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Abstract

Memories affect nearly every aspect of our mental life. They allow us to both

resolve uncertainty in the present and to construct plans for the future. Recently,

renewed interest in the role memory plays in adaptive behavior has led to new

theoretical advances and empirical observations. We review key findings, with

particular emphasis on how the retrieval of many kinds of memories affects

deliberative action selection. These results are interpreted in a sequential infer-

ence framework, in which reinstatements from memory serve as “samples” of

potential action outcomes. The resulting model suggests a central role for the

dynamics of memory reactivation in determining the influence of different kinds

of memory in decisions. We propose that representation-specific dynamics can

implement a bottom-up “product of experts” rule that integrates multiple sets of

action-outcome predictions weighted based on their uncertainty. We close by

reviewing related findings and identifying areas for further research.
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1 | INTRODUCTION

Most decisions involve some form of memory. Decades of research has focused on understanding how one kind of mem-
ory, about the summary statistics of a task or environment, are employed in the service of evaluating choice options,
either through incremental learning of stimulus-outcome associations or via extracting regularities present in the structure
of the environment (Balleine, 2007; Daw, 2011; Dayan, 1993; Gläscher et al., 2010; Tolman, 1948). These types of
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memories are differentiated by their distinct representational properties and divergent neural substrates (Dolan &
Dayan, 2013; Poldrack & Packard, 2003; Yin & Knowlton, 2006). Critically, however, they share in common a reliance on
extensive experience—often measured within a narrowly controlled, highly repetitive laboratory task—to learn usable sta-
tistics (Behrens et al., 2007; Daw, Gershman, Seymour, Dayan, & Dolan, 2011). This leaves open the question of how deci-
sions are made based on little direct experience (Lengyel & Dayan, 2008), or in complex environments from which it may
be intractable to extract sufficiently detailed regularities (Kaelbling et al., 1998; Silver & Veness, 2010)—as in many real-
world decisions faced by humans and animals (Lake et al., 2015; Lien & Cheng, 2000; Niv et al., 2015).

Humans and animals constantly draw on memories of the past to inform decisions about the future (Redish, 2016;
Schacter et al., 2017). An emerging framework describes this phenomenon as a simulation-driven estimation process,
in which decision-makers examine what might result from each available action by consulting memories of similar pre-
vious settings. This approach, generally referred to as memory sampling (Bordalo et al., 2020; Gershman & Daw, 2017;
Kuwabara & Pillemer, 2010; Lengyel & Dayan, 2008; Lieder et al., 2018; Ritter et al., 2018; Shadlen & Shohamy, 2016;
Zhao, Richie, & Bhatia, 2020), can approximate the sorts of option value estimates that would be learned across
repeated experience by, for example, temporal-difference reinforcement learning (TDRL; Bornstein et al., 2017;
Gershman & Daw, 2017; Lengyel & Dayan, 2008), while retaining the flexibility to diverge from long-run averages when
doing so may be adaptive. At one extreme, drawing on individual memories in this way allows one to effectively tackle
choice problems even in the low-data limit (e.g., in novel environments), where processes that rely on abstraction over
multiple experiences are unreliable (Lengyel & Dayan, 2008).

Examining memory retrieval from the perspective of reinforcement learning (RL) complements the use of RL to
study representation formation—for example, cached values (Barto et al., 1995), motor sequences (Botvinick
et al., 2009; Keramati et al., 2016; Miller et al., 2018, 2019), or environmental structure (Dayan, 1993; Gershman, 2018;
Wilson et al., 2014). Therefore, we begin this review by describing the RL formulation of the computational problem of
optimal action selection among immediately available options. We continue with a review of how known cognitive and
neurobiological properties of long- and short-term memory retrieval in humans and animals suggest an implementation
of one form of approximate solutions to this problem, the stochastic sampling of past experiences. Then, we briefly
introduce the mathematical framework that describes the optimal solution to two-alternative forced choice based on
unreliable evidence—the drift-diffusion model (DDM)—with emphasis on what is known about how organisms
approach the special case of evidence in the form of internally generated signals.

We next review theoretical frameworks and key empirical studies that describe how various kinds of memory, rang-
ing from action sequences to “cognitive maps” to long-term autobiographical memories, can provide these internally
generated signals for action selection. We focus especially on a representative selection of studies that have shown that
episodic features1 mediate the selection of which memories are retrieved during decision deliberation; these constitute
an informative limiting case of the memory sampling framework.

Next, we examine how these properties of memory retrieval during action selection constrain the process of accu-
mulating evidence from memory. We focus on properties of memory sampling that contrast with those of sensory evi-
dence accumulation, such as the relationship between representational properties and retrieval dynamics, and the
sequential structure of retrieval.

We close with a synthesis of the reviewed findings and suggest that action selection based on memory retrieval can
be best described by a time-varying evidence accumulation process, in which the momentary rate of accumulation is
determined by several cognitive and neural factors. The resulting model approximates a “product of experts” rule for
integrating action tendencies from multiple control processes—in this case, memory representations with different
associative content, relational structure, and history-dependence. It follows directly that the involvement of different
forms of memory in action selection depends on the temporal dynamics of these factors, via their influence on the effec-
tive rate of production of evidence samples, which can implement the principle of uncertainty-weighted arbitration
between different decision systems (Daw et al., 2005; Keramati et al., 2011). We close with a brief review of existing
empirical evidence in support of this model and suggest potential directions for further research.

2 | THE VIEW FROM REINFORCEMENT LEARNING

We begin by detailing key aspects of the predominant framework for value-based decisions, RL (Sutton & Barto, 2018).
We begin here because memory sampling shares with RL the use of primitives such as states, actions, and rewards—
but, crucially, it operates on these elements with a different computational form that provides a distinct set of
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guarantees about efficiency and optimality. Understanding these provides the basis for understanding why each
approach makes different empirical predictions in certain settings. Importantly, RL provides a formal understanding of
the value estimation problem, and thus for evaluating different kinds of estimates. This framework will be crucial for
understanding our later description of why and how multiple memory systems can contribute to decisions.

RL examines the problem of learning how to best navigate an uncertain environment guided primarily by feedback,
in the form of reward or punishment, obtained after taking actions within that environment. While the framework
allows for a wide range of possible approaches, its primary applications in neuroscience research to date have followed
a particular form involving incremental learning of a value function2 relating states and actions to the long-term,
discounted rewards that can be expected to result (Equation 1). When fitting human behavior, a common practice (Daw
et al., 2011) is to specify an action selection function that translates these values into a likelihood of taking each avail-
able action (Equation 2). We next describe particular instances of these equations and the key features relevant to the
current review:

Q a,sð Þ Q a,sð Þþα Rþ γmaxa0Q a0,s0ð Þ�Q a,sð Þ½ � ð1Þ

P a� ¼¼Að Þ/ exp βQ A,sð Þ½ �P
a0exp βQ a0,sð Þ½ � ð2Þ

The first equation describes the incremental, experience-driven learning of value expectations (the value function, Q).
The quantity specified by the value function is an estimate of the total future reward expected after taking action a in
state s (and continuing to act optimally thereafter). This future reward is the sum of the reward directly obtained by tak-
ing the action (R), plus the total future reward to be obtained by taking the best action in the ensuing state s'. (Future
rewards are, throughout, treated as less important to momentary action selection than immediate rewards, so they are
discounted according to a constant 0 < γ ≤ 1.) The expectation is updated by the difference between this sum and the
previous value of the expectation, after scaling by a learning rate (0 < α ≤ 1) to regularize the estimate. The second
equation specifies the probability of choosing a given action (A) as the relative profitability of that action, versus all can-
didate actions. The sensitivity of this likelihood to the value difference is specified by the temperature parameter, β.

Importantly, the first equation is an approximation to the full value computation (Equation 3), which incorporates
knowledge about the transition structure of the world—the likelihood that taking a given action a in state s is going to
lead to a particular state s'. The true discounted future reward thus integrates over transition probabilities to all possible
successor states. An agent with knowledge of this transition structure may be able to make better decisions than one
who just learns reward values, but representing and working with this structure can be quite costly.

