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Abstract 
 
Cognitive maps support inference and planning by representing associations between 
experiences encoded in memory. These map-like representations are thought to carry 
information not only about directly observed links but also about longer paths. The ability to 
make judgments based on multi-step associations varies with one’s experience in an 
environment and with changes in memory abilities across the lifespan. However, it remains 
unclear exactly how representations of associative structure are influenced by learning curricula 
and memory constraints. Prior studies have suggested a tradeoff: memory representations can 
either be more integrated to improve inference, or more separated to recall distinct direct 
associations. Whether overlapping associations are experienced nearby in time (interleaved) or 
spaced apart (blocked) can bias memory representations toward integration or separation. 
However, key recent findings about how blocked versus interleaved experience bias integration 
or separation have been inconsistent. Here, we introduce a computational framework that helps 
reconcile these apparent discrepancies. Using neural network simulations of three separate 
memory-guided inference tasks, we show that variations in memory capacity and the sparsity of 
neural codes interact with learning sequence to shape network representations. Specifically, 
blocked learning promotes integration when memory capacity is low, while interleaved learning 
promotes integration when memory capacity is high. Integration is especially likely to result from 
representations formed when neural codes are both sparse and distributed. These results offer 
a principled computational account of how flexible, map-like representations can arise from 
experience and suggest avenues for individualized memory interventions to improve inference, 
generalization, and planning.  
 
Keywords: cognitive maps, spatial navigation, associative inference, neural representations, 
memory capacity, sparse and distributed coding, training schedules. 

1.​Introduction 
Individuals extract both commonalities and distinctions across related experiences. For 

instance, one may integrate similarities across experiences to support inference and 
generalization (e.g., realizing that the parking spaces nearest to building entrances are usually 
unavailable). Conversely, one might encode distinct details of an event (e.g., parking under a tall 
tree) to separate this episode from similar ones to achieve a specific goal (e.g., locating your car 
at the end of the work day). This ability to detect regularities across episodes is thought to be 
critical for forming higher-order knowledge structures, such as cognitive maps. Just as spatial 
maps support navigation and path integration, the cognitive map hypothesis proposes that 
abstracted mental representations can support structural inference about unseen connections 
and paths (Tolman 1948; Collett & Graham, 2004; McNaughton et al., 2006). However, it is less 
clear how such cognitive maps are assembled from distinct experiences. Here, we examine the 
conditions under which known episodic memory processes of integration and separation can 
drive the formation of complex knowledge structures such as spatial or cognitive maps.  

The cognitive map framework has been extended to encompass abstract, non-spatial 
associative networks, referred to as cognitive graphs (Chrastil & Warren, 2014; Yoo et al., 
2024). According to the cognitive graph hypothesis, cognitive maps can be formally described 
as graphs with nodes defined as stimulus features and edges defined as transitions or 
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associations between nodes. These nodes and edges can be extracted from experience and 
refined through episodic memory encoding processes (Yoo et al., 2024). Research has 
identified distinct neural representations associated with storing episodic details: integrated 
memories may support generalization and inference, whereas separated memories may reduce 
interference among individual episodes (Bakker et al., 2008; Kumaran & McClelland, 2012; 
Schlichting et al., 2014, 2015; Zhou et al., 2023). Specifically, pattern-separated representations 
may protect against memory interference by storing related memories as distinct, 
non-overlapping codes (Bakker et al., 2008; Bennett & Stark, 2016). In contrast, integrated 
representations may facilitate schema and concept formation by emphasizing shared similarities 
across related events (Mack et al., 2018; Schlichting et al., 2014). Of particular note for the 
study we present here is that this balance may be mediated by the sparsity of neural codes 
(Barak et al. 2013).  

Prior work in episodic memory also suggests that the sequence of information 
presentation during learning biases whether neural codes become integrated or separated 
(Beukers et al., 2024; Schlichting et al., 2015; Zhou et al., 2023). The idea that one can shape 
the nature of memory representations simply by manipulating study sequences holds promise 
for developing interventions that can optimize learning in different contexts. For instance, 
(Schlichting et al., 2015) used an associative inference task in which participants encoded 
overlapping episodes (e.g., A1B1 and later B1C1, where A1, B1, and C1 represent distinct 
elements of an episode). They showed that blocked learning, during which all AB pairs are 
presented before BC pairs, promoted integration: A and C items showed increased neural 
similarity after learning (Figure 1A). The authors suggested this occurred because blocked 
learning strengthens AB representations before introducing overlapping (BC) episodes, enabling 
retrieval and updating of existing memories rather than encoding new ones separately (Morton 
et al., 2017; Zeithamova, Schlichting, et al., 2012). By contrast, interleaved learning, in which 
AB and BC episodes are presented nearby in time and in shuffled order, increased the potential 
for interference, and was associated with greater neural differentiation of A and C after learning, 
consistent with adaptive separation and interference resolution (Chanales et al., 2021; 
Schlichting et al., 2015). However, another study (Zhou et al., 2023) using a similar experiment 
design reported the opposite: blocked learning produced highly specific, localized 
representations, whereas interleaving yielded more distributed representations that supported 
generalization. These conflicting findings complicate efforts to identify the conditions under 
which integrated versus separated representations emerge.  

One possible source of inconsistency lies in how representational changes are examined 
and measured across studies. Theories suggest that stronger pre-established AB memories 
increase the likelihood that B items will cue related AB memories (Schlichting et al. 2015; 
O'Reilly and Rudy 2001; McClelland et al. 2002; Winocur et al. 2010; Leutgeb et al. 2004) and 
encourage memory updating (integration) via pattern completion. In contrast, other theories 
suggest that presenting overlapping episodes closer in time promotes integration (Estes, 1955; 
Howard & Kahana, 2002; Zeithamova & Preston, 2017; Zhou et al., 2023). Thus, blocked 
learning may support integration by strengthening prior representations, whereas interleaving 
may do so by placing related episodes in close temporal proximity to emphasize their 
similarities.  

This tension raises a natural question: how should training curricula be optimized to 
promote integration of related episodes? Blocking strengthens AB memories before BC is 
introduced, whereas interleaving highlights commonalities across overlapping events, albeit with 
higher cognitive load. The optimal approach may depend on individual differences in 
susceptibility to interference. Individuals prone to interference may benefit from blocked training, 
whereas those with stronger memory capacity may benefit from interleaving. Indeed, prior work 
using a graph-structured associative inference task showed that individuals with weaker 
memory abilities performed better on graph-based inference judgments when overlapping 
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edges were learned in a blocked sequence, whereas those with stronger abilities performed 
better when all edge pairs were interleaved (Noh et al., 2025).  

Beyond memory capacity, representational coding strategies may also shape outcomes. 
Schlichting et al. (2015) and Zhou et al. (2023) observed evidence of integration/separation in 
different neural subregions and pathways, suggesting that coding biases within those regions 
may have contributed to their divergent findings. Schlichting et al. (2015) found integration in 
anterior hippocampus and posterior mPFC, but separation in posterior hippocampus and 
anterior mPFC. Zhou et al. (2023), by contrast, emphasized differences between the 
monosynaptic (MSP) and trisynaptic (TSP) hippocampal pathways, showing that blocking 
versus interleaving produced more localist versus distributed codes.  

