
should be surprised following a rare transition to a different type. Consequently, they should take longer to decide following these transitions. As predicted, participants spent
longer making a decision following transitions to different types (“switch”) relative to when there was transition to a planet of the same type (“no switch”). This is consistent with
having knowledge of the environment’s structure and dynamics. C. Overharvesting increases following rare switch transitions. On poor and neutral planets, participants
overhavested to a greater extent following a rare “switch” transition relative to when there was a “no switch” transition. This is consistent with uncertainty adaptive discounting.
Switches to different planet types should be points of greater uncertainty. This greater uncertainty produces heavier discounting and in turn staying longer with the current
option.*p < 0.05, **p < 0.01, ***p < 0.001

interpretation, participants with higher fit α demonstrated304

greater switch costs between planet types (Fig 5B, Kendall’s305

τ = 0.17, p = .00076). Moreover, this relationship was specific306

to α. γbase and γcoef were not significantly correlated with307

switch cost behavior (γbase: τ = -0.036, p = .57; γcoef : τ =308

-0.10, p = .11). This is a particularly strong validation as the309

model was not fit to reaction time data. Validating γcoef as310

reflecting uncertainty-adaptive discounting, the parameter was311

correlated with the extent overharvesting increased following a312

rare transition or “switch” between different planet types (Fig313

5D, τ = 0.15, p = .016). This was not correlated with α nor314

the baseline discounting factor γbase (α: τ = -0.011, p = .86;315

γbase: τ = 0.082, p = .20).316

Discussion317

While Marginal Value Theorem (MVT) provides an optimal318

solution to patch leaving problems, organisms systematically319

deviate from it, staying too long or overharvesting. A criti-320

cal assumption of MVT is that the forager has accurate and321

complete knowledge of the environment. Yet, this is often not322

the case in real world contexts — the ones to which foraging323

behaviors are likely to have been adapted (20). We propose324

a model of how foragers could rationally learn the structure325

of their environment and adapt their foraging decisions to it.326

In simulation, we demonstrate how seemingly irrational over-327

harvesting can emerge as a byproduct of a rational dynamic328

learning process. In a heterogeneous, multimodal environment,329

we compared how well our structure learning model predicted330

participants’ choices relative to two other models — one im-331

plementing a MVT choice rule with a fixed representation of332

the environment and the other a standard temporal-difference333

learning algorithm. Importantly, only our structure learning334

model predicted overharvesting in this environment. Partici-335

pants’ choices were most consistent with learning a representa-336

tion of the environment’s structure through individual patch337

experiences. They leveraged this structured representation to338

inform their strategy in multiple ways. One way determined 339

the value of staying. The representation was used to predict 340

future rewards from choosing to stay in a local patch. The 341

other modulated the value of leaving. Uncertainty over the 342

accuracy of the representation was used to set the discount 343

factor over future value. These results suggest that in order 344

to explain foraging as it occurs under naturalistic conditions 345

optimal foraging may need to provide an account of how the 346

forager learns to acquire accurate and complete knowledge of 347

the environment, and how they adjust their strategy as their 348

representation is refined with experience. 349

In standard economic choice tasks, humans have been shown 350

to act in accordance with rational statistical inference of envi- 351

ronment structure. Furthermore, by assuming humans must 352

learn the structure of their environment from experience, seem- 353

ingly suboptimal behaviors can be rationalized including pro- 354

longed exploration (21), melioration (22), social biases (23), 355

and overgeneralization (24). Here, we extend this proposal 356

to decision tasks with sequential dependencies, which require 357

simultaneous learning and dynamic integration of both the 358

distribution of immediately available rewards and the underly- 359

ing contingencies that dictate future outcomes. This form of 360

relational or category learning has long been associated with 361

distinct cognitive processes and neural substrates from those 362

thought to underlie reward-guided decisions (25), including 363

the foraging decisions we investigate here (7). However, a 364

network of neural regions overlapping those supporting rela- 365

tional learning are more recently thought to play a role in 366

deliberative, goal-directed decisions (26, 27). 367

If foragers are learning a model of the environment and us- 368

ing it to make decisions for reward, this suggests that they may 369

be doing something like model-based reinforcement learning 370

(RL). In related theoretical work, patch leaving problems have 371

been cast as a multi-armed bandit problem from RL. Which 372

actions are treated as the "arms" is determined by the nature 373

of the environment. In environments where the next patch is 374
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Fig. 4. Modeling results A. The adaptive discounting model predicts overharvesting. Averaging across all planets, only the adaptive discounting model predicts
overharvesting while the temporal-difference learning model predicts MVT optimal behavior and the MVT learning model predicts underharvesting. This demonstrates that
overharvesting, a seemingly suboptimal behavior, can emerge from principled statistical inference and adaptation. B. Model predictions diverge most on rich planets.
Similar to participants, the greatest differences in behavior between the models occurred on rich planets. C. The adaptive discounting model provides the best account for
participant choices. The adaptive discounting model had the lowest mean cross validation score indicating it provided the best account of participant choice at the group level.