Q a,sð Þ¼
X

s0
T s,a,s0ð ÞV s0ð Þ ð3Þ

Note that the future return of the target states, V s0ð Þ, is recursively defined:

V s0ð Þ¼R s0ð Þþ γV s00ð Þ ð4Þ

Unrolling the recursion gives a converging sum of (discounted) rewards:

V s0ð Þ ¼R s0ð Þþ γR s00ð Þþ γ2R s000ð Þþ �� � ð5Þ

where future states after s0 are denoted by s00, s000, and so on. Computing this (recursive) expectation is difficult in prac-
tice, especially with limited experience of the transition structure. Therefore, approximate computations may be
employed, either the incremental approach of Equation 1 above, which marginalizes over transitions or via methods
that directly estimate the transition structure (Daw et al., 2005). More broadly, however, the computational goal—
choosing based on total discounted future reward—can be achieved in multiple ways.

One approach, called memory sampling, avoids the dependence on extensive experience by simply consulting the
values obtained directly, “remembering” individual experiences with the current (and potential future) state(s). For-
mally, rather than computing this estimate by updating a cached value function with each experience (Equation 1), the
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alternative computes it dynamically, possibly even on-demand (Eldar et al., 2020), by sampling past encounters with
the states of interest (and, potentially, generalizing from similar states) and averaging the resulting values. This
approach can be used to estimate both the reward to be received from the current action (Bornstein et al., 2017, and also
that of states that follow from each action (Bornstein & Norman, 2017; Vikbladh et al., 2017. When multiple relevant
experiences exist, they can be selected according to a sample-selection function (Figure 1; Equation 6a, function S), that
specifies some probability distribution over rewards for each action given by the distance between current state s and
given sample state s' in a probability space defined over their shared features (Equation 6b). While in practice this distance
incorporates any set of features relevant to the current comparison (Figure 1), in laboratory experiments task states are
usually distinguishable along only a small number of well-controlled dimensions. For example, samples could be weighted
by their proximity in time to the current moment (Equation 6c)—capturing the intuition that the remembered states most
like the state I am currently in are the states I have most recently visited. In this formulation, samples at time t are most
likely to be drawn from the most recent trial (i = t � 1), and exponentially less likely to be drawn from preceding trials
i (i.e., where i = t � 2, t � 3, t � 4,…), with decay specified by the parameter α. Because the value of α is between 0 and
1, exponentiating this value by t � i will result in progressively smaller probabilities for trials further in the past (greater i).
Values estimated by this approach have the same form of dependence on recent experience as do those learned by TDRL
(Bornstein et al., 2017).

s0,r0ð Þ S s,að Þ ð6aÞ

P Q a,sð Þ¼¼R s0ð Þð Þ/
���s� s0

��� ð6bÞ

P Q a,sð Þ¼¼Rið Þ¼ α 1�αð Þt�i ð6cÞ

Sampling from past experiences can also in principle approximate the extended sum of Equation 5, by leveraging the
sequential structure of memory retrieval (Weidemann et al., 2019) to serially sample experiences from successive states
(rather than a single state, as presented in Equation 6) and integrate them3 (Bornstein & Norman, 2017). Although this
process is less resource-efficient than TDRL, it is more flexible: Specifically, it can generate reliable estimates even after
just a few experiences in an environment (Lengyel & Dayan, 2008), can dynamically adjust to momentary goals
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FIGURE 1 Relevance-based retrieval of memories. The memory sampling framework (Equation 6) involves the probabilistic retrieval of

memories according to their relevance to the current state. This relevance may be assessed across any number of dimensions or attributes,

depending on the task at hand. In the illustrated example, the decision-maker is examining a pair of eyeglasses and deciding whether they

are useful for her current goal (e.g., watching a play). In doing so, she retrieves memories of past experiences with similar items. The most

likely item to remember is the one most relevant to the current state. Other items, of decreasing relevance, may also be retrieved, though are

progressively less likely according to their usefulness for viewing events at various distances
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(Bornstein & Daw, 2013), and can smoothly incorporate newly available information about transition or value functions
(Vikbladh et al., 2017). These features arise when the sample selection process admits many possible Monte Carlo
approximations to Q a,sð Þ—in other words, by sampling from multiple memory stores that represent experiences in dif-
ferent forms (Bornstein & Daw, 2013). Depending on which representation is being sampled from, these approxima-
tions can be wholly nonparametric, in the limit of individual samples with episodic features that also carry direct
reward signals (Bornstein et al., 2017), or it can include sequences of actions (Smith & Graybiel, 2013) or states (Fortin
et al., 2002; Pezzulo et al., 2014) bound together across repeated experience and terminating in a given outcome
(Keramati et al., 2016). Sequences sampled in this way can be probabilistic in nature, for instance in “map-like” representa-
tions of the history of transition experience that have abstracted away reward, allowing them to be combined with local
reward information (Dayan, 1993; Gershman, 2018). Evidence supports the existence of multiple such maps, connecting
states at different levels of resolution reflecting different histories of integration (Bornstein & Daw, 2012; Brunec et al., 2018;
Collin et al., 2015; Jiang et al., 2015; Madarasz & Behrens, 2019; Samejima & Doya, 2007; Eckstein & Collins, 2020).

Finally, it is important to note that although the above formulation is written in terms of reward values, the end
result of the process is to select actions.4 If we assume that action probabilities are proportional to (relative) action
values (Equation 2), and because we are describing the two-alternative case,5 then each memory sample, by contribut-
ing to the estimate of P(choose A), also updates the (relative) likelihood of a given action being preferred (i.e., log P

1�PÞ.
Understanding memory sampling as sequential inference of the “best” action to take connects it to the Sequential Prob-
ability Ratio Test [SPRT: Laming, 1968; the correspondence between online planning and sequential inference was also
noted by Solway and Botvinick (2012)] and, by extension, to the canonical evidence accumulation algorithm, the drift-
diffusion model (DDM; Bogacz et al., 2006; Busemeyer & Diederich, 2010; Ratcliff & Smith, 2004).

3 | MEMORY IN ACTION

Extensive recent findings support the idea that action selection is influenced by memories—even of individual
experiences—retrieved at the point of decision. One example is found in a series of studies by Ludvig, Madan, and
Spetch (Ludvig et al., 2015; Madan et al., 2014, 2015) who showed that individual choices between risky lotteries are
influenced by reminders of past choices (and their outcomes), guiding individuals toward riskier options when they
were reminded of choices on which they had been “lucky” in the past. These effects were observed within a single lab
session, but Wimmer, Li, Gorgolewski, and Poldrack (2018) demonstrated that the sense of “luckiness” associated with
reward-associated memoranda was detectable in explicit elicitation at least 3 weeks later.

A different study examined participants as they learned the values of trial-unique lotteries and performed a
decision-making task between learned and novel lotteries (Murty et al., 2016). They found that participants were more
likely to re-engage with learned lotteries that had previously resulted in higher rewards, but only for lotteries whose
values were correctly identified in a subsequent recognition memory test. These results suggest that memories about
specific rewarding events are successfully encoded and then subsequently reactivated upon a second encounter, consis-
tent with the idea of evidence arising from discrete packets, and with an evaluation function that is predicated on the
value experienced in that previous episode, rather than one computed anew. However, these data could also be consis-
tent with separate effects of positive reward prediction errors on choice and memory (Jang et al., 2019; Rouhani &
Niv, 2021). The question of whether memory sampling requires explicit recollection at the time of choice remains an
area of active interest.

In another study, participants learned the value of repeated options through choice and feedback, which were pres-
ented alongside trial-unique images of everyday objects (referred to as “tickets”; Bornstein et al., 2017). Choice trials
were interspersed with recognition memory probes that implicitly reminded participants of selected past choices. Track-
ing the average value of each option via incremental learning is a profitable approach to performing the choice task.
However, when choices were preceded by memory probes, participants' decisions were biased by the action taken and
the value received on the trial where the images were first introduced. This result was captured by a memory sampling
model which treated the probed experiences as more recent than they would otherwise have been (Equation 6c). This
matched previous work suggesting that decisions which appeared to be a running average of recent rewards could
instead be better captured by an algorithm that relies on single samples of past trials (Biele et al., 2009), and extended
the idea by linking the samples to episodic memories.