These differences highlight an important point: the way neural populations represent 
information can vary across individuals and brain regions. Some representations (sparse neural 
codes) emphasize efficiency by recruiting only a small subset of neurons to encode a stimulus, 
producing distinct, minimally overlapping codes. Other representations (distributed neural 
codes) emphasize generalization by recruiting many neurons, leading to overlapping codes that 
highlight shared features across experiences. At an individual level, factors such as age and 
memory ability can bias which coding strategy is favored: older adults, for instance, may be less 
likely to maintain sparse codes and more likely to rely on distributed, overlapping codes relative 
to younger adults (Wilson et al., 2006; Yassa & Stark, 2011). Within individuals, different 
hippocampal subregions also exhibit distinct coding biases. The dentate gyrus, with its dense 
population of granule cells and strong inhibitory circuitry, is well-suited for sparse coding and 
pattern separation. In contrast, CA3, with its recurrent collaterals, is more prone to distributed 
coding that supports pattern completion and generalization (Kumaran & McClelland, 2012; 
Leutgeb et al., 2007; Neunuebel & Knierim, 2014; Treves & Rolls, 1994). Thus, both individual- 
and regional-level biases in encoding strategy may influence whether overlapping experiences 
are prone to integration or separation during learning. Specifically, the sparsity of neural activity 
may further define how separated versus integrated information is represented (Benna & Fusi, 
2021; Cayco-Gajic et al., 2017; Cayco-Gajic & Silver, 2019; Chavlis et al., 2017). Sparse coding 
arises when relatively few, locally clustered neurons are recruited to encode a stimulus. This 
strategy reduces overlap across memories and helps minimize interference by decorrelating 
inputs, often through inhibitory feedback mechanisms (Tetzlaff et al., 2012; Wiechert et al., 
2010). Distributed coding, by contrast, arises when many neurons spread across a network are 
recruited, producing overlapping representations that emphasize shared features. This strategy 
supports generalization and increases overall representational capacity (Hinton, 1984; 
McClelland & Rumelhart, 1988; Rigotti et al., 2013). Importantly, a balance between sparse and 
distributed codes may support an optimal tradeoff, capturing complex patterns with both 
efficiency and robustness (Hinton & Ghahramani, 1997). 

In light of these considerations, the present study aims to clarify the mechanisms by 
which sequencing effects shape memory representations and, ultimately, cognitive map 
formation. We propose that reconciling conflicting findings regarding sequencing effects requires 
systematically examining how individual differences in memory capacity and coding strategies 
interact with learning schedules. Both sources of variability (memory capacity and coding 
strategy differences) may yield different representational outcomes in response to blocked or 
interleaved learning sequences. Specifically, we hypothesize that individuals with lower memory 
capacity are more vulnerable to interference, and therefore may benefit from blocked learning. 
By first strengthening AB associations before introducing overlapping BC associations, blocked 
training reduces cognitive load and increases the likelihood that BC episodes update existing 
AB memories rather than compete with them (Schlichting et al., 2015). In contrast, individuals 
with higher memory capacity may tolerate greater load and benefit more from interleaved 
training, which presents overlapping associations in close temporal proximity and encourages 
structural inference across episodes (Zeithamova & Preston, 2017; Zhou et al., 2023). 
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Critically, we also predict that capacity effects will be further tuned by differences in 
coding strategies. Sparse coding, which emphasizes decorrelation and separation, may amplify 
the benefits of blocking by reducing interference across sequentially presented events. 
Distributed coding, which emphasizes overlap and generalization, may instead amplify the 
benefits of interleaving by highlighting similarities across temporally adjacent episodes. 
Together, these considerations point toward an interaction between learning schedule, memory 
capacity, and representational coding strategy as a key determinant of whether integration or 
separation emerges during learning.  

To test this framework, we use feedforward neural network simulations of published 
associative inference tasks (Schlichting et al., 2015; Zhou et al., 2023). Our models 
systematically manipulate memory capacity and sparsity constraints to evaluate how these 
factors affect the representations formed under blocked vs. interleaved training. This approach 
allows us to explain the conflicting findings with regard to sequencing effects observed in prior 
studies, and to identify conditions under which integration versus separation may be favored. 
We then compare the qualitative patterns that emerge from model simulations under our 
framework to performance in a graph-structured multi-step associative inference task, which 
showed variability across the lifespan and with memory capacity (Noh et al., 2025; Rmus et al., 
2022). Our models show that differences in memory capacity and coding strategies can be 
sufficient to generate the kinds of divergent patterns observed in prior empirical work with 
respect to how training conditions shape cognitive representations. In this way, we demonstrate 
the potential utility of our framework for interpreting sequencing effects and motivate future 
empirical tests under this account. 

2.​Method 

2.1. Associative inference task (simple triad graph) 
2.1.1. Training with blocked and interleaved schedules Training datasets were generated to 
mimic experimental data collected by Zhou et al., (2023) and Schlichting et al., (2015). 
Specifically, the datasets were constructed with two kinds of stimulus “schedules”: hybrid and 
pure. The hybrid schedule (Zhou et al., 2023) includes both blocked and interleaved curricula 
within a single learning phase, whereas the pure schedule (Schlichting et al., 2015) includes 
either a blocked or an interleaved curriculum in separate, counterbalanced learning phases. In 
the blocked schedule, all direct associations of one type (A,B) are presented before any 
overlapping associations (B,C) are introduced. The interleaved schedule shows the (A,B) and 
(B,C) associations in a random order.   

For the hybrid schedule, there were 360 training trials. We one-hot encoded 36 items. 
From these, 18 were randomly sampled for training. The 18 items were grouped into six triads 
(A, B, C). During training, triads were presented as overlapping pairs (AB or BC). In the blocked 
condition, all of one pair type (e.g., AB) were presented before the overlapping pairs (e.g., BC). 
In the interleaved condition, AB and BC pairs were interleaved throughout the learning phase. 
Each direct pair type was shown 30 times. The order of A, B, and C within pairs was 
randomized, and trials were randomized following the blocked or interleaved curriculum. Pairs 
sharing the same A, B, or C item were never shown consecutively. 

For the pure schedules, we created two schedules, each with 360 trials (the same as the 
hybrid schedule). The key difference is that the pure schedule separates blocked and 
interleaved conditions into two distinct, counterbalanced learning phases (blocked first vs. 
interleaved first). For the pure blocked schedule, we used the 180 blocked trials from the hybrid 
schedule to improve comparability. Similarly, for the pure interleaved schedule, we used the 180 
interleaved trials from the hybrid schedule, allowing direct comparison between formats (pure 
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vs. hybrid). Although raw similarity metrics differed somewhat by format, blocked vs. interleaved 
training did not produce fundamentally different patterns of results (e.g., blocked > interleaved in 
pure vs. hybrid). For clarity, we therefore collapsed pure blocked with hybrid blocked and pure 
interleaved with hybrid interleaved into two conditions–blocked and interleaved–for all main 
analyses (see Supplementary Figure 1 for disaggregated values).  