unknown to the foragers, the two arms become staying in the375

current patch and leaving for a new patch. In environments376

in which the forager does have control over which patch to377

travel to next, the arms can become the individual patches378

themselves. Casting patch leaving as an RL problem allows379

for the use of RL’s optimal solutions as benchmarks for behav-380

ior. Application of these optimal solutions in foraging have381

been found to capture search patterns (28, 29), choice of lower382

valued options (30), and risk aversion (31). In contrast to383

this work and our own, Constantino & Daw (3) found human384

foragers’ choices to be better explained by a MVT model aug-385

mented with a learning rule than a standard reinforcement386

learning model. However, importantly, their task environment387

was homogeneous and the RL model tested was model-free388

(temporal-difference learning). Thus, the difference in results389

could be attributed to differences in task environments and390

class of models considered. A key way our model deviates from391

a model-based RL approach is that prospective prediction is392

only applied in computing the value of staying while the value393

of leaving is similar to MVT’s threshold for leaving – albeit394

discounted proportionally to the agent’s internal uncertainty395

over their representation’s accuracy. In the former respect,396

our model parallels the framework discussed by Kolling &397

Akam (15) to explain humans sensitivity to the gradient of398

reward rate change during foraging observed by Wittman et al399

(32). Given that computing the optimal exit threshold under400

a pure model-based strategy would be highly computationally401

expensive, Kolling & Akam (15) suggest pairing model-based402

patch evaluation with a model-free, MVT-like exit threshold.403

Under their proposal, the agent leaves once the local patch’s404

average predicted reward rate over n time steps in the future405

falls below the global reward rate. We build on, formally test,406

and extend this proposal by explicitly computing the repre- 407

sentational uncertainty at each trial and adjusting planning 408

horizon accordingly. 409

While learning a model of the environment is beneficial, it 410

is also challenging and computationally costly. With limited 411

experience and computational noise, an inaccurate model of the 412

environment may be inferred. An inaccurate model, however, 413

can be counteracted by adapting certain computations. In this 414

way, lowering the temporal discounting factor acts as a form 415

of regularization or variance reduction (18, 33–36). Empirical 416

work has found humans appear to do something like this in 417

standard intertemporal choice tasks. Gershman & Bhui (37) 418

found evidence that individuals rationally set their temporal 419

discounting as a function of the imprecision or uncertainty of 420

their internal representations. Here, we found that humans 421

while foraging act similarly, overharvesting to a greater extent 422

at points of peak uncertainty. While temporal discounting has 423

been proposed as a mechanism of overharvesting previously 424

(3, 10, 11), the discounting factor is usually treated as a fixed, 425

subject-level parameter, inferred from choice. Thus, it provides 426

no mechanism for how the factor is set let alone dynamically 427

adjusted with experience. In contrast, our model proposes a 428

mechanism through which the discounting factor is rationally 429

set in response to both the external and internal environment. 430

To further test the model, future work could examine the 431

model’s prediction that overharvesting should increase as the 432

environment’s stochasticity (observation noise) increases. In 433

the current task environment, noise comes from the variance of 434

the generative decay rate distributions. An additional source 435

of noise could be from the reward itself. After the decay rate 436

has been applied to the previously received reward, white 437

Gaussian noise could be added to the product. As a result, 438
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Fig. 5. Parameter distributions A. Participants learned the structure of the environment. Distribution of participants’ priors over environment complexity, α. Each
individual’s parameter is shown relative to a baseline threshold, 0.8. This threshold is the lowest value that produced multi-cluster inference in simulation. Most participants
(76%) fall above this threshold indicating a majority learned the environment’s multi-cluster structure. B. Environment complexity parameters were positively related to
reaction time sensitivity to transition frequency. An individual must infer multiple planet types to be sensitive to the transition structure between them. In terms of the
model, this would correspond to having a sufficiently high environment complexity parameter. Validating this parameter, it was positively correlated with individual’s modulation
of reaction time following a rare transition to a different planet type. C. Participants adapted their discounting computations to their uncertainty over environment
structure. Distribution of participant’s uncertainty adaptation parameter, γcoef . Each individual’s parameter is shown relative to a baseline of 0. A majority were above this
threshold (93%) indicating most participants dynamically adjusted their discounting, increasing it when they experienced greater internal uncertainty. D. Uncertainty adaptation
parameters were positively related to overharvesting sensitivity to transition frequency. If an individual increases their discounting to their internal uncertainty over
environment structure, then they should discount more heavily following rare transitions and stay longer with the current option. Consistent with this, we found that the extent an
individual increased their overharvesting following a rare transition was related to their uncertainty adaptation parameter.
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the distribution of observed decay rates would have higher439

