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Abstract

In fields spanning policy, medicine, and finance, it is increasingly common to guide
individual interventions on measures of a person’s decision-making characteristics. As
the practical application of these measures grows, so have efforts to improve their ro-
bustness to ostensibly irrelevant contextual factors such as time of day or ephemeral
motivational state. Here, we examine whether such instruments exhibit a fundamental
context-dependence: namely, the order in which decision problems are presented. In
three datasets evaluating decision-making under different forms of uncertainty, we find
systematic, meaningful effects of trial order, which in many cases qualitatively change
the measurement’s psychological interpretation (e.g. from risk-seeking to risk-averse).
We further examine how trial properties modulate this phenomenon and provide an aug-
mented modeling framework to reliably characterize and correct for these effects.

Significance Statement

Clinicians, policymakers, and practitioners are increasingly making important deci-
sions using lab tasks that measure how an individual makes choices under uncertainty
(e.g. risk aversion). These tasks are usually randomized, to avoid systematic confounds of
presentation order. Here, we examine this assumption across three studies and constructs
– risk attitudes, ambiguity attitudes, temporal discounting — and find that individuals
remain sensitive to trial order, even in randomized experiments. Accounting for this in-
fluence leads to meaningful quantitative and qualitative changes in inferred choice traits.
Our findings have important implications for the measurement of individual differences
in choice traits. In particular, they suggest that choice measurements should account for
the fact that humans may treat the world as inherently sequential.

We thank Maime Guan and Michael D. Lee for providing the risky choice data for Experiment
1. Catherine A. Hartley for providing the intertemporal choice data for Experiment 2. We also thank
Michael D. Lee, Joachim Vandekerckhove, the Cognitive Computational Lab, and the Cognitive Modeling
Lab for helpful discussions.
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1 Introduction

Increasingly, important decisions about an individual are being informed by an assessment
of how that individual makes decisions under uncertainty. For example, asset managers
measure their clients’ risk tolerance when deciding how to allocate their investment port-
folios [1], clinicians use the same property to evaluate their substance-using patients’
likelihood to relapse [2], and aid workers use measures of intertemporal choice preferences
to personalize vaccination incentives [3]. The success of these high-stakes interventions
depends on identifying stable traits that will be robust across time and setting. For in-
stance, an intervention with long-term consequences should ideally not depend on whether
the measurement was taken on Monday morning versus Wednesday afternoon, or if a local
sports team has just won a championship. Indeed, temporal and situational variability
in these measures has been widely demonstrated [4]. Critically, this variability has in
some cases been related to directly observable endogenous mechanisms [5], and to predict
clinically-significant behavioral outcomes [6], supporting the construct validity of these
measures and further emphasizing the need to distinguish relevant from irrelevant sources
of variability.

One approach to isolating meaningful variability has been to incorporate insights from
decision neuroscience by modeling the time it takes an individual to make a decision [7, 8].
This approach produces more robust estimates of individual decision characteristics be-
cause it reveals aspects of the decision-making process that are obscured when examining
choice alone – e.g. long decision times may indicate near-indifference between two op-
tions. Indeed, scientists have demonstrated that sequential sampling models of response
times (RT) not only make predictions that capture widely observed effects in RTs during
economic choice [7], but that these models can also be used to derive descriptive theories
of choice such as Random Utility [9]. Further, researchers have shown that models that
jointly model choice and RT can better describe data across multiple experiments [10]
and that subject RTs from one experiment can predict behavior on another [8].

Most decisions are made under at least some degree of uncertainty and under con-
straints such as limited time or partial information. Choice behavior under uncertainty
has therefore been formalized across multiple disciplines with behavioral economics estab-
lishing some of the most widely used theoretical and empirical frameworks. Key behav-
ioral economic and psychological parameters of interest include risk tolerance (α) which
captures how people behave when they have complete information about the underlying
probability distribution(s) of reward, ambiguity tolerance (β) which captures how people
behave when they have partial or no information about probabilities, and discount factor
(k) which captures how people trade off time and reward. Critically, the number inferred
when estimating these parameters is tightly linked to a psychological interpretation –
especially in the case of risk and ambiguity.

When making decisions under uncertainty and with limited time, humans and animals
must balance efficiency with completeness. One mechanism through which humans may
do so is through the efficient coding of valuation information [11]. The efficient coding hy-
pothesis, originally formalized in perceptual neuroscience, says that resource-constrained
organisms leverage environmental structure to maximize information and minimize re-
dundancy [12]. A corollary of this hypothesis is that stimulus information is encoded
relatively (i.e. what has changed now compared to the previous moment?). This suggests
that individuals should be sensitive to trial order over the course of an experiment: the
decision they were presented with (and the choice they made on the previous trial) could
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impact how individuals perceive the current choice problem and the subsequent choice
they make. Such behavior would be incongruent with standard behavioral economic tasks
which deploy a randomized structure paired with explicit instructions to participants that
they should “treat each trial independently and as if it were the only one that counts.”
These sorts of task-incongruent temporal dependencies have been widely established in
the visual perception literature where such behavior is termed serial dependence [13].
These researchers specify that such a dependency is separate from priming and hystere-
sis, likely not driven by higher-order processes [13], and is adaptive [14].