 

 
Figure 1. Tasks and models. (A) Structural inference in simple triad graphs. Models are trained 
to predict paired sequences then tested on an inference task. Inset: Triad with solid arrows 
showing observed associations and dashed line showing the unobserved association that must 
be inferred. Items were organized into 6 triads (colors) in a blocked (open circles) and 
interleaved schedule (filled circles). (B) Neural networks were also trained to perform structural 
inference across an entire graph. A different set of models were trained to learn a sequence of 
edges drawn from a latent graph structure. Edges are colored according to the blocked 
schedule, where half the models were trained with a blocked schedule. In this schedule, 4 
mini-blocks were created where each block contained 4 edges that did not share any nodes with 
each other. (C) The neural network was trained using a loss function that penalized for errors in 
predicting the next item, given the current item (Chandak et al., 2024). The loss function also 
contained a term that encourages sparse representations with low activation strengths, inspired 
by energy constraints in biology. A scaling parameter, α, controls the degree of sparsity. 
Different memory capacities were simulated by varying the size of the encoding (E1, E2) and 
decoding (D1, D2) layers. (D) The loss function encourages localist versus distributed codes in 
the 18 embedding layer units (circles). Sparser activation (lighter colors) characterize more 
localist versus distributed codes by encouraging fewer units to activate (see Supplementary 
Materials, section on Defining sparsity). We can also quantify the information content by 
calculating the code’s entropy, where higher entropy indicates a more diverse and distributed 
pattern of activation to encode the same stimulus. 

2.2. Structural inference task generalized to a complex graph 
2.2.1. Training with blocked or interleaved schedules. Models were trained to perform a 
complex associative inference task designed to approximate shortest-path distance judgments. 
We trained 16 pairs (edges) of 12 stimuli (nodes) in either a blocked or interleaved schedule 
using one-hot codes for each stimulus. For both schedules, pairs were drawn from the edges of 
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an underlying, undirected and unweighted, graph (Figure 1B). The 16 pairs were repeated 44 
times each, yielding 704 trials. In the interleaved schedule, trial order was randomized during 
the learning phase. In the blocked schedule, pairs were grouped into four mini-blocks, each 
containing four unique object pairs. To reduce potential for memory interference during 
encoding, the 4 pairs presented in each mini-block shared no overlapping nodes (Figure 1B). 
 
2.3. Neural networks To simulate individual differences in sequence learning, we used 
feed-forward neural networks with five hidden layers (two encoding, one embedding, and two 
decoding). For the simple triad task, we trained 100 models per schedule type (hybrid and 
pure). For the pure schedule, training was counterbalanced: 50 models were trained with pure 
blocked then pure interleaved schedules, and 50 with pure interleaved then pure blocked 
schedules. We trained 200 models (100 each for hybrid and pure schedules) for three memory 
capacities–low, medium, and high–and across 11 sparsity constraints (described below), 
yielding 6,600 trained models in total. For the complex graph task, we trained 25 models for 
each of two schedules, 11 sparsity constraints, and five levels of memory capacity, totaling 
2,750 models.  

Differences in coding strategy were operationalized systematically and quantitatively. 
Distributed activation can be indexed by the entropy of stimulus-evoked population activity, with 
higher entropy reflecting more distributed coding. Sparsity was indexed by the inverse of 
activation strengths, with smaller values indicating that only a few units were recruited to encode 
a stimulus in a more localist manner. Thus, coding style was measured along continuous 
dimensions, allowing us to test how sparsity and distributedness interact with learning schedule 
and memory capacity to shape representational outcomes. Below, we detail how we 
encouraged specific coding strategies using different forms of regularization during training. 
 
2.3.1. Unsupervised learning The model was first pre-trained to reproduce each item using a 
loss function similar to an autoencoder model. This stabilized task training and provided 
pre-task representations of each item, which were later compared to post-task representations 
to evaluate changes after learning.  

Pre-training was performed for 100 epochs with a loss function defined by a mean 
squared error term plus sparsity constraint: 
 

Lreconstruction = MSE + α * ∑|wᵢ| + (1-α) * ∑(wᵢ)² , ​ ​ ​ (1) 
 
where Lreconstruction is the total reconstruction loss, MSE is the mean-squared error between the 
reconstruction and original input, wᵢ are individual network weights, α₁ is the L1 regularization 
strength (Lasso penalty), α₂ is the L2 regularization strength (Ridge penalty), ∑|wᵢ| is the L1 
norm (sum of absolute weight values), and ∑(wᵢ)² is the L2 norm (sum of squared weight 
values). α ranged from 0.0 to 1.0 in increments of 0.1.  
​ Experimentally, pre-training was needed to provide a baseline for representational 
similarity analysis (RSA). Given our aim to reconcile discrepancies in prior literature, we 
followed the analysis approach from Schlichtling et al. (2015), showing how representations 
change after successful learning. Practically, pre-training and regularization (L1 and L2 norms) 
were necessary to achieve above-chance performance compared with shallower or 
non-pretrained networks. These steps allowed the task model to begin with a representation 
that can at least support accurate reconstruction by initializing the weights in a space that 
respects the distinct items, instead of randomly projecting the stimulus into an initialization with 
a noisy space. 
 
2.3.2. Supervised learning Following unsupervised pre-training, networks were trained on the 
dataset described above with a batch size of 32 for 100 epochs. Each trial consisted of a pair: 
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the network received the first one-hot encoding as input and was tasked with producing the 
second one-hot encoding as output. In this supervised learning phase, the network was trained 
with binary cross-entropy loss. 

We selected layer sizes, embedding layer size, learning rates, and weight decay by grid 
search across five random seeds. To improve performance while reducing overfitting, each layer 
included batch normalization, ReLU activation, and dropout regularization (0.3). The linear 
output layer used a softmax function to produce probability distributions for predicted outputs. To 
prevent vanishing or exploding gradients, weights were initialized with Xavier uniform 
initialization (and biased to a small constant, 0.01, to utilize more neurons during initial stages of 
training) with the AdamW optimizer using weight decay=0.001 and learning rate=0.001. This 
provides better regularization for the model. Training efficiency was optimized with a 
ReduceLROnPlateau learning rate scheduler. This scheduler monitors the loss, and when the 
loss fails to decrease across epochs (patience=20 epochs), it reduces the learning rate by a 
factor of 0.5 to a minimum of 0.00005. This adaptive learning rate mechanism was used to help 
the model converge in later stages of training.  

To model individual differences in memory capacity, we trained low-, medium-, and 
high-capacity networks. Low capacity models had encoding/decoding layer sizes of (6, 3). 
Importantly, we selected these layers to be smaller than the input layer, enforcing a many-to-one 
mapping of incoming information to simulate conditions of increased interference pressure. In 
contrast, high memory capacity models had sizes of (256, 128), supporting one-to-one mapping 
of inputs, with ample space for pattern separation. Medium memory models had sizes of (32, 
16). All models used an embedding layer of size 18, chosen to match the input size and 
stabilize integration/separation metrics such as cosine similarity, which are sensitive to 
dimensionality of the vectors.  