Bornstein et al. (2017) also used the same model to reanalyze previously collected data from a four-alternative forced
choice task? (Daw et al., 2006), which further revealed that in addition to participants' choices, neural decision variables
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measured in fMRI were better explained by a memory sampling model than by TDRL. Although forming and retrieving
individual memories is thought to be more cognitively demanding than maintaining summary statistics of a task (or a
semanticized model; Daw et al., 2005), these results indicate that individual memories of past rewards influence choice
even under the circumstances where they may not be locally relevant to task performance.

The idea that sampling draws on episodic representations implies that the sampling process should reactivate richly
associative information, which could also guide both action selection, and the content of successive samples. A critical
feature of episodic memory, as originally defined (Donaldson & Tulving, 1972), is that it is situated within time and
place, bound up with other events that occurred in a contiguous associative mental context. Critically, this context need
not be explicitly temporal: the associative nature of mental context is not identical to the sequence of experiences, but
may be instead or also sculpted by latent or semantic associations, a point we return to below. Supporting the idea that
sample selection changes as a result of memory reactivation, recent computational, behavioral, and neural work have
shown that encoding context affects the sequential structure of memory retrieval: when we recall an event from a con-
text, the next memory to be recalled is likely to be one from the same context (Folkerts et al., 2018; Howard &
Kahana, 2002; Socher et al., 2009). In terms of Equation 6a, recent memory reactivations are a component of s. Cru-
cially for the process of action selection, sequential memory retrieval can proceed along dimensions that may be infor-
mative about a range of option values (e.g., multiple flavors of ice cream tried at the same shop). This means that,
rather than simply serving as repeated samples of the same reward, successively recalled events may have different,
even opposing, action, and reward implications.

This sort of context-guided memory sampling was demonstrated using a variant of the “ticket” bandit task previously
discussed, altered such that memories with shared associative content (“context”, indicated by photographs of scenes)
sharply differed in which action was most likely to be rewarded (Bornstein & Norman, 2017. This allowed a dissociation
of the influence on choice of individual event reinstatement from that of ensuing reinstatement of events sharing that
context. When probed with a cue reminding them of a particular choice event, participants' subsequent choices were
influenced by the properties of other decisions made in the same context as the reminded one; critically, this effect was
mediated by neuroimaging markers of whether—and which—visual context was retrieved at the time of the decision,
even if that retrieved context was not the one actually experienced, supporting the hypothesis that the value estimate is
constructed at retrieval time, rather than being imbued in the reminder cue. The correlation between this behavioral
effect and the specific, momentary content of memory retrieval suggests that factors that modulate memory reactivation
also influence choice, and thus that these reinstatements are used to estimate values at the time of decision. The mem-
ory modulation effect has also been widely observed in other studies, where results indicate that decisions made in
familiar contexts are more likely to be influenced by past events than decisions in novel contexts (Duncan &
Shohamy, 2016), consistent with the notion that context is part of the input to the selection function; that remembered
options are more likely to be chosen as compared to forgotten ones despite the fact that the chosen options are compar-
atively unattractive (Gluth et al., 2015; Mechera-Ostrovsky & Gluth, 2018); that the opposite pattern holds when both
options are in the loss domain (Weilbächer et al., 2020), consistent with the idea that memory samples reduce uncer-
tainty in the value estimate; and that inducing imagination of episodically rich future scenarios alter impulsivity and
risk-taking behavior, suggesting that reactivating episodic memory may be a shared mechanism during both decisions
from experience and those that involve simulating potential future events based on past experience (Peters &
Büchel, 2010; St-Amand et al., 2018).

In addition to decisions that involve re-engaging with previously experienced options, pattern completion (see Sec-
tion 5) allows memory reactivation to also support decisions about never before seen options. For example, Barron
et al. (2013) asked participants to choose between novel food items that are combinations of two familiar food types that
had not been previously tested together (Barron et al., 2013). They found that the prospective values of the novel items
are constructed at choice time through simultaneously re-activating memories of its constitutive parts in the hippocam-
pus and medial prefrontal cortex. This finding resonates with proposals that representations in these regions are predic-
tive in nature (Bornstein & Daw, 2012, 2013; Gershman, 2018; Hamm & Mattfeld, 2019; Morton et al., 2017, 2020;
Schacter et al., 2012; Shohamy & Wagner, 2008; Stachenfeld et al., 2017; Zeithamova et al., 2012). A key property of
these representations is that they can be formed in the absence of explicit goals. For instance, a seminal study by
Wimmer and Shohamy (2012) found that, in the absence of conscious awareness, value learning through repetition also
recruited hippocampus, and that this hippocampal activity supports the transfer, or “spread”, of value between paired
stimuli. This idea has been extended to networks of rewards and stimuli related via complex, latent associative struc-
tures (Wu et al., 2018).
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Supporting the idea that these learned regularities support sensory and motor predictions, studies using sequential
stimulus identification tasks have shown that hippocampal activity increases with the uncertainty over possible succes-
sor stimuli (Bornstein & Daw, 2012; Harrison et al., 2006; Hindy et al., 2016; Kok & Turk-Browne, 2018; Strange
et al., 2005). Taking into account the spatial and temporal resolution of fMRI (Mayes et al., 2019), these findings are
consistent with observations in rodent electrophysiology studies that hippocampus is continually “prefetching” possible
next-step stimuli in order to inform action preparation, and that more prefetching occurs in times of higher uncertainty
about the next element in the sequence (Johnson & Redish, 2007; Redish, 2016). Indeed, this appears to be true even in
simple sequential responding, of the sort traditionally linked to striatal representations. For example, Bornstein and
Daw (2012, 2013) demonstrated that forward-looking activity in both hippocampus and striatum contribute to such
learning, with distinct quantitative signatures of the timescale across which they integrate stimulus history to generate
predictions. Maintaining multiple representations with different history dependence may be adaptive in environments
of unknown or changing volatility (Iigaya et al., 2019; Yu, 2007), and concords with extensive empirical work
supporting a diversity of integration timescales across brain regions (Brunec et al., 2018; Gläscher & Büchel, 2005;
Meder et al., 2017; Murray et al., 2014; Onoda et al., 2011) and expressed in behavior (Corrado et al., 2005; Staddon &
Davis, 1990).

Taken together, the above findings outline a clear role for mnemonic and relational reactivation during deci-
sions about the past and future. This reactivation process is stochastic, is influenced by multiple aspects of the
memory representation, supports both novel and repeated decisions, and adaptively selects memories based on
their predictive value to the decision at hand. We now turn to the question of how this information is transformed
into action.

4 | EVIDENCE FROM MEMORY

We briefly review the standard model of single-trial action selection, sequential evidence accumulation (Bogacz
et al., 2006; Ratcliff, 1978. Although questions remain about its exact instantiation in neural circuits (Brody &
Hanks, 2016; Gold & Shadlen, 2007), there is widespread support for the idea that a sequence of neural structures is
involved in successively signaling momentary sensory evidence in favor of candidate actions, integrating this evidence
across time and heterogeneous neural populations, and transforming the resulting timeseries into motor responses, and
that the evolution of this time-integrated signal is strikingly well-matched by a biased random walk, approximated in
the continuum limit as Brownian motion along a gradient (Ratcliff & McKoon, 2008).