variance than the generating decay rate distributions. This440

reward generation process should elicit greater uncertainty for441

the forager than the current reward generation process, and442

consequently, greater overharvesting.443

Finally, our observation that humans adjust their planning444

horizons dynamically in response to state-space uncertainty445

may have practical applications in multiple fields. In psychia-446

try, foraging has been proposed as a translational framework447

for understanding how altered decision-making mechanisms448

contribute to psychiatric disorders (38). An existing body of449

work has examined how planning and temporal discounting450

are impacted in a range of disorders from substance use and451

compulsion disorders (39, 40) to depression (41) to schizophre-452

nia (42, 43). This wide range has led some to suggest that453

these abilities may be a useful transdiagnostic symptom and454

a potential target for treatment (44). However, it remains un-455

clear why they are altered in these disorders. Our findings may456

provide further insight by way of directing attention towards457

identifying differences in structure learning and uncertainty458

adaptation. How uncertainty is estimated and negotiated459

has been found to be altered in several mood and affective460

disorders (45, 46), theoretical work has suggested that symp-461

toms of bipolar disorder and schizophrenia may be explained462

through altered structure learning (47), and finally, in further463

support, compulsivity has been empirically associated with464

impaired structure learning (48). Our model suggests a ra-465

tionale for why theses phenotypes co-occur in these disorders.466

Alternatively, myopic behavior may not reflect differences in467

abilities but rather in environment. Individuals diagnosed with468

these disorders, rather, may more frequently have to negotiate469

volatile environments. As a result, their structure learning and470

uncertainty estimation are adapted for these environments.471

Potential treatments, rather than targeting planning or tem-472

poral discounting, could address its possible upstream cause473

of uncertainty – increasing the individual’s perceived familiar-474

ity with the current context or increasing their self-perceived475

ability to act efficaciously in it. Another application could be476

in the field of sustainable resource management, where it has477

recently been shown that, in common pool resource settings478

(e.g. waterways, grazing fields, fisheries), the distribution of479

individual participants’ planning horizons strongly determines480

whether resources are sustainably managed (49). Here, we481

show that discount factor, set as a rational response to un-482

certainty about environmental structure, directly impacts the483

degree to which an individual tends to (over)harvest their484

locally available resources. The present work suggests that485

policymakers and institution designers interested in producing486

sustainable resource management outcomes should focus on487

reducing uncertainty – about the contingencies of their actions,488

and the distribution of rewards that may result – for individ-489

uals directly affected by resource availability, thus allowing490

them to rationally respond with an increased planning horizon491

and improved outcomes for all participants.492

Materials and Methods493

Participants. We recruited 176 participants from Amazon Me-494

chanical Turk (111 male, ages 23-64, Mean=39.79, SD=10.56).495

Participation was restricted to workers who had completed at496

least 100 prior studies and had at least a 99% approval rate.497

This study was approved by the institutional review board of498

the University of California, Irvine, under Institutional Review 499

Board (IRB) Protocol 2019-5110 (“Decision-making in time”). 500