To better interpret the effects of our manipulations, we included two separate encoding 
and decoding layers from the embedding layer that either reduce or expand the input. We 
decided on the depth of two encoding/decoding layers following prior work comparing models 
with similar architecture to human performance data (Noh et al., 2025). Here we further sought 
to manipulate the size of the layers to allow for both compression-expansion and 
expansion-compression dynamics, which have been shown to support learning and 
generalization (Farrell, Recanatesi, Moore, Lajoie & Shea-Brown, 2022; Ito & Murray, 2023). 
Finally, to better compare differences between network representations, we used an additional 
fixed-size embedding layer to facilitate cross-model comparison while isolating memory capacity 
manipulations. In practice, the size of the medium and high capacity neural networks were 
chosen to improve inference performance across tasks, as prior work using similar but smaller 
models performed only modestly above chance (Noh et al., 2025). For additional details on 
layer-size choices and how they relate to the human literature, see the Supplementary 
Materials (section on Memory capacity and representational dimensionality). 
 
2.3.3. Supervised learning loss function to encourage integration or separation. Both 
Integrated or separated representations may support successful AC inference. Integrated 
representations are thought to be useful because they distribute information across 
representational units, allowing for quick and efficient generalization between integrated AC item 
representations (Zhou et al., 2023). However, these representations can be susceptible to 
memory failures and false memories, as integrated representations make it difficult to 
distinguish individual memory episodes from inferred ones. Separated representations are 
thought to enhance memory precision because they are encoded with more local and sparse 
properties that distinguish A from C and improve resistance to interference. However, making 
the AC association may then require a more explicit and costly retrieval process of separate A 
and C representations (e.g., retrieving separate AB and BC memories to infer the AC 
relationship). 
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We use these neural networks to investigate how representations influence inference 
and how learning schedules shape those representations. Prior work showed that specific 
models biased toward either separated (localist) or integrated (distributed) representations 
improved performance under blocked or interleaved learning, respectively (Zhou et al., 2023). 
However, those models also differed in other architectural respects. To simplify the comparison, 
we varied separated versus integrated representation types within the same class of 
feedforward neural networks. We achieved this by using a loss function that encouraged either 
more separated or more integrated internal representations, which in turn could help or hinder 
AC inference under blocked or interleaved schedules. L1 and L2 regularization encourage 
localist and distributed representations, respectively. Therefore, by combining them, we can 
manipulate the balance of separation and integration using an elastic net regularization loss 
function: 
 

Lprediction = BCE + α * ∑|wᵢ| + (1-α) * ∑(wᵢ)² , ​ ​ ​ ​ (2) 
 
where Lprediction is the total prediction loss, BCE is the cross-entropy classification loss, wᵢ are 
individual network weights, α₁ is the L1 regularization strength (Lasso penalty), α₂ is the L2 
regularization strength (Ridge penalty), ∑|wᵢ| represents the L1 norm (sum of absolute weight 
values), and ∑(wᵢ)² represents the L2 norm (sum of squared weight values). Eleven values of α 
were tested (0.0 to 1.0 with a step size of 0.1). Intuitively, as the α * ∑|wᵢ| term becomes larger, 
the representations become more localist and separated: this L1 regularization drives many 
weights to zero and introduces sparsity. In contrast, as the (1-α) * ∑(wᵢ)² term becomes larger, 
the representations become more distributed and integrated: this L2 regularization discourages 
large weights but does not drive them to zero, smoothing the weight distribution across units.  
 
2.4. Measuring separation or integration of representations 
We used entropy to quantify whether the loss function shifted stimulus encoding toward more 
distributed/integrated versus more sparse/separated representations. Entropy measures the 
“spread” of a representation, with higher entropy indicating more distributed coding. A 
distribution with maximum entropy has a uniform spread of values, whereas one with minimal 
entropy has only a single value (Figure 1D). To calculate entropy, each item was input to the 
network to produce a vector of activations in the embedding layer. This activation vector was 

then converted into probabilities using a softmax function: . These 𝑃(𝑥
𝑖
) = 𝑒𝑥𝑝(𝑥

𝑖
) /

𝑗
∑ 𝑒𝑥𝑝(𝑥

𝑗
) 

probabilities were used to calculate entropy: 
 

H(X) = −∑ i​P(xi​) log ​P(xi​), ​ ​ ​ ​ ​ (3) 

where X is the representation, xi​ are possible items in the representation, and P(xi) is their 
probability.  

Sparsity was used as a complementary measure, capturing the suppression of activation 
when representing a stimulus. The higher the sparsity, the lower the activity used to represent 
an item. To quantify sparsity, items were input into the network to produce activations in the 
embedding layer. The sparsity is defined as the inverse of collective activity strength (for 
discussion of alternative definitions of sparsity, see the Supplementary Materials section on 
Defining sparsity).  

8 

https://paperpile.com/c/AY8vnM/kwso


 

2.5. Analysis 
2.5.1. Indirect AC inference in simple triad graph task. Our primary analysis centered around 
the integration or separation of AC representations after learning. We input the18 learned items 
and recorded the network’s internal representation of A and C. We then calculated cosine 
similarity between A and C vectors. Intuitively, higher cosine similarity reflects more integrated 
representations, whereas lower cosine similarity reflects more separated representations.  
 
2.5.2. Judgment of relative distances in complex graph task.  
In the complex graph task, models judged which of two target nodes was closer to a source 
node (Rmus et al. 2022; Noh et al. 2025). True distances were defined as the shortest paths in 
the graph, (i.e., the fewer edges between source and target). Models chose which of the two 
target nodes was closer to the source object based on the indirect relationships of the graph 
learned during training. Specifically, the model chose the target node with smaller cosine 
distance to the source node, thus approximating the shorter distance. Trials varied in difficulty 
based on the degree to which the target node options differed in the topological distance from 
the reference node, in which a difference of 1 was the most difficult, 2 had intermediate difficulty, 
and 3 was the easiest. Accuracy was computed within each distance bin.  

Each of the 12 nodes served as a source node 17 times, for a total of 204 trials. The two 
target node options for each trial were randomly selected with three constraints. First, target 
pairs at relative distance 3 were deterministically included to ensure sufficient sampling of the 
easiest trials. For example, when node 0 was the source, the 17 trials necessarily included pairs 
such as 3-10, 3-11, 4-10, and 4-11, as these corresponded to distance differences of 3. Second, 
neither target node was directly paired with the source node in the underlying graph. Third, the 
two target nodes were required to differ in distance from the source node. The same set of 204 
trials were used to test all models. 
 