Experiments using this framework are generally constrained such that action-relevant evidence is available only
in a single sensory modality (e.g., visual or auditory input). These unimodal evidence signals have multiple down-
stream effects: neural firing patterns in several successive regions reflect the accumulation of sensory input. These
structures carry out distinct transformations of the input, or combine it with other signals (Akrami et al., 2018;
Erlich et al., 2015; Hanks et al., 2015; Scott et al., 2017; Yartsev et al., 2018). It remains an open question what is the
precise contribution of each of these multiple components. Importantly, even in these tightly controlled settings,
neural firing has been shown to reflect changing internal representations of the inferred, latent structure of the
environment (Hanks et al., 2011; Yang & Shadlen, 2007). This is likely a special case of a more general property.
Namely, when all of the information necessary to make a decision is not actively present in the sensorium or the
current mental context—which is arguably the case for nearly every decision made outside of laboratories, as well
as many inside of them—the brain must, by definition, rely on reactivation of representations formed during past
experiences. Despite this, and despite the fact that early applications of the canonical form of the model were to rec-
ognition memory (Ratcliff, 1978), the lion's share of experimental applications over the past four decades has
focused on other kinds of decisions. However, findings of the neural architecture of evidence integration in these
other modalities are likely to apply to the study of memory-guided decisions, especially when studies employ stimuli
whose predictiveness is estimated via associations that emerge across experience (Yang & Shadlen, 2007). As rea-
ctivations of those previous experiences echo both previous sensory inputs and also latent, non-sensory information,
such as the inferred contingency structure of the environment and the value of rewards available at the time, all of
these lead to the subsequent reactivation of the same sorts of action-tendency or value associations as does sensory
input. In other words, stimuli may trigger action-related evidence directly as well as via associations with other
stimuli which themselves may trigger action-related evidence (Bornstein & Norman, 2017 (though the latter signals
may be integrated into the decision calculation at a later time, a point we return to below). A potential synthesis of
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this necessary corollary with the existing data is that accumulation-reflecting activity downstream from early sen-
sory regions actually represents the integration of multiple inputs, including memories (Bakkour et al., 2019;
Mainen & Pouget, 2019).

4.1 | Mathematical models of sequential inference: Gaussian and “Jump” diffusion

We now turn to the model itself, which has been a rich area of investigation for over four decades. Here we will only
cover a few key points relevant to the review, and refer the reader to several excellent treatments for further details
(Bogacz et al., 2006; Gold & Shadlen, 2001; Ratcliff, 1978; Ratcliff & Rouder, 1998).

In canonical form, the DDM is specified as a one-dimensional biased random walk in continuous time, where a
decision variable (x) is incremented at each time point by a step of average size Adt, corrupted by some zero-centered
Gaussian white noise with standard deviation c (cdW), as in Equation (7).

dx¼Adtþ cdW ð7Þ

Integrating these steps over time, the walk continues until it arrives at one of two absorbing thresholds. At this point,
the walk terminates and the action is selected according to which threshold was reached. Thus, the model specifies both
the choice made and the time needed to make the decision. This procedure is the continuous-time limit of the SPRT, a
simple arithmetic procedure for determining which of two hypotheses are supported by a stream of noisy evidence. This
equivalence is important because Wald and Wolfowitz (1948) proved that, given a fixed error rate, the SPRT determines
the solution after the fewest number of samples. Thus, the DDM describes the optimal procedure for weighing evidence
in two alternative forced choices, under reasonably broad assumptions.6

The SPRT operates by examining whether the likelihood ratio (Equation 8a), the conditional probability of each
hypothesized stimulus (s1 and s2) given the evidence (e) observed, reaches a predetermined threshold that corresponds
to the desired level of accuracy. When multiple samples (e1,…,en) are observed, the gross likelihood ratio is simply the
product of these individual terms (Equation 8b). Gold and Shadlen (2001) proposed that neural circuits could imple-
ment evidence accumulation by computing this product in log space. Representing this quantity in logarithmic form
allows it to be implemented as a successive summation (Equation 8c), which can naturally be implemented by neurons
(up to normalization constraints, see Keung et al. (2020).

LR1,2je¼ P ejs1ð Þ
P ejs2ð Þ ð8aÞ

LR1,2je1…n ¼
P e1js1ð Þ
P e1js2ð Þ�

P e2js1ð Þ
P e2js2ð Þ�

P e3js1ð Þ
P e3js2ð Þ�

P e4js1ð Þ
P e4js2ð Þ�

P e5js1ð Þ
P e5js2ð Þ� �� � ð8bÞ

logLR1,2je1…n ¼ log
P e1js1ð Þ
P e1js2ð Þþ log

P e2js1ð Þ
P e2js2ð Þþ log

P e3js1ð Þ
P e3js2ð Þþ log

P e4js1ð Þ
P e4js2ð Þþ log

P e5js1ð Þ
P e5js2ð Þþ � � � ð8cÞ

Bogacz et al. (2006) rearranged these terms to denote the logLR as integrated evidence (It) and show that the summa-
tion is a recursion which takes the form of a discrete random walk (with stochasticity inherent in the densities given by
the evidences et):

It ¼ It�1þ log
P etjs1ð Þ
P etjs2ð Þ ð8dÞ

Gold and Shadlen further noted that one benefit of forming decisions in this way is that it provides a “common cur-
rency” in which to represent multiple kinds of evidence besides just sensory input, such as prior probabilities. However,
in the DDM, the drift rate term specifies the average net instantaneous direction of the evidence summation series. That
is, it averages out any ephemeral fluctuations in the relative weighting. This is a valuable approximation for tasks with
stationary evidence consistency, but breaks down in cases where the properties of arriving evidence fluctuate over time
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(Wong et al., 2007). Outside of tightly controlled perceptual experiments, evidence may be more like these latter cases.
For instance, consumption decisions implicitly aggregate multiple sources of evidence, including sensory input, internal
state (e.g., cravings for a particular flavor), and history-dependent representations of the stimulus, each of which may
have different properties that could, when those options are examined, alter the momentary drift rate. As a result, the
static vector specified by the drift rate may obscure underlying heterogeneity in net direction of evidence.

Along these lines, a variety of alternatives to the “pure” DDM has been proposed. These include time-dependent
drift rates, time-dependent thresholds, and non-Gaussian noise (Ratcliff & McKoon, 2008; Srivastava et al., 2017; Voss
et al., 2019; Wieschen et al., 2020). These alternatives sacrifice the analytical tractability and theoretical connection to
the optimal SPRT in favor of better modeling the underlying stochastic dynamics that give rise to response times. One
especially promising approach for modeling the arrival of evidence samples from different distributions, called Lévy
Flight models (Figure 2), considers a variety of intermittent “jumps” that augment and alter the Brownian motion of
Equation 7. Recent work on these “jump-diffusion” models suggest that they provide a superior fit to two alternative
forced choices data in situations where evidence sources are of varying reliability, are mixed with prior probabilities,
and/or differ in the distribution of their arrival times (Voss et al., 2019; Wieschen et al., 2020). In the next section, we
review features of memory representations that suggest that these conditions are likely to hold in general when sam-
pling from memory.

5 | MECHANISMS OF MEMORY ENCODING AND RETRIEVAL

In this section, we outline the features of content and process (Zhao, Richie, & Bhatia, 2020) that mediate the impacts of
memories on decisions. Specifically, we describe multiple kinds of memory representations, how they differently repre-
sent aspects of past experience, and how they lend themselves to different retrieval and transformation dynamics that
later affect decision-making.

5.1 | Content

Significant ongoing work addresses the question of what representations are supported by the hippocampal memory
system, and how these representations adapt over the course of experience and rest (Kumaran et al., 2016; Schapiro

FIGURE 2 Lévy Flight models add discontinuous jumps to standard diffusion models. Evidence accumulation models describe the

integration of evidence samples across time by their average net direction and magnitude of accumulation (green arrows), which dictate the

rate at which evidence tends to reach a fixed threshold (dashed black lines). This average obscures considerable heterogeneity both across time

within a single decision and also across multiple trials examining related decisions (gray lines). Recent work examines the proper distribution

model for describing the variability of these accumulation timeseries. Standard/continuous models of evidence sampling (left) and Lévy or

Jump models (right) both have a noisy, continuous component for infinitesimal sampling (blue lines), however, Jump models add the option

for sampling discrete shocks from an alternative evidence distribution (red lines). It has been shown that response times in a general class of

deliberative decision tasks are better fit when these jumps are added to the standard evidence accumulation timeseries (Voss et al., 2019;

Wieschen et al., 2020). An open question is what mechanisms produce these jumps. Here, we propose that one mechanism by which such

jumps arise is via parallel sampling from multiple internal evidence sources which produce evidence at different latencies and frequencies
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et al., 2017; Stachenfeld et al., 2017; Yonelinas et al., 2019). A consensus is emerging that multiple representations in
the hippocampal formation and adjoining cortical regions are progressively tuned to support adaptive reward-seeking
behavior, and that these representations restructure experiences to create “maps” that organize even abstract concepts
according to spatial-like codes (Behrens et al., 2018; Bellmund et al., 2018; Vikbladh et al., 2019). Such representations
are computationally desirable because they allow complex planning behaviors to be quickly approximated via opera-
tions akin to vector products (Gershman, 2018). However, biological agents are likely never truly certain of their current
“state”, and so some degree of uncertainty carries forward through all operations (Courville et al., 2006; Dayan
et al., 2000; Geerts, Stachenfeld, & Burgess, 2019; Soltani & Izquierdo, 2019). With its ability to extract sparse codes
from sensory inputs, hippocampus is implicated in the learning of uncertain states by representing the latent contexts
that give rise to observations (Gershman et al., 2010; Sanders et al., 2020). Such representations may enable inference
about which memory samples should be drawn with partial information about the structure of the environment
(Gershman et al., 2015). We now review in detail what is known about the content of representations supported by the
hippocampus (relational or latent).