All participants gave informed consent in advance. Partici- 501

pants earned $6 as a base payment and could earn a bonus 502

contingent on performance ($0-$4). We excluded 60 partici- 503

pants according to one or more of three criteria: 1. having 504

average planet residence times 2 standard deviations above 505

or below the group mean (36 participants) 2. failing a quiz 506

on the task instructions more than 2 times (33 participants) 507

or 3. failing to respond appropriately to one or more of the 508

two catch trials (17 participants). On catch trials, partici- 509

pants were asked to press the letter “Z” on their keyboard. 510

These questions were meant to “catch” any participants re- 511

peatedly choosing the same option (using key presses “A” or 512

“L”) independent of value. 513

Task Design. Participants completed a serial stay-switch task 514

adapted from previous human foraging studies (3, 50). With 515

the goal of collecting as much space treasure as possible, par- 516

ticipants traveled to different planets to mine for gems. Upon 517

arrival to a new planet, they performed an initial dig and 518

received an amount of gems sampled from a Gaussian distri- 519

bution with a mean of 100 and standard deviation (SD) of 5. 520

Following this initial dig, participants had to decide between 521

staying on the current planet to dig again or leaving to travel 522

to a new planet (Fig 2A). Staying would further deplete the 523

gem mine while leaving yielded a replenished gem mine at 524

the cost of a longer time delay. They made these decisions in 525

a series of five blocks, each with a fixed length of 6 minutes. 526

Blocks were separated by a break of participant-controlled 527

length, up to a maximum of 1 minute. 528

On each trial, participants had 2 seconds to decide via key 529

press whether to stay (“A”) or leave (“L”). If they decided to 530

stay, they experienced a short delay before the gem amount 531

was displayed (1.5 s). The length of the delay was determined 532

by the time the participant spent making their previous choice 533

(2 - RT s). This ensured participants could not affect the 534

environment reward rate via their response time. If they 535

decided to leave, they encountered a longer time delay (10 s) 536

after which they arrived on a new planet and were greeted 537

by a new alien (5 s). On trials where a decision was not 538

made within the allotted time (2 s), participants were shown 539

a timeout message for two seconds. 540

Unlike previous variants of this task, planets varied in their 541

richness within and across blocks, introducing greater structure 542

to the task environment. Richness was determined by the rate 543

at which the gem amount exponentially decayed with each 544

successive dig (Fig. 2B). If a planet was “poor”, there was 545

steep depletion in the amount of gems received. Specifically, its 546

decay rates were sampled from a beta distribution with a low 547

mean (mean = 0.2; sd = 0.05; α = 13 and β = 51). In contrast, 548

rich planets depleted more slowly (mean = 0.8; sd = 0.05; α 549

= 50 and β = 12). Finally, the quality of the third planet 550

type — neutral — fell in between rich and poor (mean = 0.5; 551

sd = 0.05; α = 50 and β = 50). The environment dynamics 552

were designed such that planet richness was correlated in time. 553

When traveling to a new planet, there was an 80% probability 554

of it being the same type as the prior planet (“no switch”). If 555

not of the same type, it was equally likely to be of one of the 556

remaining two types (“switch”, Fig. 2C). This information was 557

not communicated to participants, requiring them to infer the 558

environment’s structure and dynamics from rewards received 559

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Harhen et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