2.5.3. Pre-study versus post-study representational change in the simple triad inference 
task.  
Following prior work (Schlichting et al., 2015), we examined how AC representations changed 
after learning. Neural representations of each item were measured both before and after study. 
For each schedule (blocked and interleaved), similarity between A and C items was calculated 
within and between ABC triads. Comparisons of AC similarity across schedules (i.e., between 
blocked and interleaved conditions) were excluded. This procedure produced representational 
similarity matrices in which rows corresponded to C items and columns corresponded to A items 
(Figure 3A). Cosine similarity values defined each matrix element, measuring the similarity of A 
and C items both before and after learning. Learning-related change in representational 
similarity (ΔRS) was calculated as: post-study minus pre-study matrix similarities, with positive 
values indicating the magnitude of integration and negative values indicating the magnitude of 
separation. Following methods analogous to those used in prior work (Schlichting et al., 2015), 
only successfully learned pairs (accurately discerning that A was more similar to C than a foil) 
were included in the analysis.  

Using this ΔRS approach, the resulting matrices were compared to two hypothesized 
representational structures. The first hypothesized structure is one in which the blocked 
schedule leads to more similar AC representations (blocked → integration) whereas the 
interleaved schedule leads to more dissimilar AC representations (interleaved → separation). 
The second hypothesized representational structure is the opposite, in which the interleaved 
schedule leads to more integrated AC representations (interleaved → integration) while the 
blocked schedule leads to more separated AC representations (blocked → separation). 
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2.5.4. Pre-study versus post-study representational change in the complex graph task. 
We applied a similar approach to the complex graph task. Pre-study representations were 
defined as the embedding layer activations of each one-hot input after pre-training with an 
autoencoder. A cosine similarity matrix was then constructed across all nodes to measure the 
degree of integration. There were two pertinent post-study representations for each trial in the 
judgment task. Given two options, the participant chose either the correct or incorrect target. We 
obtained a representation for both the correct target and the incorrect target. We then tested 
how integrated the correct target was with the source node, as well as how integrated the 
incorrect target was with the source node. Using the pre-study and post-study values, we 
calculated the change in integration for each target-source pair (Δr) as post-study similarity 
minus pre-study similarity. Higher cosine similarity differences indicated that representations 
became more integrated after the training phase. Finally, we calculated the difference in 
representation between the cosine similarity of the correct target with the source node and that 
of the incorrect target with the source node:  (Δr correct - Δrsource) - (Δrincorrect - Δrsource). We would 
expect this difference to be larger for easier trials than for harder trials. This prediction followed 
from the assumption that the correct node (i.e., target closer to the source node) should be 
represented with greater cosine similarity to the source than is the incorrect target node, 
particularly in the distance difference = 3 trials compared to the distance difference = 1 trials. 

3.​Results 
We report the results of how memory capacity affects the integration of representations 

for items A and C following training. Throughout, we operationalize integration as higher cosine 
similarity between the embedding layer’s representation of A and C. Viewing the learning curves 
across all models, higher memory capacity allowed training to converge more quickly to an 
asymptote of the AC integration curve than lower memory capacity (Figure 2A). Importantly, the 
models were not explicitly trained to increase AC integration; rather, integration emerged as a 
byproduct of predicting the next item in a sequence. A multiple regression analysis indicated 
that with greater memory capacity, the interleaved schedule produced greater AC integration 
(adjusted R2 = 0.09, F(11, 989988) = 9298, β = 0.31, p < 0.001). However, integration was on 
average lower than representations produced from blocked learning across memory levels (β = 
-0.18, p < 0.001). There was also a three-way interaction between epoch, schedule, and 
memory capacity, such that interleaved learning produced more integrated representations 
under high memory capacity, whereas blocked learning produced more integrated 
representations under low memory capacity (β = 0.07, p < 0.001). Together, these findings 
suggest that exposure to different training sequences affects the degree of integration and 
separation in learned representations differently as a function of memory capacity. 

While effects on separation and integration were evident from the training sequence, we 
next assess how representations relate to task performance following training. The blocked 
schedule with low memory capacity is associated with greater AC cosine similarity across all 
triads and models, whereas an interleaved schedule with high memory capacity is associated 
with greater AC integration (Figure 2B). Integration for target pairs (within triads) was greater 
than the integration for foils (between triads; t(68240) = 147.18, p < 0.001). The results of a 
multiple regression analysis suggest that there were main effects of memory capacity (adjusted 
R2 = 0.01, F(5, 34140) = 60.35, βmemory = -0.11, p < 0.001) and schedule (βschedule = 0.05, p < 
0.001) on AC cosine similarity. Moreover, there was an interaction between schedule and 
memory capacity on AC cosine similarity (βmemory*schedule = 0.27, p < 0.001). The blocked 
schedules have higher AC integration with low memory capacity, whereas the interleaved 
schedules have higher AC integration with high memory capacity. These results are consistent 
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with the notion that the type of schedule that best supports AC integration depends on individual 
differences in memory capacity. 

 

 
 
Figure 2. Encoding the indirect AC association with integrated representations. (A) 
Integration is operationalized as the cosine similarity between the internal representations of A 
and C for different memory capacities as the models are exposed to items from different 
schedules. The cosine similarity between A and C was greater for blocked versus interleaved 
schedules in the low and medium memory capacity conditions. In contrast, for high memory 
capacity, the cosine similarity between A and C was greater for interleaved versus blocked 
schedules. (B) AC similarity for every triad and model. AC integration, as measured by cosine 
similarity between A and C, benefits from blocked schedules when memory capacity is low and 
interleaved schedules when memory capacity is high. The similarity of AC is consistently greater 
than foils containing one element from a different ABC triad trained under the same schedule. 
Error bars depict 95% confidence intervals.  
 
​ Having shown that memory capacity affects how integrated AC representations become 
following blocked versus interleaved learning schedules, we next show in more detail how AC 
representations change after learning for triads where the model performed successful AC 
inference. For successful trials, we measure representational change as the change in AC 
cosine similarity within and across triads for each model post-training minus the AC cosine 
similarity pre-training (Δr). Using the raw cosine similarities of pairs following learning (Figure 
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3A), we constructed this cosine similarity matrix for each AC pair within and across triads for the 
same schedule (Figure 3B). Positive values suggest learning resulted in integration of AC 
information, whereas negative values suggest that learning lead to more separation of AC 
information. Then we compare the empirical matrix to two hypothesized representation matrices, 
one where blocking leads to integration and interleaving leads to separation (consistent with 
(Schlichting et al., 2015), and the other where blocking leads to separation and interleaving 
leads to integration (consistent with (Zhou et al., 2023).  