Figure 1: Example of how trial order may influence decision making (choice and RT model-
ing parameters) in ITC. The subject participates in the experiment on November 22nd. (A) On trial
j− 1, they have to choose between $5 today and $10 in 30 days. They simulate their future 30 days from
now, December 22nd, and imagine what they could buy. This is a difficult choice for the subject and
deliberation is captured here by a slow rate of evidence accumulation. The subject ultimately decides
to take the $10 and wait. (B) On the next trial j, the choice is between $5 today and $13 in 35 days.
Standard models assume that the previous trial should have no influence on the current problem. The
spillover hypothesis predicts that a subject could perceive and evaluate the current decision relative to the
preceding choice, effectively reusing the outcome of their previous simulation instead of starting afresh:
here demonstrated by a steeper drift rate and then a repeated choice.

Taken together, it becomes plausible that one source of variability in inferring key
behavioral economic parameters may come from trial order. Further, observed choice,
RTs and sequential sampling parameters may also be meaningfully impacted by trial
order: while trial-trial variability is accounted for in such models, rarely are influences
of the recent past explicitly modeled (e.g. Figure 1). Such sequential dependencies are
typically and unsurprisingly observed in “sequential” tasks like multi-armed bandits where
learning rates over the course of an experiment are modeled (e.g. [15]). We emphasize
that the phenomenon of interest here is a higher-order serial dependence or informational
spillover, something that is usually not explicitly modeled in these higher-order tasks
regardless of whether they are “sequential” or not. In this paper, we develop and deploy
a framework that allow us to examine temporal dependencies as a function of decision
problem properties, such as reward value, probability, and delay.

In this paper, we demonstrate that trial order, in particular relative differences in
successive trial properties, affects decision-making under uncertainty. We show, across
three experiments (total n = 636), that sequential effects modulate behavioral economic
parameters estimated both by jointly modeling response time (RT) and choice behavior,
and choice behavior alone (as is standard practice). Experiments 1 and 2 re-analyze pre-
viously collected data (as in [16], but with different model specifications). We further
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designed and collected data for Experiment 3 to build on these analyses so that we could
more closely examine the specific factors that give rise to sequential effects and how they
can contribute to changes in parameter estimates. We demonstrate both high degrees of
individual differences and high degrees of systematicity in these effects (i.e. consistency of
the sign of sequential effects parameters in the task). Critically, in the third experiment,
we show that accounting for such sequential effects not only results in different numerical
parameter estimates, but also different psychological interpretations. These differences
in interpretation go in both directions (i.e. some previously classified “ambiguity averse”
subjects are reclassified as “ambiguity seeking” and vice versa). Taken together, these
results suggest that widely-used measures of decision-making traits are mischaracteriz-
ing a sizable fraction of individuals, and that experiment randomization alone does not
correct for this bias. We conclude with a discussion of how this systematic effect should
be accounted for before such measures are used to guide meaningful interventions into
individual lives.

2 Methods

2.1 Experiments and Data

None of the experiments presented involved the use of feedback where choice outcomes
were realized over the course of the experiment (i.e. after each trial). In Experiments
2 (ITC) and 3 (AMB), subjects received feedback confirming only their choice selection
(i.e. left or right option selected).

Experiment 1: Risky Choice (RISK). We model n = 56 subjects who made 80
choices between two lotteries in the gain and loss domain conditions (rewards range: Gain:
$1−$100, Loss: −$99−$0, probability range: 1% −99%, Figure 2A). Gain and loss gam-
bles were not intermixed (i.e. participants made their choices in two conditions: 40 in the
gain domain, condition 1, and then 40 choices in loss). All data were collected previously
on Amazon Mechanical Turk (for details, see [17]). The experiment was fully randomized
with no experimentally-designed trial-level dependencies. Stimuli were displayed numeri-
cally (rewards and probabilities) and graphically (probabilities were also presented as pie
charts). Subjects had an unlimited amount of time to make their choices, which they
indicated via mouse click. In this experiment, subjects were instructed to maximize re-
wards in the gain domain, and minimize losses in the loss domain.

Experiment 2: Intertemporal Choice (ITC). We model n = 482 adult sub-
jects who made a sequence of 102 binary choices between a same-day monetary reward
(SS: “smaller sooner”, range: $1 − $85) and a larger delayed reward (LL: “larger later”,
range: $10 − $95; delay range: 4 − 180 days, Figure 2B). All data were collected pre-
viously in person (for details, see [18]). The experiment was fully randomized with no
experimentally-designed trial-level dependencies. All stimuli were displayed numerically
and counterbalanced so that the SS and LL options occurred equally often on either side
of the computer screen. Subjects had 6s after stimulus onset to make a choice. Each
choice was followed by 0.5s of feedback confirming the option selected and then a variable
inter-trial-interval (ITI) between 3-5s. In this experiment, subjects were instructed to act
in accordance with their genuine preference between the two choice options (i.e. there
was no “correct”’ answer unlike with Experiment 1 (RISK).) The task was also incentive
compatible: a single trial was selected at random, realized, and paid out at the end of the
experiment as a bonus.
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Experiment 3: Risky and Ambiguous Choice (AMB). We model n = 98 adult
subjects who made a sequence of 196 binary choices between a certain reward (range:
$3 − $9.5) and a lottery (range: $5 − $24), in 4 blocks (Figure 2C). The amount a
subject could win by choosing the lottery was almost always larger than the certain
reward, except during 16 catch trials (4 per block). All data were collected on Amazon
Mechanical Turk via psiturk [19]. Lotteries were either risky (1/7 of trials) where the full
probability distribution was presented graphically (win probabilities: 25%, 50%, 75%) or
ambiguous (6/7) where partial information was presented (ambiguity levels: 15%, 40%,
60%, 85%). While we maintained a general “non-sequential” structure, we ensured that
50% of successive trials increased in ambiguity, and 50% decreased. A risk trial followed
by an ambiguous trial would be considered as an increase in ambiguity, as risky trials
are unambiguous with respect to the probability of reward. Likewise, an ambiguous trial
followed by a risk trial would be considered a decrease in ambiguity. Further, we controlled
for median risk/ambiguity levels, lottery reward, and fixed reward across blocks. As with
ITC, the stimulus options occurred equally often on either side of the computer screen.
Subjects had up to 3s after stimulus onset to make a choice. Each choice was followed
by 0.5s of feedback confirming the option selected and then a variable inter-trial-interval
(ITI) between 0.5-2s. The task was also incentive compatible: a single trial was selected
at random, realized, and paid out at the end of the experiment as a bonus. Participants
on Amazon MTurk were bonused 10% of their winnings to be consistent with pay rates
on the platform.