alone.560

Comparison to Marginal Value Theorem. Participants’ planet561

residence times, or PRTs, were compared to those prescribed562

by MVT. Under MVT, agents are generally assumed to act563

as though they have accurate and complete knowledge of the564

environment. For this task, that would include knowing each565

planet type’s unique decay rate distribution and the total566

reward received and time elapsed across the environment.567

Knowledge of the decay rate distributions is critical for568

estimating Vstay, the anticipated reward if the agent were to569

stay and dig again.570

Vstay = rt ∗ d [7]571

where rt is the reward received on the last dig and d is the572

upcoming decay.573

d =


0.2 if planet is poor
0.5 if planet is neutral
0.8 if planet is rich

574

Vleave is estimated using the total reward accumulated,575

rtotal, total time passed in the environment, ttotal, and the576

time delay to reward associated with staying and digging, tdig.577

Vleave = rtotal
ttotal

∗ tdig [8]578

rtotal
ttotal

estimates the average reward rate of the environment.579

Multiplying it by tdig gives the opportunity cost of the time580

spent exploiting the current planet.581

Finally, to make a decision, the MVT agent compares the582

two values and acts greedily, always taking the higher valued583

option.584

choice = argmax(Vstay, Vleave) [9]585

Model.586

Making the stay-leave decisions. We assume that the forager com-587

pares the value for staying, Vstay, to the value of leaving Vleave,588

to make their decision. Similar to MVT, we assume foragers589

act greedily with respect to these values.590

Learning the structure of the environment. Learning the structure591

of the environment affords more accurate and precise predic-592

tions which support better decision-making. Here, the forager593

predicts how many gems they’ll receive if they stay and dig594

again and this determines the value of staying, Vstay. To gen-595

erate this prediction, a forager could aggregate over all past596

experiences in the environment (3). This may be reasonable in597

homogeneous environments but less so in heterogeneous ones598

where it could introduce substantial noise and uncertainty. In-599

stead, in these varied environments, it may be more reasonable600

to cluster patches based on similarity and only generalize from601

patches belonging to the same cluster as the current one. This602

selectivity enables more precise predictions of future outcomes.603

Clusters are latent constructs. Thus, it is not clear how604

many clusters a forager should divide past encounters into.605

Non-parametric Bayesian methods provide a potential solution606

to this problem. They allow for the complexity of the repre-607

sentation — as measured by the number of clusters — to grow608

freely as experience accumulates. These methods have been609

previously used to explain phenomena in category learning 610

(16, 51), task set learning (24), fear conditioning (17), and 611

event segmentation (23). 612

To initiate this clustering process, the forager must assume 613

a model of how their observations, decay rates, are generated 614

by the environment. The generative model we ascribe to the 615

forager is as follows. Each planet belongs to some cluster, and 616

each cluster is defined by a unique decay rate distribution: 617

dk ∼ Normal(µk, σk) [10] 618

where k denotes cluster number. The generative model 619

takes the form of amixture model in which normal distributions 620

are mixed together according to some distribution P (k) and 621

observations are generated from sampling from the distribution 622

P (d|k). 623

Before experiencing any decay on a planet, the forager 624

has prior expectations regarding the likelihood of a planet 625

belonging to a certain cluster. We assume that the prior on 626

clustering corresponds to a “Chinese restaurant process” (52). 627

If previous planets are clustered according to p1:N , then for 628

the current planet: 629

P (k) =
{

nk
N+α if k is old
α

N+α if k is new
630

Where nk is the number of planets assigned to cluster k, 631

α is a clustering parameter, and N is the total number of 632

planets encountered. The probability of a planet belonging to 633

an old cluster is proportional to the number of planets already 634

assigned to it. The probability of it belonging to a new cluster 635

is proportional to α. Thus, α controls how dispersed the 636

clusters are — the higher α is the more new cluster creation 637

is encouraged. The ability to incrementally add clusters as 638

experience warrants it makes the generative model an infinite 639

capacity mixture model. 640

After observing successive depletions on a planet, the for- 641

ager computes the posterior probability of a planet belonging 642

to a cluster: 643

P (k|D) = P (D|k)P (k)∑J

j=1 P (D|j)P (j)
[11] 644

Where J is the number of clusters created up until the 645

current planet, D is a vector of all the depletions observed on 646

the current planet, and all probabilities are conditioned on 647

prior cluster assignments of planets, p1:N . 648

Exact computation of this posterior is computationally 649

demanding as it requires tracking all possible clusterings of 650

planets and the likelihood of the observations given those clus- 651

terings. Thus, we approximate the posterior distribution using 652

a particle filter (53). Each particle maintains a hypothetical 653

clustering of planets which are weighted by the likelihood of 654

the data under the particle’s chosen clustering. All simulations 655

and fitting were done with 1 particle which is equivalent to 656

Anderson’s local MAP algorithm (54). 657

With 1 particle, we assign a planet definitively to a cluster. 658

This posterior then determines (a) which cluster’s parameters 659

are updated and (b) the inferred cluster on subsequent planet 660

encounters. 661

If the planet is assigned to an old cluster, k, the existing µk 662

and σk are updated analytically using the standard equations 663
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for computing the posterior for a normal distribution with664