We show that whether blocked or interleaved schedules lead to integrated or separated 
AC representations depends on memory capacity (Figure 3C). Specifically, models with low 
memory capacity produce more integrated representations after blocked training and separated 
representations after interleaved training, whereas models with high memory capacity showed 
the opposite pattern: they tend to form integrated representations after interleaved training and 
separated representations after blocked training. The results from a multiple regression analysis 
support this observation (adjusted R2=0.02, F(5, 12062), βschedule*memory = 0.46, p < 0.001). 
Notably, this result cannot be fully explained by confounds such as catastrophic interference 
between representations or poor direct pair learning (Supplementary Figures 3 and 4). Similar 
to the analysis of AC integration after exposure to different training sequences (Figure 2), we 
find an increase in AC integration from pre-study to post-study for the interleaved schedule as 
memory increases from low to high and vice versa for the blocked schedule.  
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Figure 3. Memory capacity explains differing effects of learning schedule on AC 
representation integration. (A) Direct AB (green) and BC (blue) and indirect AC (red) pair 
similarities for models trained using blocked or interleaved schedules. (B) To test if integration or 
separation supports successful inference, we follow prior analysis analyzing the change in 
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similarity after learning versus before learning for only the models with accurate inference. 
Schematic of the representational similarity analysis of post-study changes in representations 
compared to pre-study representations. Adapted from Schlichtling, et al. (2015). Left: 
Hypothesized changes when the blocked schedule leads to more integrated AC 
representations. The diagonal entries are AC similarities within distinct ABC triads. The 
off-diagonal entries are AC similarities across triads but still within either the blocked or 
interleaved schedule. Right: hypothesized representational similarity matrices for when 
interleaved schedules lead to more integrated AC representations. (C) When memory capacity 
is low, successful performance on the AC inference task arises from the blocked schedule 
tending to lead to more integrated representations. In contrast, when memory capacity is high, 
successful performance arises from the interleaved schedule tending to lead to more integrated 
AC representations. 
 
 

 
 
Figure 4. Effects of sparse and distributed codes on the integration of AC 
representations. (A) A schematic demonstrating how local and distributed coding can be 
understood by the receptive field of each unit (circle) that responds to a stimulus (point). We 
quantify these concepts by measuring how distributedness differs according to the information 
content (entropy) and magnitude (sparsity) of activation in embedding layer units. The orange 
distribution is localist because it substantially overlaps with 0, indicating that many units are 
inactive. The blue curves are more distributed codes because most units are involved in coding 
for stimuli. The sharper blue curve (low entropy) is less distributed but has lower information 
content relative to the flatter blue curve (high entropy) that has a higher probability of inactive 
units and higher information content. (B) Different models trained with more constraints on 
localist memory encoding produced embedding representations with more sparsity (Pearson’s 
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r(39,036) = 0.07, p < 0.001) and less entropy (r(39,598) = -0.07, p < 0.001). Models with 
different sparsity and distributedness constraints mimic mixed representations in hypothesized 
information processing pathways that use representations with both low and high sparsity or 
distributedness. (C) When representations are more sparse and less distributed, AC inference 
seems to benefit from the blocked schedule encouraging integrated representations. In contrast, 
when representations are less sparse and more distributed, successful AC inference tends to 
benefit from the interleaved schedule encouraging more integrated AC representations. 
 

We next show that, beyond the memory capacity of the model, encoding properties of 
the network also affect how integrated AC representations become after learning. Prior work 
indicated that interleaved schedules confer their advantages to AC inference by increasing the 
distributedness of integrated representations (Zhou et al., 2023). Here we ask whether models 
biased toward using distributed versus sparse representations are more likely to form integrated 
representations (of related A and C items) after blocked or interleaved training conditions. We 
operationalize sparsity as the inverse of the activation strengths and the distributedness as the 
entropy of the activation magnitudes (Figure 4A). We again analyze the successful inference 
trials and measure changes in AC integration, but now separate the results by models trained 
with various sparsity versus distributedness constraints. This constraint was operationalized by 
the parameter α (Figure 4B). Here we discretize the models into ones where representations 
were constrained to be less sparse and more distributed (α = 0 to 0.3), a mixture of sparsity and 
distributedness (α = 0.4 to 0.6), and more sparse and less distributed (α = 0.7 to 1). We 
performed a multiple regression analysis to test the effects of sparsity on performance (adjusted 
R2 = 0.03, F(11, 6576) = 22.05, p < 0.001). In general, models with greater sparsity tended to 
have greater representational similarity to either hypothesized integration process (β = 0.07, p = 
0.0001). Moreover, the interleaved schedule tended to benefit from greater memory capacity 
than the blocked schedule (βschedule*memory = 0.51, p = 0.0001). Blocked representations appear to 
benefit from high sparsity and low distributedness, whereas interleaved representations benefit 
from high distributedness and low sparsity (βschedule*sparsity = 0.13, p < 0.001; Figure 4C). This 
interaction was further moderated by the memory capacity (βschedule*sparsity*memory = 0.13, p = 0.002). 
These results support the notion that the tendency to form integrated representations after 
blocked versus interleaved learning not only depends on memory capacity, but also sparsity 
constraints. 
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Figure 5. Effect of schedule on task performance depends on memory. Insets: Examples of 
relative distance 1, 2, and 3 trials. The red node is the source node and the green path is the 
correct choice because the terminal node is more proximal to the source node than for the blue 
path. Plots illustrate improving task performance with increased memory capacity (plotted 
logarithmically) and chance performance marked by the dotted line. There is a main effect of 
memory capacity, where networks with higher memory tended to perform better. Networks with 
low capacity benefited from blocking, whereas those with high capacity benefited from 
interleaving. Easier (longer) distance judgments benefited more from interleaving than blocking. 
Here we show models with low sparsity constraints (α = 0 to 0.3), which prioritize more 
distributed representations with greater information content. 
 

Having demonstrated that our model can capture the effects of memory, sparsity, and 
distributedness on structural inference in simple triad graph structures, we investigate if these 
findings generalize to more complex graph tasks that require higher-order structural inference 
across multiple associations. To do this, we assessed model performance in a structural 
inference task on a more complex graph consisting of 12 nodes and 16 edges (Figure 1B; 
Figure 5 insets). Specifically, the trained models performed a relative distance judgment task. 
Models were given a source node and two possible target nodes and tasked with determining 
which target node was closer to the source node based on the cosine similarities between the 
source and target nodes (for additional task constraints, see Methods). We found that the 
trained models reproduce performance patterns seen in both the triad graph structures above 
and in human performance on the same complex graph task (Figure 5) (Noh et al., 2025). The 
results of a multiple regression analysis suggest that performance for both schedules improved 
with increasing memory capacity (adjusted R2 = 0.14, F(11, 2988), β = 0.22, p < 0.001) and 
there was a main effect of the schedule (β = 0.25 p < 0.001) but not distance (β = -0.08, p = 
0.11) on performance. The interleaved schedule performed better than the blocked schedule as 
memory capacity increased (βschedule*memory = 0.28, p<0.001) and this effect was further moderated 
by increases in the relative distance between choice options (βschedule*memory*distance = 0.26, p = 
0.0002). Consistent with the models in the simple triad graph structures as well as human 
performance on the same complex graph structure, the effect of training schedule on 
performance appears to depend on memory capacity.  
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Figure 6. Effect of sparse and distributed codes on integration of task representations. 
(A) For correct trials, the integration value is calculated as how much more similar the correct 
pair became after training compared to the incorrect pair. The relationship between integration 
and memory differs across different levels of α. As sparsity (α) increases towards a mixture of 
sparse and distributed representations, integration is more likely to occur in high memory 
capacity conditions after interleaved training.  (B) An analysis of the full range of sparsity and 
entropy levels. When coding strategies have mixed sparsity and distributedness (mixed local 
and distributed coding), high memory capacity conditions support integration when trained via 
an interleaved schedule versus a blocked schedule. In contrast, when coding strategies are less 
sparse and more distributed, higher memory capacity conditions support integration when 
trained via a blocked schedule versus an interleaved schedule. These effects are consistent 
across levels of task difficulty (distance differences).  
 