Figure 2: Example trials for all three tasks. (A) E1: Example RISK trial in the Loss domain where
a subject has an unlimited amount of time from stimulus onset to choose between either the gamble on
the Left or the Right. The Expected Value maximizing (and correct) choice is the gamble on the Left
(figure from [17]). (B) E2: Example ITC trial where the subject has up to 6s to chose between $9 today
or $30 in 42 days (figure from [18]). (C) E3: Example AMB ambiguous trial where the subject has up
to 3 seconds to make a choice between a certain reward of $3 and a chance to win $11 by playing the
lottery. The Expected Value maximizing (but not necessarily “correct”) choice is the certain reward.

We model both choice behavior and response times (RT) in the ITC and AMB tasks.
We only model choice behavior in the RISK task, as RT data was not available. For
ITC and AMB, we excluded any responses that were made in less than 300ms. We
also excluded any missed trials and the trial immediately after them from the following
analyses, in addition to the first trial in each block. This is because our primary analysis
focuses on one-trial-back effects. Finally, we excluded any subjects that missed more than
25% of trials.
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2.2 Models: Choice Behavior

2.2.1 Baseline (“Non-Sequential”) Models

For tasks involving immediate uncertainty (RISK and AMB), we pair a logistic choice
rule with models consistent with the Subjective Expected Utility Maximization Frame-
work. We implement these models in a hierarchical Bayesian fashion using JAGS [20]
to better capture individual differences [21]. Unless otherwise stated, all parameters are
hierarchical Normals, with hyperprior specifications of mean µ ∼ Normal(0, 1) and stan-
dard deviation σ ∼ Uniform(0.01, 4). A parameter X is thus hierarchically distributed:
X ∼ Normal(µX , σ

2
X).

To infer risk and ambiguity values for the RISK and AMB tasks, we model Subjective
Value as follows:

Subjective Value LotteryRisk = p · vα (1)

Subjective Value LotteryAmbig = [p− β(A/2)] · vα Subjective Value Fixed = vα

Here, p is the objective probability of a reward (risk level, or p = 0.5 on ambiguous
trials per [22]). A represents the degree of ambiguity on the trial (ambiguity level, A = 0
on risk trials and for all of the RISK task). Finally, v represents the monetary reward
associated with that lottery. The key behavioral economic parameters of interest, then,
are α which is risk tolerance, and β which is ambiguity tolerance. In this formulation, both
parameters are subject-specific. We use hyperprior µα ∼ Gamma(2, 1) for risk tolerance,
with mode = 1 (risk neutrality) and µβ ∼ Normal(0, 1) for ambiguity tolerance, with
mode = 0 (ambiguity neutral). For the RISK task, we further allow for the curvature of
the utility function to differ as a function of domain c (i.e. infer α(i,c)), where c = 1 for
gain domain and c = 2 for loss.

To infer temporal discounting for the intertemporal choice task, we model Subjective
Value using a hyperbolic discounting function:

Subjective Value Future =
v

1 + k ·D
(2)

Here, v again represents the monetary reward associated with that lottery and D
represents the delay with the future (LL) reward is offered. The key behavioral economic
parameter of interest is k which is the individual’s discount factor. We use hyperprior
µk ∼ Beta(1, 1) to be “uninformative.”

Our logistic choice rule, which has the same basic parametrization across all three
tasks, for subject i on trial j is as follows, where θA,B(ij) is the probability of choosing
Option A:

θA,B(ij) =
1

1 + exp (γi + ϕi · SVD ij + ϵij)
yA,B(ij) ∼ Bernoulli(θA,B(ij)) (3)

Here, SVD ij represents the difference in the Subjective Value between the two options
presented on any given trial. γi represents the shift, or bias, in a decision. ϕi represents
response variability, and we use hyperprior µϕ ∼ Gamma(2, 1), where the mode corre-
sponds to probability matching. Finally, ϵij represents effects of simple choice – or motor
– perseveration (repeat previous choice made). All parameters allow for variability at the
individual and, in the case of the RISK task, domain (gain or loss) level. We pair these
prior specifications with a Bernoulli(θA,B(ij)) likelihood, as no two stimuli are presented
together more than once.
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2.2.2 Sequential Effects

Intuitively, we might imagine that there would be more (less) of an effect on a given
parameter on sequential trials that present the subject with similar (different) values for
the decision problem regardless of task structure or goals: e.g., if on RISK trial j-1, a
subject decides between a 81% chance of winning $41 or a 55% chance of winning $39,
and the next trial j asks the subject to choose between a 85% chance of winning $45 or a
55% chance of winning $37, there might be little need to re-deliberate, which could thus
yield an effect on either choice or response time (refer to Figure 1 for example in ITC).
This may be the case even if subjects are told to treat decisions independently, as they
typically are in these “non-sequential” behavioral economic tasks, and trials themselves
are randomized.