5.2 | Stimulus–stimulus relational representations

The influential cognitive map theory proposed that animals encode a mental representation of the environment that
reflects the relative locations of objects within it (Tolman, 1948). The theory has particularly influenced the study of
spatial navigation, which shows that neurons in the hippocampus are tuned to encode the relations between different
locations (O'Keefe & Nadel, 1978). Subsequent work demonstrates that different routes coded in the animal's hippocam-
pus are reactivated and evaluated before an animal enters the same environment (Johnson & Redish, 2007), and can
sometimes reflect novel routes that have not actually yet been experienced (Gupta et al., 2010). Recent evidence sug-
gests that similar neural representations, both in the hippocampus and in adjoining medial temporal cortical regions,
could also be involved in encoding the relationships between non-spatial objects. Across several recording modalities
and model organisms, such flexible yet structured relational codes have been observed in domains as varied as temporal
relations (Garvert et al., 2017; MacDonald et al., 2011), sound frequencies (Aronov et al., 2017), conceptual features
(Constantinescu et al., 2016; Theves et al., 2019), social relations (Park et al., 2020; Tavares et al., 2015), and sequential
planning (Bornstein & Daw, 2013; Doll et al., 2015; Vikbladh et al., 2019). While these codes are observed in distinct
(though adjoining) regions and reflect different types of relational coordinate systems, it is widely thought that they
serve complementary roles in a general relational network centered on the hippocampus that together reflect the asso-
ciative structure between events (Eichenbaum & Cohen, 2014; Preston et al., 2004; Shohamy & Wagner, 2008;
Zeithamova et al., 2012). Such representations support inferences that necessitate integrating over multiple distant epi-
sodes. For instance, one study asked participants to make novel decisions that require integration across episodes with
overlapping elements, and found that the activation patterns in the hippocampus during learning predict how well
experiences were integrated into support of novel decisions (Shohamy & Wagner, 2008). These studies point to a role of
hippocampus in coding relational representations between observations, be it spatial locations or discrete events
(Schlichting & Preston, 2017).

Recent advances in the field of RL provide a theoretical account of these various relational representations
(Gershman, 2018; Stachenfeld et al., 2017), which can potentially unify the above-described theoretical frameworks and
empirical findings. Specifically, it is suggested that the place cells in the hippocampus encode the expected occupancy
of future states (or locations) following the current state, generally termed as encoding a “successor representation”
(Dayan, 1993). The key insight of the theory is that rather than encoding place in an absolute sense, the place cells
encode a predictive representation of future states that reflects the relational structure between them (Stachenfeld
et al., 2017). As a result, two states that predict similar future states will have similar representations, regardless of their
physical adjacency. This idea allows the theory to account for not only a wide range of neurophysiological phenomena
in rodent spatial tasks, but also findings that are built on discrete, abstract relational knowledge.

Finally, it has been shown that the relational representations coded by the hippocampus can be used to drive adap-
tive behavior when combined with reward information, whether learned by experience or instructed (Bornstein &
Daw, 2013; Doll et al., 2015; Wimmer & Shohamy, 2012). For example, in the Wimmer and Shohamy (2012) study men-
tioned above, participants first learned a series of arbitrary associations between stimulus sets A and B, and then
learned that some of the stimuli in B led to monetary reward (B+) while others did not (B�). When asked to choose
between two A stimuli, participants showed preferences for the A stimuli that had been paired with B+ over the other
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stimuli that had been paired with B�, though neither stimulus had been directly paired with reward. This decision bias
was predicted by greater reactivation of prior related experience (A� > B) in the hippocampus during the encoding of
new reward information (B� > +), suggesting that hippocampal memory representations support the spread of mone-
tary value across related experiences. Other studies show that rewards newly introduced at the time of decision can be
combined with state representations to influence choice (Bornstein & Daw, 2013). Taken together, these findings are
consistent with the idea that the hippocampus supports adaptive behavior by coding relational representations that con-
nect distinct states (e.g., spatial locations and discrete events).

5.3 | Stimulus–context latent representation

Although much of the work in memory-guided decisions focuses on how relational representations are constructed dur-
ing encoding, or “retrospective integration”, recent research has begun to understand how individual memories are
integrated at the time of decision through retrieval mechanisms, a form of “prospective integration” (Doll et al., 2015;
Koster et al., 2018). For example, in one study, Doll et al. (2015) designed a multi-step reward learning task assessing
the extent to which participants integrated information about rewards received during other interleaved trials. Using
category-specific images at different decision stages, Doll and colleagues decoded the neural representations that simu-
late the prospective paths in the hippocampus. The activity patterns were correlated with the degree to which choices
reflected successful integration, indicating that the hippocampus supports prospective value computation by supplying
information about the sequential relations between actions.

Several key factors that mediate prospective integration have been identified, with context information being the
most important one. For example, it has been shown that items are more likely to be retrieved together if they are expe-
rienced closer in time (Howard & Kahana, 2002; Sederberg et al., 2008, 2011). The link between stimuli and their con-
text is distinguished from links between stimuli within a context in that the context serves as a mediating, latent,
representation among many events, and represents another scale at which relational associations may be formed—and,
critically, navigated (Shin & DuBrow, 2021). This phenomenon was exemplified by the temporal context model (TCM),
which posits that during encoding individual items are bound to a slowly drifting “context vector” in memory. At test,
retrieval of an item leads to the reinstatement of the context that the item was bound to, which biases subsequent
retrieval toward items that were bound to a similar temporal context as the item that was just retrieved. Several studies
have since shown that when individual memories are bound to the (temporal) context in which they are encoded, deci-
sions are influenced by information indirectly related to the present problem through these contextual links
(Bornstein & Norman, 2017; Hoskin et al., 2019; Morton et al., 2020).

In sum, experience creates multiple forms of memory representations that variously encode predictive statistics
about both observed, stimulus–stimulus associations, as well as inferred links between abstract states. These representa-
tions serve a common purpose of allowing humans and animals to more quickly act on regularities in the environment.
We next examine the process by which this information is used to enact decisions.

5.3.1 | Process: Within-trial dynamics of pattern completion

This section reviews what is known about the ways in which these multiple representations are accessed in the service
of behavior; in other words, whereas the previous section examined how representations reflect the dynamics of
memory-guided decision-making across experiences, this section illustrates the dynamics of memory-guided decisions
within a single choice.

The core idea of memory sampling is that memory retrieval is a form of Monte Carlo estimation, leveraging these
representations to estimate possible future states and rewards, given the current state and a candidate action
(Equation 6). This sort of memory-based simulator has been shown to be useful for effective planning in large, partially
observable environments (Silver & Veness, 2010), such as are likely predominant in naturalistic settings. However, it is
unknown to what degree these properties correspond to biological organisms. Here, we discuss what is known about
the ability of the hippocampal memory system to reinstate past experience based on partial inputs, a process known as
pattern completion (Marr, 1971).