Taken together, the above results suggest that training conditions can affect multi-step 
associative inference differently for neural networks with varying capacity and coding. A series 
of studies in which humans completed versions of the above tasks has suggested individual 
differences in performance and neural representations (Noh et al., 2025; Schlichting et al., 2015; 
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Zhou et al., 2023). Therefore, we examined  whether the degree to which memory encoding 
was sparse versus distributed during learning can also bias representational change in ways 
consistent with human behavior in the relative distance judgment task (Noh et al., 2025) and in 
the triad inference task (Schlichting et al., 2015; Zhou et al., 2023). To do this, we trained 
additional models varying in memory capacity, sparsity, and distributedness across the range 
described in the triad inference task and applied it to the judgment phase of the complex graph 
task. For each trial of the judgment of relative distances task, we calculated the representational 
change (ΔRS) resulting from blocked or interleaved schedules as the post-study minus 
pre-study change in cosine similarity (Δr) between the correct target with the source node 
(ΔRScorrect = Δrcorrect-Δrsource), as well as that for the cosine similarity between the incorrect target 
with the source node (ΔRSincorrect = Δrincorrect-Δrsource). We then calculated how different the 
resulting value was for the correct pair minus the value for the incorrect pair (ΔRScorrect - 
ΔRSincorrect). Intuitively, the resulting value can be interpreted as the strength of the model’s 
prediction which should be larger for easier versus harder trials.  

Using this methodology, we measured the changes in representation for successful 
performance in the judgment of relative distances task. A multiple regression analysis suggests 
that across correct trials, there was a main effect of memory capacity (adjusted R2 = 0.17, F(7, 
992) = 29.32, β = 0.57, p < 0.001) as well as an interaction between schedule and memory 
capacity ( βschedule*memory = -0.54, p < 0.001; Figure 6A). The interleaved schedule produced more 
integrated representations when memory capacity and sparsity was high. By contrast, the 
blocked schedule produced more integrated representations when memory capacity was high 
and the representations were more distributed. Furthermore, there was an interaction between 
memory capacity and sparsity, such that the more sparse the encoding, the less memory 
capacity influenced integration (βmemory*sparsity = -1.87, p < 0.001). The schedule also interacted 
with memory capacity and sparsity to predict integration: increased integration from the 
interleaved schedule, compared to the blocked schedule, was moderated by memory capacity 
and sparsity (βschedule*memory*sparsity = 2.64, p < 0.001). These results suggest that how memory 
capacity is used to perform tasks relates to sparse and distributed properties of memory 
encoding.  

Finally, we assessed representational change across different levels of task difficulty. 
The results of a multiple regression analysis suggest that the integration increased as the 
relative distances increased between options (e.g., as trials became easier) (adjusted R2 = 0.32, 
F(19, 8215) = 203.7, β = 0.12, p < 0.001; Figure 6B) and as memory capacity increased (β = 
0.43, p < 0.001). In general, the interleaved schedule resulted in more separated 
representations than the blocked schedule (β = -0.19, p < 0.001). This effect was even stronger 
at higher memory capacities (βschedule*memory = -0.22, p = 0.001). This apparent conflict with 
previous results where interleaving generally increased integration can be explained by sparsity 
limitations. The interleaved schedule led to more integrated representations relative to the 
blocked schedule when the representations were constrained to have an intermediate mixture of 
sparse and distributed representations (βschedule*sparsity = 0.44, p < 0.001) and high sparsity 
(βschedule*sparsity = 0.17, p = 0.001). Across all models, encodings with medium (β = 1.08, p < 0.001) 
and high (β = 1.54, p < 0.001) sparsity tend to have more separated rather than integrated 
encoding, consistent with the notion that sparsity mechanisms produce orthogonalized and 
separated representations. These results suggest that separation does not always result from 
high sparsity but rather also depends on the schedule and memory capacity. For example, the 
effect of the interleaved schedule on integrated representations was especially high when 
representations were both sparse and distributed and memory capacity was higher 
(βschedule*capacity*sparsity = 0.61, p < 0.001). Together, these results show how sparse and distributed 
memory encodings permit the formation of separated versus integrated task representations 
across distinct learning conditions and as a function of individual differences in memory 
capacity. 
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4.​Discussion 
The present study aimed to provide a mechanistic account and framework of how 

learning sequence, representational capacity, and coding style jointly shape associative maps. 
When memory capacity is low, presenting related episodes in a blocked sequence increases the 
temporal distance between overlapping pairs, allowing AB associations to stabilize before BC is 
introduced. This spacing is especially important when memory capacity is low, as it reduces 
memory interference and cognitive load, and biases the system toward updating and integration 
of an A-B-C representation (Schlichting et al., 2015; Zeithamova, Dominick, et al., 2012). When 
capacity is high, the system can tolerate greater cognitive load, and interleaving overlapping 
pairs fosters cross-episode comparisons that allow for integration of similarities across related 
episodes (Zeithamova & Preston, 2017; Zhou et al., 2023). Coding style further modulates these 
dynamics: sparse codes reduce overlap and amplify blocking benefits, while distributed codes 
promote overlap and amplify interleaving benefits (Kumaran & McClelland, 2012). Together, 
these constraints help determine whether integrated vs. separated representations emerge after 
learning. 

Our framework helps reconcile previously conflicting results in the literature. Schlichting 
et al. (2015) reported that blocked learning promoted integration, whereas Zhou et al. (2023) 
reported the opposite (interleaving → integration). While differences in memory capacity were 
not explicitly measured in the conflicting studies, there is evidence to suggest that these 
differences may have driven the conflicting findings between the two studies. Schlichting and 
colleagues used a “pure” schedule in which blocked and interleaved phases were learned 
separately, thus reducing interference pressures and allowing AB associations to stabilize 
before BC was introduced. Zhou and colleagues instead used a “hybrid” schedule in which 
blocked and interleaved pairs were intermixed within a single phase, substantially increasing 
cognitive load and interference pressures. The hybrid design implemented by Zhou et al. (2023) 
was associated with higher exclusion rates—up to 65% in some experiments—and substantially 
lower AC inference accuracy, suggesting that perhaps the results were biased by the exclusion 
of participants with lower memory capacity. Our model reproduces these patterns, showing that 
blocked learning generally encourages integration in low-capacity and medium-capacity 
networks, but interleaving promotes integration in high-capacity networks. 