This task-incongruent transient reliance on recent history (henceforth also referred
to as perseveration) can manifest in one of many ways, ranging from “lower-order” (e.g.
motor) to “higher-order” (e.g. carrying over frontal cortex dependent computations)
[23, 22]. We explicitly test for three qualitatively different types of perseverations (Ta-
ble 1 Lower): motor or choice (i.e. repeat the same choice previously made), percep-
tual (i.e. on logistic bias or variability), and computational (i.e. influencing people’s
risk/ambiguity/impulsivity preferences). We define these perseverations as driven explic-
itly by cross-trial differences in the trial properties listed in Table 1 Upper, as these are
the normative properties involved in choice computations. As we further expect these
influences to be transient due to the complex and temporally constrained (ITC, AMB)
choice environment, we restrict our analyses to one-trial-back (i.e. differences in current
and immediately preceding trial properties).

Property Type RISK ITC AMB
Uncertainty Gamble Entropy (H) Delay (D) Risk/Amb levels (RA)
Reward value
Normative Expected Value (EV) EV
Interaction EV x H value x D EV x RA

Parameter
Logistic Bias ϕ
Logistic Slope γ
Choice Perseveration ϵ
Risk Tolerance α
Ambiguity Tolerance β
Discount Factor k

Table 1: Trial properties considered for sequential effects and the choice parameters on
which we test for these effects. Upper Differences in trial properties considered as potential drivers
of sequential effects. H = −Σp log(p) is the Shannon Entropy of a gamble. Lower Parameters we
simultaneously test for sequential effects by allowing them to vary trial-trial as a function of relative
differences in properties as described in Table 1 a. We test the first three parameters in all three tasks.
The final three are task-dependent (RISK: α; ITC: k; AMB: α, β).

Specifically, we use Indicator Variables to subset increases or decreases in specific se-
quences of trials, resulting in a 8-fold tiling of trial property space for all three experiments
(e.g. for ITC: increase in delay, decrease in delay, increase in value, decrease in value,
increase in value and delay etc.) We then augment our baseline models by allowing these
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trial properties to exert linear additive influences on the parameters of interest. For ex-
ample, if we consider ITC trials that increase in value from trial j–1 to trial j:

γ′
0,ij = γ0,i + ηi · 1([Va,j − Vb,j] > [Va,j−1 − Vb,j−1]) (4)

Thus, in Equation 4, γ0,i becomes the sequential-effect-adjusted logistic bias for individual
i and the indicator variable is 1 if there is an increase in value difference from trial
j − 1 to trial j. The posterior value of ηi tells us how much an individual is weighting
relative changes in trial properties (i.e. increase or decrease). We define ηi hierarchically:
ηi ∼ Normal(µη, ση).

Our fundamental analysis is structured around a hypothesis test on ηi: H0 : ηi = 0
vs. Ha : ηi ̸= 0. We quantify the strength of evidence in favor of the null and alternative
by using the Savage-Dickey ratio to estimate the Bayes Factor (BF ). This ratio compares
prior and posterior density at any point in parameter space (i.e. ηi = 0). As others have
done, we interpret any values of BF > 3 as evidence in favor of our alternative hypothesis
[24].

2.3 Models: Response Times

Recall that we only have response time data for ITC and AMB.

2.3.1 Baseline Models

We implement a hierarchical Bayesian drift diffusion model (DDM) to model response
times using the Wiener module [25] in JAGS [20] for both the ITC and AMB tasks. That
is, for subject i and trial j, we model observed response time as Wiener first passage time
(wfpt) distributed:

RTij ∼ wfpt(αi, τi, βi, δij)

Here, αi represents the subject-level threshold or boundary separation, τi is the subject-
level non-decision time (processes ostensibly unrelated to the value-based decision pro-
cess), βi is the subject-level bias (βi < 0.5 bias towards immediate option in ITC and
towards the fixed option in AMB), and δij is the subject-and-trial-level drift rate (the
rate of evidence accumulation). We model all these parameters as hierarchical Normals
in order to better capture individual differences [21]. For αi, τi, and βi, we use the same
prior and hyperprior specifications for both tasks, referencing [25] for mean hyperpriors
and using ’noninformative’ priors for the standard deviation:

µα ∼ Uniform(0.001, 3) µτ ∼ Uniform(0, 0.6) µβ ∼ Uniform(0.01, 0.99)
σα, στ , σβ ∼ Uniform(0.01, 4)

Similar to previous work [10], we take a cognitive psychometrics approach to modeling
the drift rate. Critically, however, we allow the drift rate to be driven by objective trial
properties (i.e. not Subjective Value or even differences in SV ) and normative combina-
tions of these trial properties (e.g. Expected Value). This is because explicitly relating
untransformed trial properties to elements of the decision process is critical for our ques-
tion of interest. Incorporating transformed trial properties like Subjective Value might
perpetuate the very biases we seek to mitigate as they would be inferred without account-
ing for potential effects of trial order. We keep the broad functional relationship between
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trial properties as dictated by behavioral economic models of choice behavior (e.g. allow-
ing an inverse relationship between the drift rate and delay for ITC). We also normalize
all stimulus properties such that they fall between 0 and 1. Then, for subject i and trial
j:

δITC,ij = β0,i + β1,i · (valueLL,ij − valueSS,ij) + β2,i · delay−1
ij (5)

δAMB,ij = β0,i + β1,i · (EV Diff ) + β2,i · Aij (6)

In Equation 6, EV Diff represents the difference in Expected Value (EVLottery −EVfixed)
between the two options presented. EVLottery = p · v, where p is the objective probability
of reward (i.e. risk level) and v retains its interpretation of objective reward. For an
ambiguous trial, p = 0.5 as in [22]. The Expected Value of a certain reward is simply
v. On ambiguous trials, A is the function of the lottery that is occluded by the grey bar
as seen in Figure 2C. Recall that on risky trials, A=0. Finally, we allow all drift rate
decomposition parameters βs to be hierarchical Standard Normals.