unknown mean and variance:665

d̄ = 1
n

n∑
i=1

di

µ′0 = n0µ0 + nd̄

n0 + n

n′0 = n0 + n

ν′0 = ν0 + n

ν′0σ
2
0
′ = ν0σ

2
0 +

n∑
i=1

(di − d̄)2 + n0n

n0 + n
(µ0 − d̄)2

[12]666

where d is a decay observed on the current planet, n is the667

total number of decays observed on the current planet, n0 is668

the total number of decays observed across the environment669

before the current planet, µ0 is the prior mean of the cluster-670

specific decay rate distribution and ν0 is its precision. µ
′
0 and671

ν
′
0 are the posterior mean and variance respectively.672

If the planet is a assigned to a new cluster, then a new673

cluster is initialized with the following distribution:674

dnew ∼ Normal(µ = 0.5, σ = 0.5) [13]675

This initial distribution is updated with the depletions676

encountered on the current planet upon leaving.677

The goal of this learning and inference process is to support678

accurate prediction. To generate a prediction of the next decay,679

the forager samples a cluster according to P (k) or P (k|D)680

depending on whether any depletions have been observed on681

the current planet. Then, a decay rate is sampled from the682

cluster specific distribution, dk. The forager averages over683

these samples to produce the final prediction.684

To demonstrate structure learning’s utility for prediction,685

we show in simulation the predicted decay rates on each planet686

with structure learning (Fig. 1A) and without (Fig. 1B). With687

structure learning, the forager’s predictions approach the mean688

decay rates of the true generative distributions. Without struc-689

ture learning, however, the forager is persistently inaccurate,690

underestimating the decay rate on rich planets and overesti-691

mating it on poor planets.692

Adapting the model of the environment. Because the inference pro-693

cess is an approximation and foragers’ experience is limited,694

their inferred environment structure may be inaccurate. Theo-695

retical work has suggested that a rational way to compensate696

for this inaccuracy is to discount future values in proportion697

to the agent’s uncertainty over their representation of the698

environment(18). We quantified an agent’s uncertainty by699

taking the entropy of the approximated posterior distribution700

over clusters (Fig 1CD). We sample clusters 100 times pro-701

portional to the posterior. These samples are multinomially702

distributed. We represent them with the distribution, X:703

X ∼Multinomial(100,K) [14]704

Where K is a vector containing the counts of clusters from705

sampling 100 times from the distribution, P (k) or P (k|d)706

depending on whether depletions on the planet have been707

observed. Uncertainty is quantified as the Shannon entropy of708

distribution X.709

We implemented this proposal in our model by discounting710

the value of leaving as follows:711

Vleave = rtotal
ttotal

∗ tdig ∗ γeffective [15] 712

γeffective = 1
1 + e(−γbase+γcoef∗H(X)) [16] 713

where γbase and γcoef are free parameters and H(X) is the 714

entropy of the distribution X. 715

Model simulation: parameter exploration. For each combina- 716

tion of α, γcoef , and environment richness, we simulated the 717

model 100 times, with γbase held constant at 5. Decay rates 718

in each patch in an environment were drawn from the same 719

beta distribution. Critically, the parameters of the beta distri- 720

bution varied between environments but not patches (poor - a 721

= 13, b = 51; neutral - a = 50, b = 50; poor - a = 50, b = 722

12). This was done to create single patch type environments, 723

similar to those commonly used in prior work on overharvest- 724

ing (3–5, 55–58). Simulated agents’ choices were compared 725

to those that would be made if acting with an MVT policy 726

(see Comparison to Marginal Value Theorem). The difference 727

was taken between the agent’s stay time in a patch and that 728

prescribed by MVT, and these differences were averaged over 729

to compute a a single average patch residence time (PRT) 730

relative to MVT for each agent. 731

Model fitting. We compared participant PRTs on each planet to 732

those predicted by the model. A model’s best fitting param- 733