Pattern completion during episodic recall is known to depend on the hippocampus (Horner et al., 2015). The CA3
region of hippocampus is thought to be instrumental to pattern completion (Guzman et al., 2016; Neunuebel &
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Knierim, 2014; van Dijk & Fenton, 2018). This area has the multiply-recurrent circuitry and convergent direct external
inputs necessary to perform auto-associative computations that can resuscitate stored patterns based on partial input
(Koster et al., 2018; Marr, 1971; McNaughton & Morris, 1987; Schapiro et al., 2017). These critical architectonic features
may allow CA3 to integrate coincident inputs across both time and sensory modality, supporting a form of fuzzy coinci-
dence detection that can apply to sequences as well as sets (Lisman & Grace, 2005). It is known that pattern completion
is ongoing throughout behavior, during awake rest, and even during sleep (Antony et al., 2012). The frequency of pat-
tern completion may be reduced during periods of repeated novel experience (Duncan et al., 2012; Hasselmo, 2006), or
quieted by cholinergic release (Prince et al., 2017) that encourages the formation of new context representations
(Gold, 2003).

By definition, pattern completion reinstates many of the same neural ensembles that were co-active during experi-
ence, or which have been attached via offline processing. These reinstated patterns can influence processing down-
stream of the regions where patterns are being reinstated, just as does the original external sensory input (Hoskin
et al., 2019). It thus follows that ongoing decision processes should be influenced by this reactivation, suggesting an ave-
nue for goal-directed deployment of this function. Indeed, pattern completion has been shown to be deployed when
needed to inform uncertain inference (Hindy et al., 2016). The interaction between internally generated sequences and
the properties of external input is a critical feature of computational work on state inference, a necessary function for
online planning in environments with uncertain latent contingency structure (Kaelbling et al., 1998; Rao, 2010).

Pattern completion may be especially useful to decision-making because it allows past choices and outcomes to
come to mind in situations that are similar to, but not exactly the same as, past encounters. This supports a form of gen-
eralization, permitting biological agents to navigate new environments or take on new tasks with little previous direct
experience (Leutgeb & Leutgeb, 2007). An open question is whether, or in which situations, do complete patterns serve
as a rigid template for subsequent action (Lengyel & Dayan, 2008) or something more akin to a proposal for action, to
be evaluated in the context of other information available at the time of the current choice (Vikbladh et al., 2017).

5.3.2 | Where does the time go?

The dynamics of memory retrieval may play an important role in decisions in biological organisms. If decisions were
based on the reactivation of single episodes, they might be expected to execute more or less instantly; unlike sensory
decisions, which rely on fundamentally incremental input, memory-guided decisions could in theory have immediate
access to the internal representations that serve as evidence. But elongated decision times are not only widely observed,
they closely track characteristics of the decision variable (Yang & Shadlen, 2007), and so models that take account of
response time can improve the out-of-sample prediction of choices (Clithero, 2018). In an insightful evaluation of this
question, Shadlen and Shohamy (2016) propose that one reason memory-guided decisions take time, rather than acting
instantly on internally available information, is because a limited-bandwidth thalamocortical pipeline enforces serial
processing. They then assert that retrieval time itself does not play a role in the sequential nature of memory sampling,
because sharp-wave ripples (SWR: one, though not the only, putative substrate of memory retrieval; Joo &
Frank, 2018), operate in short, high-frequency bursts, much faster than the variability observed in decision times, and
so, they argue, could not possibly be a rate-limiting factor in decision-making.

However, several features of memory reactivation (encompassing both SWRs and also theta sequences, which are
lower frequency and more regular) suggest that retrieval dynamics may play a part in the availability of information.
First, although SWRs do indeed unfold over very short timescales, their onset time is highly irregular (Buzs�aki &
Tingley, 2018), perhaps reflecting other rate-limiting processes that precede any decision-relevant SWR events
(e.g., memory search). Memory search has often been fruitfully modeled as a biased random walk along a graph con-
structed from experience (Collins & Quillian, 1969; Jun et al., 2015). Distinct—even conflicting—action tendency sig-
nals may be generated at different steps along the walk. Supporting the idea that memory retrievals' influence on
decision unfolds over time is the observation that longer delays before choice lead to greater memory influence on deci-
sions (Foerde & Shohamy, 2011)—and, in particular, greater influence of extended retrievals from memory (Bakkour
et al., 2019; Eldar et al., 2020; Gordon et al., 2014). Second, the behaviorally relevant features of SWRs are highly vari-
able, both across instances and the population of cells participating, and depend on contextual factors such as cognitive
states and vigilance, consistent with the idea that these events provide information in service of current behavioral and
cognitive demands (Hussin et al., 2020). As a result, there may not be a simple relationship between individual ripple
events and subsequent decisions. Third, the content of memory retrieval that serves as the “common currency” relevant
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to decisions—whether value representations or action tendencies—is likely not encoded directly in hippocampus, but
instead by populations one or more synaptic connections downstream. Suprathreshold activation of these representa-
tions may require converging input or preceding innervation from other areas, such as vmPFC (Gluth et al., 2015;
Schmidt et al., 2019; Spalding et al., 2018; Weilbächer & Gluth, 2016), or be mediated by intermediate abstract represen-
tations, for instance in retrosplenial (Chrastil et al., 2015; Mao et al., 2017, 2018) or inferior temporal cortex
(Bornstein & Norman, 2017; Hoskin et al., 2019; Mack & Preston, 2016). Fourth, the influence of value from past deci-
sions may depend on a more elaborative retrieval (“source”; Murty et al., 2015), which computational models posit
requires additional activation that may stretch across multiple cycles of hippocampal retrieval (Kerrén et al., 2018).
These elaborated representations may develop relatively slowly during retrieval in part because they depend, especially
early on in experience, on “big-loop” recurrence, multisynaptic bridges between medial temporal lobe structures, and
other areas of cortex (Koster et al., 2018; Kumaran & McClelland, 2012). Finally, a recent study examined serial deci-
sions that were initiated by a single composite stimulus, and found that sensory evidence is accumulated in parallel
before an integration bottleneck occurs somewhere downstream; evidence that applies to later decisions is “buffered”,
apparently losslessly (Kang et al., 2020). This finding supports the idea that the time it takes to act on information
retrieved from memory can vary greatly across decisions, and that this information can be sampled near-simultaneously
from multiple sources. This last point is relevant because we do not fundamentally know how many compound deci-
sions are contained within a single experimental trial response in standard lab tasks—this is likely at least as true in
rodents, in whom most work on these neural substrates has been performed, as it is in humans (for instance, a rodent's
decision to enter an arm of a maze may be preceded by several intermediate decisions e.g. to change head direction or
to serially not enter other arms of the maze). Some of these decisions may not be deliberated for enough time to depend
on memory retrieval, especially after extensive practice on the task, as is common in rodent experiments. Additional
work is necessary to understand what is the effective time required to transmit decision-relevant information from mem-
ory retrievals downstream, and how it depends on attributes of the current decision problem.

Such investigations will need to pay special attention to retrieval during early learning, which may be dramatically
different in dynamics and content from the kind of online reactivation that occurs after many experiences with a task
or learning set (Redish, 2016), and especially when divorced from spatial navigation, the pace of which can confound
investigations of the frequency of retrieval of related place field representations. Along these lines, one important recent
study examined these dynamics in a non-spatial setting, examining “lookahead” during sequences of odors in well-
trained rodents (Shahbaba et al., 2021). Using a novel combination of decoding methods to identify odor identity repre-
sentations in dorsal CA1, the authors found that they were able to decode anticipatory sequence reactivations on the
scale of a few hundreds of milliseconds, consistent with the theta-band rhythms observed in spatial navigation studies.
Critically, however, they also observed faster sequence reactivations within an individual theta cycle, with power that
varied with distance from the current odor, suggestive of either simultaneous reactivation at multiple temporal scales
or an underlying substrate for the sequences decoded at lower frequencies. Further investigation is necessary to under-
stand whether sub-theta sequence reactivation is alongside, or constituent of, the more well-known theta sequences.