2.3.2 Sequential Effects

We allow all sequential effect parameters to be hierarchical Standard Normals. We simul-
taneously assess the influence of relative trial properties on all drift rate decomposition
(i.e. βs) and bias parameters (same properties as in choice, Table 1A). For example:

β′
0,ij = β0,i + ηi · 1([Va,j − Vb,j] > [Va,j−1 − Vb,j−1]) (7)

Thus, in Equation 7, β0,i becomes the sequential-effect-adjusted drift rate “regression”
intercept for individual i and the indicator variable is 1 if there is an increase in value
difference from trial j − 1 to trial j. Just as in Choice Behavior (section 2.2.2), we test
whether the sequential effect parameters (i.e. ηi) is non-zero using the Savage-Dickey
ratio to approximate the Bayes Factor (BF). We interpret any BF > 3 as evidence in
favor of sequential effects.

3 Results

We analyze data from two previous experiments (Experiment 1 (RISK): Risky decision-
making task in gain and loss domains n=56; Experiment 2 (ITC): Intertemporal choice
task n=482) and one new experiment (Experiment 3 (AMB): Risky and ambiguous
decision-making task in gain domain n=98) (Figure 2). We explicitly incorporate se-
quences of trial properties into standard choice and response time models using hier-
archical Bayesian modeling, considering one “sequence type” at a time. Critically, this
approach allowed us to estimate the reliability of sequential effects at an individual-subject
level.

3.1 Sequential Effects in Choice Behavior

We first assessed whether choices exhibited trial property-dependent sequential effects at a
broad, “model-free,” level. Our primary assessment of model free signatures of sequential
effects in the RISK and AMB tasks involved comparing whether the proportion of times
a subject selected a choice differed across trial sequence types. The trial properties of
interest include cross-trial differences in Expected Value and entropy (see table 1A for
complete list). Specifically, we look at pairs of trials as differences of differences: for
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example, an increase in Expected Value difference between successive trials means that
the choice options on the current trial are more distinct than the choice options on the
previous trial. This could correspond to a current trial being relatively easier than the
previous. This interpretation is consistent with the experimental data on a whole.

In RISK, subjects chose the EV maximizing option significantly more often not just
when a trial was relatively easy with respect to the rest of the experimental choice set,
but also when there was a relative increase in EV from the previous trial to the next
(EV increase 71%, vs. EV decrease 64%, Wilcoxon Rank Sum V = 1276.5, p < 0.001),
but no significant difference when comparing proportions of EV maximizing choices when
trials increase or decrease in gamble entropy (H increase 67%, H decrease 68%, V = 705,
p = 0.45, Figure 3A). In AMB, we find a similar pattern: subjects chose the lottery option
significantly more often when there was a relative increase in EV from the previous trial
to the next vs. when there was a relative decrease (EV increase 50%, EV decrease 47%,
Wilcoxon Rank Sum V = 3693, p < 0.001), but not when considering only increases
or decreases in gamble ambiguity (Amb increase 48%, Amb decrease 50%, V = 2441,
p = 0.43, Figure 3B). We find no differences in choice proportions as a function of trial
properties (value, delay increase/decrease) in the ITC task. This simple analysis suggests
that, in at least two of the three types of choices evaluated, people are not just sensitive
to trial order but more specifically to the relative differences in normative calculations -
the relative ease or difficulty of the current choice problem.

Figure 3: Participants in RISK and AMB tasks make distinct choices depending on trial
sequence. (A) In the RISK task, they are more likely to make the EV maximizing choice between two
gambles when the previous trial was more difficult (i.e. choices less distinct). (B) In AMB, they are
more likely to pick the lottery option as opposed to the fixed when the previous choice was easier (i.e.
less difference between options). Conversely, there was no significant difference between EV maximizing
choices when considering relative increases or decreases in trial entropy (A) or trial ambiguity (B).
Overlaying the violin plots are the median and IQR.

For our model-based analyses, we augment logistic choice rules to include such rela-
tive cross-trial differences on multiple parameters as described in Methods. That is, we
allow for trial order to potentially manifest as a variety of qualitatively different types of
“perseverations” – from motor, to perceptual, to cognitive. In RISK, we observed reliable
sequential effects on logistic slope and risk tolerance for 7% of individuals. Critically, and
consistent with these effects being cognitively specific, these individuals only had non-zero
sequential effects for specific sequences of trials: when a trial with a high difference in
Expected Value between the two options was followed by a trial with a low difference in
EV – “easy” then “difficult” in sequence. For example, for a specific subject, an initial
risk tolerance of 1.043 updated to 1.205 when adjusted for this sensitivity. Importantly,
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the magnitude of risk tolerance was not the only changing factor: the interpretation of the
individual’s risk tolerance changed from risk neutral to risk averse in the loss domain. For
the other two experiments, unlike our RISK analysis, our hypothesis test of the posterior
values of the sequential effect terms did not result in any evidence in favor of trial-trial
sensitivity. However, we note that we also did not find strong enough evidence in favor
of the null hypothesis.