eters were those that minimized the difference between the 734

true participant’s and simulated agent’s PRTs. We considered 735

1000 possible sets of parameters generated by quasi-random 736

search using low-discrepancy Sobol sequences (59). Prior 737

work has demonstrated random and quasi-random search to 738

be more efficient than grid search (60) for parameter opti- 739

mization. Quasi-random search is particularly efficient with 740

low-discrepancy sequence, more evenly covering the parameter 741

space relative to true random search. 742

Because cluster assignment is a stochastic process, the pre- 743

dicted PRTs vary slightly with each simulation. Thus, for each 744

candidate parameter setting, we simulated the model 50 times 745

and averaged over the mean squared error (MSE) between 746

participant PRTs and model-predicted PRTs for each planet. 747

The parameter configuration that produced the lowest MSE 748

on average was chosen as the best fitting for the individual. 749

Model Comparison. We compared three models: the structure 750

learning and adaptive discounting model described above, a 751

temporal difference model previously applied in a foraging 752

context, and a MVT model that learns the mean decay rate 753

and global reward rate of the environment. 754

MVT-Learning In this model, the agent learns a threshold 755

for leaving which is determined by the global reward rate, ρ (3). 756

ρ is learned with a simple delta rule with α as a learning rate 757

and taking into account the temporal delay accompanying an 758

action τ . The value of staying is d∗ rt where d is the predicted 759

decay and rt is the reward received on the last time step. The 760

value of leaving,Vleave, is the opportunity cost of the time spent 761

digging, ρ ∗ tdig. The agent chooses an action using a softmax 762

policy with temperature parameter, β which determines how 763

precisely the agent represents the value difference between the 764

two options. 765
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P (at = dig) = 1
(1 + e(−c−β(d∗rt−ρ∗tdig)))

δi = ri
τi
− ρt

ρt+1 = ρt + (1− (1− α)τt ) ∗ δt

[17]766

TD-Learning The temporal difference (TD) agent learns767

a state-specific value of staying and digging, Q(s, dig) and a768

non-state specific value of leaving, Q(leave). The state, s is769

defined by the gem amounts offered on each dig. The state770

space is defined by binning the possible gems that could be771

earned from each dig. The bins are spaced are according to772

log(bj+1) - log(bj) = log(k̄) where bj+1 and bj are the upper773

and lower bounds of the bins and d̄ is the mean decay rate.774

This state space specification is taken from (3). We set bj+1 to775

135 and bj to 0 as these were the true bounds on gems received776

per dig. We set k̄ to 0.5 because this would be the mean decay777

rate if one were to average the depletions experienced over all778

planets. The agent compares the two values and makes their779

choice using a softmax policy.780

P (at = dig) = 1
(1 + e(−c−β(Qt(st,dig)−Qt(leave))))

Dt ∼ Bernoulli(P (at))
δt = rt + γτt (Dt ∗Qt(st) + (1−Dt) ∗Qt(leave))−Qt(st−1, at−1)

Qt+1(st−1, at−1) = Qt(st−1, at−1) + α ∗ δt
[18]781

where c, α, β, γ are free parameters and t is the current782

time step. c is a perseveration term, α is the learning rate, β783

is the softmax temperature, and γ is the temporal discounting784

factor.785

Cross Validation Each model’s fit to the data was evaluated786

using a 10-fold cross validation procedure. For each participant,787

we shuffled their PRTs on all visited planets and split them into788

10 separate training/test datasets. The best fitting parameters789

were those that minimized the sum of squared error (SSE)790

between the participant’s PRT and the model’s predicted791

PRT on each planet in the training set. Then, with the792

held out test dataset, the model was simulated with the best793

fitting parameters and the SSE was calculated between the794

participant’s true PRT and the model’s PRT. To compute the795

model’s final cross validation score, we summed over the test796

SSE from each fold.797
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