More broadly, however, the dynamics of pattern completion are still poorly understood (Knierim &
Neunuebel, 2016). The decoded content of these sequences can shift categorically between individual periods of the
theta cycle. This shifting may reflect reactivation based on uncertain sensory or latent inputs, but “flickering” or “fast
remapping” has been observed even in the case of spatial representations, in which it is difficult to induce fundamental
uncertainty (Jezek et al., 2011). A separate line of research has identified “chunking” of theta sequences; these imply
that only partial trajectories may be reactivated in a single theta cycle. Elongated trajectories may therefore take multi-
ple theta cycles to reactivate (Gupta et al., 2012; Tang et al., 2021). Consistent with this idea, and supporting the pro-
posal that these sequences drive behavior, rather than reflect it, disrupting mPFC during deliberation impairs both
lookahead theta sequences and associated “vicarious trial and error” behavior (Schmidt et al., 2019).

Finally, though the decoding approach to investigating properties of reactivated place-cell sequences has revealed
profoundly important structure, trajectory dynamics are not necessarily ballistic. It has recently been observed that
population-wide activity, much of which is likely obscured by modal decoding, more closely matches Brownian diffu-
sion along a gradient (Stella et al., 2019). This is consistent with the idea that each reactivated trajectory provides only
partial information about the overall content of lookahead, necessitating integration across multiple reactivations, and
suggests that behavior may be sensitive to dynamics obscured by extant decoding approaches. Intriguingly, the same
study showed that behavior is “superdiffusive”, reflecting occasional “jumps” in diffusion, as would result from
Brownian motion convolved with stochastic perturbations in the direction of the gradient. Such jumps may have
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adaptive value in navigating ecologically normative environments (Viswanathan et al., 2011), but the ultimate source of
their neural instantiation remains unclear.

Taken together, the above findings support the idea that multiple memory representations are created during expe-
rience, that each is tuned toward different aspects of experience, including history-dependence, and that the dynamics
of reactivation are variable and linked to the associative structure of memories and memory sequences. The next
section synthesizes these representation-dependent properties of memory reactivation with the accumulation frame-
work and RL problem described above.

6 | RANDOM WALKS TOGETHER

In the previous sections, we reviewed the evidence that experience produces multiple associative representations
(sequences) that vary in the length of history they incorporate, the dimensions or features of experience that they repre-
sent (e.g., motor sequences, sensory features, latent states), the scale at which their constituent parts are recorded
(coarse to fine), and the degree of determinism in their connection (high or low entropy). Each of these representations
has, separately, been empirically shown to be reactivated in response to internal or external stimulus—and, when rein-
stated, to serve as predictions of future outcomes that guide ongoing action selection.

This proliferation of predictions presents its own puzzle: Which one should be used to guide behavior in any
given situation? In other words, How do we decide how to decide? A seminal proposal in this area is that each repre-
sentation constitutes a “controller”, whose predictions are arbitrated among based on their uncertainty (Daw
et al., 2005; Keramati et al., 2011; Simon & Daw, 2011). This principle, originally proposed to explain the apparent
trade-off between pairs of flexible and inflexible representations (e.g., as encoded in dorsomedial and dorsolateral
striatal circuits (Yin et al., 2004, 2005), has been extended to encompass episodic memory as well (Lengyel &
Dayan, 2008; Santoro et al., 2016), with each system predominant after different degrees of experience in a given
environment. However, it is as yet unclear how this principle is instantiated in neural circuits. One candidate, that
representations “compete” for modal control (Poldrack et al., 2001), is a reasonable explanation of data in tasks with
stationary probabilistic structure, but seems not to anticipate the ongoing contribution of multiple systems that are
observed when examining non-stationary tasks (Bornstein & Daw, 2012). Related work explores the idea that top-
down or other control mechanisms guide this process (Lee et al., 2014), however, it is unclear exactly how these sig-
nals propagate across such a multitude of representations.

Our review of the relationship between the representational properties listed above and the dynamics of reac-
tivation, viewed through the framework of sequential sampling, points to a potential unifying mechanism that is consis-
tent with each of these proposals, without requiring top-down arbitration. Specifically, if we write out the log odds
summation from Equation (8) with multiple sources of evidence, such as arriving from multiple internal memory repre-
sentations (Figure 3 and Equation (9a)—here, c for context and i for item), each arriving at different latencies (time to
arrival of first sample) and continuing at different frequencies (rate at which subsequent samples arrive), we see that the
resulting mixture of evidence implements a time-varying weighting across the different source representations
(Equation 9b).

logLR1,2 ≈ log
P ec,1js1ð Þ
P ec,1js2ð Þþ log

P ec,2js1ð Þ
P ec,2js2ð Þþ log

P ei,1js1ð Þ
P ei,1js2ð Þþ log

P ec,3js1ð Þ
P ec,3js2ð Þþ log

P ec,4js1ð Þ
P ec,4js2ð Þþ log

P ei,2js1ð Þ
P ei,2js2ð Þþ � � � ð9aÞ

≈
XN

j¼1log
P ec,jjs1
� �

P ec,jjs2
� �þ

XN
2

k¼1log
P ei,kjs1ð Þ
P ei,kjs2ð Þ ð9bÞ

Note that the form of the weighting may not be monotonic in time, as different representations may take longer to gen-
erate their first sample (e.g., memory sequences), or may appear to “pause” in generating samples (e.g., at boundaries
identified between adjacent memories whose reward statistics differ—and which thus imply distinct action tendencies;
Rouhani et al., 2020). The resulting continuous-time form would be that of the “jump-diffusion” model previously
discussed.

No matter the form that the sample arrival dynamics take, the instantaneous weighting implied by
Equation (9) implements an organizing principle akin to the “value of information” (Bera et al., 2020; Callaway
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et al., 2018) in which representations with less precise predictions or less-immediately available evidence are slower to
influence choice, which can allow information that tends to be more precise or immediate to dominate the accumulated
evidence calculation. Critically, though this time-varying weighting requires no “top-down” or other bias signal, it can
naturally incorporate them. For instance, eye gaze has been shown to modulate the accumulation rate of the attended
option in simple choice tasks (Krajbich & Rangel, 2011); in the current framework that modulation may be
implemented by the arrival of stimulus-triggered evidence samples from memory (Constantino & Daw, 2010), or by a
gain modulation of signals arriving from ongoing reactivations (Aston-Jones & Cohen, 2005).

Whether or not additional signals enter into the calculation, a relationship between the informational characteris-
tics of the representation and its sample dynamics in the form of Equation (9) is also equivalent to a suite of tools from
machine learning for online mixing of classifiers with varying “expertise” (reliability) across data domains, known as
“product of experts” (Hinton, 1999), one instance of “ensemble learning” (Polikar, 2012). One approach involves multi-
plying the action tendencies (summing the log likelihoods) produced by each component—exactly the procedure given
by the series above. While the field currently lacks analytical results on general optimality guarantees for this method,
simulations support its efficacy in navigating partially observable environments (“Boltzmann Multiplication”; Wiering &
van Hasselt, 2008). More sophisticated “ensemble fusion” approaches learn adaptive weighting for each component—
predictive Hebbian learning mechanisms may be sufficient to develop these with use by altering sequence-specific
dynamics (see Section 6.1). Further research is necessary to understand how learning is tuned to support adaptive
fusion.

This computational approach could guide further research in the neurobiology of the differential dynamics of mem-
ory reactivation across representations. One question raised by this framework is whether the temporal dynamics of
memory reactivation are fundamental, adapt to the time available, or are modulated by the content of representation or
computations being performed. Intrinsic differences in reactivation dynamics for different representations could be one
form of rational “inductive bias” (Griffiths et al., 2010) for fast, flexible decision-making using multiple sources of
evidence—memory, sensory, and motor—allowing decision weights to adaptively adjust to the expected temporal
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FIGURE 3 Simultaneous sampling from multiple internal representations implements a “product of experts” via a jump-diffusion

process. In this example, a person may draw on multiple forms of internal representation when deciding which ice cream shop to visit. For

instance, she may have a well-traveled route from her apartment to an often-visited shop (motor sequence), while also drawing on an

allocentric representation of the location of each shop (cognitive map). These can be combined with memories of her more recent

experiences with different shops, including the day and surroundings of a previous experience (episodic context) as well as a particular

individual experience (episodic item). Each of these is sampled at different latencies, and with different frequencies, and their product results

in a “jump-diffusion” timeseries of accumulated evidence. The resulting decision—which boundary is crossed, and at what time—is thus a

weighted mixture of the contributing factors
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trajectory of the current decision, conditional on it not having yet completed—for example, fast motor sequences should
guide short decisions, but memory sequences may play a more dominant role if the action remains unresolved.7 Several
recent empirical observations are consistent with this proposal (Hardwick et al., 2019; McDougle & Taylor, 2019); fur-
ther research is needed to understand how the time-varying mixture of learned representations in memory retrieval
reflects its adaptive use in decisions.