3.2 Choice and Response Time

3.2.1 Drift Rate Decompositions

ITC Mean(CI) AMB Mean(CI)
β0 −0.66(−1.26,−0.06) β0 −0.90(−1.12,−0.68)
β1 3.45(1.19, 5.70) β1 1.51(1.04, 1.94)
β2 2.34(−2.15, 6.84) β2 0.03(0.001, 0.1)

α 2.47(1.70, 3.24) α 1.84(0.96, 2.71)
τ 0.76(0.36, 1.16) τ 0.50(0.03, 1.03)

bias 0.51(0.39, 0.63) bias 0.50(0.4, 0.6)

Table 2: ITC + AMB: Drift rate decompositions cap-
ture meaningful variance in both ITC and AMB. Each
cell shows aggregate posterior means (95% Credible Intervals)
for Drift Rate decompositions and other DDM parameters.
Bolded parameters are ones we also test for sequential effects.

We find that for the
ITC task, subjects tend
to accumulate evidence
more quickly when the
value difference increases
(β1), all else held con-
stant. Similarly, sub-
jects tend to accu-
mulate evidence more
quickly when the de-
lay decreases (β2) – re-
call that we parameter-
ize delay as delay−1

ij –
all held constant. Both
make sense intuitively,
as larger value differ-

ences might push individuals towards selecting the LL option, and delayed rewards offered
in the far future may not be worth the wait.

With the AMB task, the average subject’s drift rate increases as the Expected Value
difference between choice options increases (β1), all else held constant. Subjects seem
nominally sensitive to the degree of Ambiguity during evidence accumulation (β2). We
also highlight the credible interval ranges to confirm that there are considerable individual
differences, as we might expect. We note that we considered many different combinations
of trial properties as drivers of drift rate and present these model results (Equation 5, 6)
as they best fit the data.

We interpret the threshold and non-decision time parameters being greater for ITC
to be a reflection of differences in task structure. Recall that subjects have up to 6s to
respond in the ITC task, whereas they only have up to 3s in the AMB task. Finally,
aggregate posterior means suggests that subjects are generally unbiased in both tasks,
which is in contrast with their choice behavior: in ITC subjects chose the smaller sooner
reward more frequently and in AMB chose the certain reward more frequently.

3.2.2 Sequential Effects

As described above, response time models provide more reliable estimates of individual-
subject decision processes. We therefore analyzed trial-type-specific effects using an aug-
mented drift-diffusion model in place of the logistic choice rule. We performed these
analyses for ITC and AMB as RT data was unavailable for RISK. This approach allowed
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us to identify sequential effects at the level of both bias (pre-choice inclination) and de-
liberation (evaluative processing of choice properties).

ITC Proportion AMB Proportion
value ↑ 1 value ↑ 0.80
value ↓ 0.998 value ↓ 0.93
delay ↑ 1 amb ↑ 0.05
delay ↓ 1 amb ↓ 0.01
v. ↑ d. ↑ 1 v. ↑ a. ↑ 0
v. ↑ d. ↓ 1 v ↑ a. ↓ 0.18
v. ↓ d. ↑ 1 v. ↓ a. ↑ 0
v. ↓ d. ↓ 0.84 v. ↓ a. ↓ 0.57

Table 3: ITC + AMB: Most participants
are sensitive to trial sequences. The major-
ity of subjects show sensitivity to trial sequences
in both ITC and AMB tasks. Each cell shows
the proportion of subjects that demonstrated se-
quential effects (BF > 3) on any one of the drift
rate decomposition parameters or bias. Each row
represents specific successive trial properties (e.g.
value ↑ subsets successive trials that increased in
value difference as noted in Equation 4).The top
four rows can be thought of as “main effects” of
specific trial properties and the bottom four “in-
teractions.”

We observed reliable trial-property-
driven sequential effects on the DDM
decomposition (Equations 5, 6) and
bias terms for both ITC and AMB
tasks. For almost every possible com-
bination of stimulus sequences, 100%
of subjects showed evidence of sensi-
tivity to previous stimuli in the ITC
task (Table 3, Table S1). Effects
in the AMB task are more specific
to the combination of trial proper-
ties considered – in particular, indi-
viduals seem to be particularly sensi-
tive to relative cross-trial differences
in Expected Value (i.e. the choice
becomes easier or harder) (Table 3,
Figure S1, Table S2). Interestingly,
while in the ITC data we find ef-
fects on both the drift rate and bias
terms, in AMB we only find evidence
of sequential effects on the drift rate
terms which suggests differences in
the cognitive process that may not
only drive spillover but also relate to
the choice problem at hand (evaluating future uncertainty vs. present).