Consistent with the proposal that sample rate tracks the history of experience embedded in the sample, evidence
supports the idea that semantic memories are accessed at a faster rate than are episodes, following classical spreading
activation theories of neural processing (Collins & Loftus, 1975; Corbett & Wickelgren, 1978). Supporting the idea that
such information is accessed simultaneously, despite different delays to peak efficacy, responses are further speeded
when semantic information is congruent with episodic (McKoon et al., 1985); conversely, the availability of congruent
semantic information influences the content of ongoing episodic retrieval (Manning et al., 2012). Taken together, neu-
robiological dynamics, process-rational cognitive models, and dynamical systems considerations support the notion that
memory-inflected evidence accumulation is both continuous and irregular.

We have seen that multiple memory representations are learned and transformed on an ongoing basis, reflecting
experience integrated across multiple scales, and that these representations are accessed by a pattern completion pro-
cess whose effective dynamics depend on neural circuit properties and coherence of the representations in question.
Taken together, it follows that choices under time pressure will be biased toward options for which this combination of
factors results in a faster sample onset and lower latency between successive samples, and that response times will be
shaped by the difference between options on these factors (in addition to, for instance, desirability (Fine et al., 2020). In
other words, the influence of associative distance on decisions should be mediated via its influence on evidence dynam-
ics. Further investigation is necessary to understand how the temporal dynamics of associative memory retrieval dictate
the type of information that guides decisions.

6.1 | Future directions

A primary direction of future research is understanding how various factors influence the temporal dynamics of mem-
ory retrieval. Evidence suggests the influence of at least the following terms: (1) semantic distance (e.g., as estimated
using word embeddings; Chadwick et al., 2016), (2) episodic distance (Polyn et al., 2009), and (3) the spread of probabil-
ity mass across associations at each kind of distance (Socher et al., 2009). Dimov and Link (2017) examined how deci-
sions were made based on cues that varied in each of these factors (operationalized as retrieval fluency and cue
validity). They found that, for most participants, retrieval fluency was predominant over cue validity. However, the
range of inferred cue validities in the experiment was narrow, which may have limited its usefulness in decisions.
Importantly, they observed that subjects' response times varied strongly with the number of cues retrieved for each deci-
sion, regardless of what was the dominant factor (fluency or validity) for that subject. The proposal that multiple forms
of decisions depend on retrieval dynamics that vary as a function of associative distance may explain why choices and
response times appear to covary between tasks that examine how subjects weigh options across many kinds of such dis-
tances, for instance in intertemporal choice, patch foraging, and model-based planning (Kane et al., 2019; Shenhav
et al., 2014), each of which has been independently shown to depend on long-term memory representations (Palombo
et al., 2015; Peters & Büchel, 2010; Schmidt et al., 2019; Vikbladh et al., 2019).

Finally, though we have focused here on memory sampling's involvement in two alternative forced choices, the
mechanism we describe has been observed or shown to be useful in a wide array of functions. Specifically, some form
of time-dependent successive sampling from rich, autobiographical memories with episodic features has been proposed
in the following domains: as a mechanism for equilibrium strategy discovery in repeated multiplayer economic games
(Gonçalves, 2020); to augment the learning trajectories of artificial agents via a form of “memoization” of partial infer-
ences about environmental contingencies (Ritter et al., 2018); to explain the trajectory of symptom development in anxi-
ety disorders, via biased sampling of threatening stimuli (Sharp et al., 2020); to explain the decision to use substances of
abuse after years of abstinence (Bornstein & Pickard, 2020); and to support working memory maintenance (Hoskin
et al., 2019). This ubiquity of functional impacts aligns with observations of widespread hippocampal involvement in
cognition and perception (Shohamy & Turk-Browne, 2013), and more broadly concords with the centrality of this form
of memory in everyday experience (Bergson, 1913). Much work remains to understand how these persistent records of
past experience—and their near-constant reactivation—shape our thoughts and actions (Box 1).
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ENDNOTES
1 We use the term “memories with episodic features” to refer to representations of past experience that exhibit dense,
multi-sensory associations, formed during a single experience, which potentially include attributes incidental to goals
at the time of that experience (Allen & Fortin, 2013; Bornstein & Pickard, 2020; Box 1). Though “episodic memory”
has variously been defined by its relationship to conscious, declarative recall, these properties may not be functionally
necessary to an influence on choices, and so we sidestep the question of awareness in the present review.

2 Multiple variants of each equation achieve similar goals under different settings. For more in-depth treatment, see
Sutton and Barto (2018); for a review of the neural instantiation of these variables, see Glimcher (2011).

3 The full equation describing sample-averaging is an expansion of Equation (6), and is omitted here for space reasons.
See the supplemental materials of Bornstein et al. (2017) (Bornstein & Norman, 2017 for the expanded form).

4 Indeed, several frameworks propose that memory retrieval plays a direct role in action selection, rather than being
mediated by value estimation (Henson & Gagnepain, 2010; Pezzulo et al., 2019; Wang et al., 2015). Recent evidence
supports the general idea that decisions for reward are actually deliberated in action space, rather than with values
intermediating (Koechlin, 2019), and that the effect of memory on subsequent preferences is only present when the
memory evokes a choice, rather than an item presented in the absence of choice (DuBrow et al., 2019). The distinction
between deliberating in terms of values and deliberating in terms of actions is important, with consequences both in
the shape of behavioral variability and the understanding of the substance of neural representations; though outside
the scope of this review, we refer the reader to Hayden and Niv (2020) for an excellent discussion of the implications.

5 Though a similar procedure can apply to the multialternative scenario (Baum & Veeravalli, 1994).
6 Again, a similar form, though with important differences, results when solving for the optimal policy in the
multialternative case (Baum & Veeravalli, 1994; Tajima et al., 2019).

7 Importantly, this is not to say that memory reactivation only affects decisions that are not fully resolved by motor
sequences. Empirical findings support the idea of continuous flow of information to the effectors, that “late-arriving”
evidence samples can play a decisive role not only in choice, but can even change decisions for which motor execution
has already begun (Resulaj et al., 2009). The same principle may explain how sequential samples implement the dis-
count factors in the unrolled value computation of Equation 5: the discount factor here describes the average influence
of later evidence samples across choices, which have a monotonically increasing probability of terminating before the

BOX 1 : Open questions

• To what extent does memory sampling require conscious awareness of recollection, at the time of decision,
or even explicit recall of the same memoranda, as measured at a later time?

• What are the neural substrates of memory samples? Is it the case that sharp-wave ripples (SWRs) indicate
“offline” samples, and theta sequences support decision-time sampling, or is there a more complex interplay?

• What factors—at encoding, retrieval, and during intervening memory transformations—determine how sam-
ples are prioritized during decision-making?

• Is memory organized in such a way as to match the retrieval time of information to its use in deliberative
decisions? For instance, are more temporally or associatively remote memories more slowly sampled?
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arrival of the nth sample—they are unlikely to affect decisions in the aggregate, but have profound influence when
reactivated. This suggestion is consistent with observations that memory accessibility, including as modified by pre-
trial “cues”, can affect temporal discount rates (Gabaix & Laibson, 2017; Palombo et al., 2015; Peters & Büchel, 2010;
Weber et al., 2007), and parallels the way in which memory cues can overcome effective “discounting” of probabilistic
transitions in sequential decisions (Bornstein et al., 2017; Vikbladh et al., 2017. Further work is needed to understand
how within-trial dynamics affect the integration of information about potential future states.
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