3.2.3 Changes in parameter estimates.

The reader, especially if they are interested in applications of behavioral economics, may
wonder why accounting for sequential effects should matter beyond finding varied in-
dividual differences. First, magnitude information is valuable especially for researchers
interested in temporal fluctuations in ambiguity/risk attitudes. We further argue that
adjusting for these effects can meaningfully change inferences on the parameters we care
about. We thus examined how accounting for sequential effects can reveal qualitative
changes in the characterization of individuals. We fit effect terms capturing spillover
across all “main” (Table 3) trial sequences at the same time (as opposed to one-at-a-
time), generate 1000 datasets from these model fits, and redeploy a logistic choice rule
to infer risk and ambiguity tolerance as in the standard approach. That is, for the AMB
task, Equation 7 is instead written as follows (see Table 1a for properties for all trials):

β′
0,ij = β0,i+ηi,01·EV Increase+ηi,02·EV Decrease+ηi,03·Amb Increase+ηi,04·Amb Decrease

(8)
We refer to these models as “stacked” as they include all potential “main effects”

of trial properties. We report the models that contained only the main effects for two
reasons: 1) these were the primary drivers of sequential effects in our above analysis for
both tasks – especially AMB – and 2) we wanted to avoid “over-parametrization” by
including the interaction terms. As this parametrization adds 12 more variables to the
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Figure 4: AMB task: Magnitude and interpretation changes in (A, B) ambi-
guity and (C, D) risk tolerance. Left : Ratio of (A) ambiguity tolerance and (C) risk
tolerance estimates: log(simulated choice set/observed data). We plot median ratios and
IQRs from 1000 simulated choice sets. Right : The percentage of simulation-fit parameters
that change interpretations in (B) ambiguity and (D) risk attitudes when compared to
parameter fits in the original data. Subjects re-sorted by effect size in each plot.

model, we define the sequential-effect terms (ηs) as non-hierarchical Standard Normals:
ηi,xx ∼ Normal(0, 1) to aid model convergence. All models reported converged according
to standard metrics.

Differences between the original parameter estimates and those from the simulated
data would strongly suggest that cross-trial temporal dependencies are capturing some-
thing fundamental in human decision making under uncertainty. We report ratios between
simulated data parameter estimates and the baseline model. If 0 < |Ratio| < 1, then the
sequential effect adjusted parameter estimates are numerically smaller than than than the
initially inferred, and |Ratio| > 1 the converse. The median ratio change for risk tolerance
across all subjects is 0.857 (IQR = 0.716), suggesting that models without sequential ef-
fects tend to overestimate an individual’s risk tolerance. Likewise, the absolute value of
median ratio change for ambiguity across all subjects is 0.574 (IQR = 1.13).

Critically, we find evidence not just of differences in sequential-effect-adjusted param-
eter estimates (Figure 4A,C) but also widespread qualitative changes in interpretation
(Figure 4B,D). For ambiguity tolerance, this change moves in both directions (i.e. some
subjects are newly classified as ambiguity averse or ambiguity tolerant), but for risk tol-
erance, all reclassified subjects move from risk seeking to risk averse.
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4 Discussion

Measures of individual decision-making traits are becoming increasingly used in applied
settings. However, there are many sources of variability that can bias these measures. In
this paper, we present a quantitative behavioral analysis of one of these potential sources
of bias: trial-trial dependencies in experiments without feedback. We build off a neu-
roeconomics literature that demonstrates the importance of trial order in how neurons
represent value signals [11], and visual perception studies [13] that establish serial de-
pendence. By explicitly incorporating trial-order information into behavioral models we
find: a) differential sensitivity across experiments that involve different types of stimulus-
level uncertainty, b) greater prevalence across subjects when jointly modeling choice and
response time, c) evidence accumulation is impacted by trial-order across tasks, and d)
individual-level posterior inferences on key parameters of interest can be meaningfully
changed by accounting for these effects.

Our analyses highlight that sequential effects in both choice behavior and reaction
time are a function of individual differences, with non-trivial changes in parameter mag-
nitude and interpretation. This work has deep theoretical and empirical implications.
Firstly, our analyses suggest that these sequential effects are not noisy artefacts but are
instead the consequence of a systematic influence of trial properties on components of the
decision process. This suggests a potential need for the theoretical re-conceptualization of
experimentally-inferred parameters as explicitly dynamic and sensitive to (highly) local
contexts and not solely a static and psychologically interpretable end. Secondly, much
work has shown that parameters inferred from experiments tend to correspond poorly
with real-world behavior and with other tasks that purportedly measure the same con-
struct (e.g. sequential risk tasks vs non-sequential) [26] and the approach demonstrated
here may be one way to more closely reconcile these discrepancies. Thirdly, there is much
valuable information that can be gained from the joint modeling of choice and response
times, and scientists should aim to collect RTs whenever possible [7, 8, 27]. Finally, the
widespread nature of our results could suggest that susceptibility to sequential effects in
complex choice under uncertainty could be a by-product of the rational use of limited
resources [28].

It is tempting to interpret these sequential effects as “corrupting” the choice process
and parameter inference, despite possible rational justifications [28, 29]. While we show
that our posterior parameter estimates do indeed differ when we account for relative
differences in trial properties, we suggest three empirical alternatives to how we can move
forward with this information. Firstly, as suggested in the previous paragraph, we do
explicitly consider the degree of sequential dependency to be informative and report two
parameters with every task: the parameter the experiment was built around (e.g. risk
tolerance) and some parameter or summary that reflects sequential sensitivity. Secondly,
experimenters could consider interleaving distractor tasks to clear the working memory
buffer that may generate sequential effects. Thirdly, in a similar vein, experimenters may
consider merging relatively unrelated experiments together so that each subsequent trial
may come from any one of n tasks. While some may argue that this strategy is folly to the
same idea behind how experiments are currently designed – that randomized structure
does more than what we in this paper demonstrate it does – this is why we suggest
unrelated but relevant (i.e. non-distractor) tasks. In this paper, we remain agnostic about
the circumstances and mechanisms through which sequential dependencies are generated.

Results from the AMB study suggest that differences in reward magnitudes play an
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important role in these effects: people seem to be evaluating current rewards relative
to what they had immediately seen before. One possibility as to why this could be the
case is if humans, as other work suggests, encode magnitudes noisily and logarithmically
[30]. A logarithmic internal representation of rewards presented in the experiment would
have smaller rewards more closely represented on the “number line” (allowing for greater
discrimination) and larger rewards to be disproportionately further apart. A natural
consequence of using such a number line would mean that relative differences between
successive sets of choice options, especially for options on opposing ends of the line, would
be perceived to be greater than their absolute magnitudes. This is akin to a transient
[numerical] contrast effect. In fact, this line of work by Khaw and colleagues argues that
hallmarks of human behavior under uncertainty – like risk aversion in the gain domain
– can actually be better explained by these (Bayes optimal) noisy logarithmic coding
models relative to standard power utility models [30].

This is not to suggest that relative differences in how uncertainty in these experiments
is represented internally do not also contribute to the generation of sequential effects. In
this paper, we have considered three qualitatively different types of uncertainty: imme-
diate with complete probability information (risk), immediate with incomplete probabil-
ity information (ambiguity), and temporal with 100% probability of reward (temporal
discounting). The cognitive processes invoked in managing these types of uncertainty,
especially in sequence, may vary as a function of task – in particular risk/ambiguity vs.
temporal discounting. Indeed, popular theories of intertemporal choice involve simulating
the future [23]. This is a potentially a resource-intensive process that conflates uncer-
tainty and concreteness – simulations further out in the future are also less likely to be
concrete [31]. This may lead to the reuse or indeed reification of a simulated future that
is n or greater days from the present. While such a future may not directly lead to one-
trial-back sequential effects as patently as logarithmic representations of numbers may, it
may form some sort of reference point that can influence perceptions of relative increases
or decreases in delay. It is also worth noting that in this ITC experiment, as is standard,
delay is represented only in a numerical form (i.e. the delayed reward will be offered n
days in the future, see Figure 2). This is in contrast to RISK and AMB experiments,
where there are both numerical and graphical representations of uncertainty. Thus it
may be reasonable to interpret the ubiquity of sequential effects in ITC relative to AMB
as possibly also driven by the purely numerical presentation of uncertainty (suggesting
that uncertainty could be coded on a similar noisy logarithmic scale) and/or the re-use of
computationally expensive simulated futures. Conversely, we may interpret the relative
lack of sequential effects driven by differences in ambiguity in the AMB task as partially a
consequence of scale anchoring due to the graphical presentation of risk/ambiguity. More
consequentially, the experiment design included 50% trial sequences that increased in am-
biguity and 50% trial sequences that decreased in ambiguity. If sequential effects are a
type of adaptation effect, they may be washed out by this experiment design (the only
factor we explicitly manipulated to be 50-50). Finally, unlike with ITC, there are no clear
theories as to what cognitive processes are invoked during the decision process, lending
further credence to the potentially important role of graphical presentation – which itself
can vary over experiments – of uncertainty.

We are further agnostic about the processes involved in propagating these sequential
dependencies. Researchers studying serial dependence in visual perception argue that
attention plays a critical role [13] in addition, possibly, to working memory [14]. The
relationship between attention and value-based decision making has been well studied
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[32], with some researchers arguing that attention plays a causal role in the formation
of value. Further, researchers have also demonstrated evidence for “last fixation bias,”
where the first fixation on a given trial is shaped by what the individual was last look-
ing at on the previous trial, in value-based decision making [27]. In related but distinct
work, researchers have used eye tracking (the most commonly used proxy for measuring
attention) to demonstrate individual differences in strategies for an ITC task [33]. In
particular, Khaw and colleagues demonstrate not only that search strategy is a predictor
of an individual’s discount rates, but also that search strategy can be shaped by tweaks
in experimental design [33]. Taken together, attentional processes may indeed play a
critical role in generating, or propagating, these experiment-design-dependent but task-
incongruent spillover effects. Less studied, though equally plausible, is the relationship
between working memory and economic decision making under uncertainty. Researchers
have suggested that persistent activity in cortex, a typical signature of working mem-
ory, also supports value-based decision making [34]. As attention and working memory
putatively operate on different time scales, it is entirely possible that both processes
are involved in the phenomenon studied in this paper. Further research, and perhaps
multi-modal data is necessary to be able to tease apart differential contributions of either
process.

Finally, we return to the potential clinical implications of this research. Scientists
have established for decades that there are exist meaningful differences between “healthy”
controls and clinical populations in working memory and attention (e.g. aging [35, 36]
and schizophrenia [37, 38]). We note that the degradation of working memory in aging
appears to be more established, and less selective, than that of attention and aging. This
opens up an interesting line of research in both health and disease: how to study the
presence of sequential effects, recoverable through the joint modeling of choice and RT,
to make more nuanced subject level inferences about health status, especially in disorders
that demonstrate degradations in the processes that putatively support sequential effects?

Overall, in this paper we have demonstrated that the near-ubiquitous assumption in
modeling economic choice, that choices made in sequence can be treated as independently
made due to experiment randomization, is false. We show that this is the case through
the joint modeling of choice and RT and show that our model puts forth meaningfully
different parameter estimates than standard choice models. This work takes an important
initial step in quantifying the effect of a heretofore underexplored source of variability in
the inference of risk tolerance, ambiguity tolerance, and discount factor.
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