Our results are also consistent with prior work suggesting that implicit temporal structure 
could play a role during learning, specifically for high-capacity systems. Although our networks 
do not explicitly encode temporal context, temporal distance between AB and BC pairs may be 
stored in high-capacity environments where there are ample resources to implicitly encode 
temporal information, in addition to explicitly encoding relational information. Because blocking 
reduces interference by adding temporal distance between AB and BC pairs, the BC learning 
phase may trigger a new temporal context for individuals with high memory capacity, which 
further separates this information from prior learning and make it difficult to draw inferences 
across episodes encountered across long time delays. On the other hand, interleaving reduces 
temporal distance between overlapping AB and BC pairs, which can encourage similarity-based 
integration for high-capacity systems. Prior work also shows that individuals may implicitly 
encode temporal context and use it to organize representations (Pudhiyidath et al., 2022; 
Schapiro et al., 2013, 2016), and interestingly, these time-based relationships emerge even 
without any explicit representations of time in their models (Schapiro et al., 2013, 2016). With 
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that said, extending our framework to include representation of temporal context or proximity as 
a feature (such as a decaying drift vector) could help to systematically test how the temporal 
dynamics present within blocked/interleaved schedules interact with capacity and coding to 
drive relational inference performance. This would be especially relevant given evidence that 
high-capacity individuals may maintain temporal structure to guide integration, whereas 
lower-capacity individuals may not (Noh et al., 2025). 

Beyond reconciling prior discrepancies, the present results generalize to more complex 
graph learning tasks. The same schedule × capacity × coding interactions that were observed in 
the simple triad tasks extended to multi-step structural inference performance in a more 
complex graph-learning design, providing even stronger evidence and application of our 
framework. Specifically, we find that even in the graph task, blocking promotes integration in 
low-capacity settings, whereas interleaving promotes integration in high-capacity environments. 
While the present study does not include behavioral metrics, our simulations are consistent with 
both behavioral and computational findings using the same graph learning task (Noh et al., 
2025). It is also important to note that the modeling approach used in prior work had notable 
differences from the present study, yet still provide converging results in favor of our framework 
(Noh et al., 2025). Conceptually, the interaction between capacity, schedule, and coding style 
outlined in our framework provides a domain-general mechanism for organizing semantic, 
spatial, and temporal structure. It can also be loosely applied to predict coding biases at the 
regional level–such as sparse coding in dentate gyrus versus more distributed coding in CA3 
(Treves & Rolls, 1994; Yassa & Stark, 2011), as well as differences at an individual level–such 
as working memory capacity, to explain divergent representational outcomes across studies and 
populations.  

Limitations of the present work deserve emphasis and we caution against any direct 
mappings of our findings to specific biological pathways or phenomena. Our feedforward 
networks are intentionally minimal, isolating capacity and coding constraints and their impacts 
on resulting representations of relational information. Thus they do not include specific biological 
phenomena, such as consideration of complementary learning systems, recurrent dynamics, or 
explicit representations of temporal context. Catastrophic interference, which has been shown to 
preferentially impact blocked learning (Kumaran & McClelland, 2012), is exaggerated in 
machine learning compared to human learning. Operationalizations of “integration” and 
“performance” rely on representational similarity, which do not necessarily translate to 
better/worse behavioral performance in humans. The relative simplicity of the model, however, 
also represents a strength: by stripping assumptions to a minimum, our framework isolates the 
computational role of memory and coding constraints and unifies conflicting empirical findings. 
These potential limitations are further discussed below.  

One possible concern when interpreting post-learning AC relationships is that 
low-capacity models may support AC inference by overwriting AB when learning BC, a form of 
catastrophic interference. We examined this possibility by measuring the relationship between 
AB–BC similarity and AC integration (see Supplementary Materials, section on Catastrophic 
interference as a possible modeling confound). Across models, this relationship was modest 
and could not fully explain the observed effects. Additional higher-capacity models that did 
acquire AB and BC pairs still reproduced the main results. Thus, catastrophic interference may 
indeed be a limitation of low-capacity neural networks but does not fully explain nor undermine 
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the key findings. Nevertheless, because humans rarely forget AB pairs entirely, our framework 
should be interpreted as a proof of principle rather than a direct mapping to human 
performance. Furthermore, the loss of AB and BC information (on which the models were 
trained) does not necessarily imply a lack of learning–specifically, if AB and BC become 
integrated, it is reasonable to think that the specificity of individual AB and BC representations 
are lost or blurred, as would be expected from compressing these two individual episodes to a 
single representation (ABC). Thus, a related consideration is that integration may necessarily 
reduce AB/BC distinctiveness such that representational similarity analyses may misclassify 
integration as poor direct-pair memory. Our results support this possibility: we show that 
accurate AC inference can arise even when AB and BC similarity appear weak, consistent with 
findings that generalized representations persist even as individual memories fade (Brainerd & 
Reyna, 1990, 2001). Empirical work in human memory and category learning support this idea 
as well: when learning to infer category membership from exposure to individual category 
exemplars, participants show that category-level inference remains high even when behavioral 
evidence of memory for individual exemplars fade or disappear completely (Noh et al., 2024). 
This highlights the need for experimental designs that jointly measure direct-pair fidelity and 
inference performance, rather than examining post-training representations and performance. 
Future work should examine ways to quantify and dissociate these possibilities. 

Finally, the learning that occurs in these models is sensitive to initial conditions. This is 
partly a feature not a bug, because we attempt to interpret the effects of such hyperparameters. 
For example, we manipulate regularization to operationalize coding schemes which influence 
the resulting variability in model weights and performance. Sensitivity to the specification of 
hyperparameters is not unique to our model, and such parameters are often neither explained 
nor biologically motivated. While prior models are also sensitive to hyperparameter settings 
(Zhou, Singh, Tandoc, & Schapiro, 2023), the number of parameters is far larger in the neural 
networks we implement. Hence, the models serve as a useful proof-of-concept of seemingly 
conflicting computational-level memory and learning phenomena. It may be fruitful to further test 
these memory and encoding constraints in future work using more sophisticated models, such 
as implementations of complementary learning systems and biophysical signal propagation in 
the Leabra framework (O’Reilly et al., 2015).  

Taken together, the present study provides a mechanistic explanation for why blocked 
learning may promote integration under some conditions while interleaving does in others. The 
results highlight the critical role of individual differences in capacity and coding strategies, as 
well as design differences across tasks, and how they can shape representational outcomes. 
Thus, we believe our general framework highlights the importance of considering these potential 
sources of variability when designing experiments and models to examine learning related 
representational changes. Potential extensions of our framework might include incorporating 
some of these ideas into the complementary learning systems framework, or examining the role 
of temporal context and its potential interactions with individual differences and sequencing 
effects. Important future directions include linking representational measures to neural and 
behavioral data in human participants, as well as testing moderators such as working memory 
capacity and age to predict which schedule optimizes integration, and also exploring 
interventions that bias coding toward sparse versus distributed representations across 
individuals. These extensions will help strengthen the link between computational mechanisms 
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and individual variability in cognitive map formation, offering a stronger framework for 
understanding how episodic learning contributes to inference, generalization, and planning. 
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Supplementary Materials 
Disaggregating “pure” and “hybrid” schedules 
 
Here we consider results disaggregated into more granular types of training schedules (pure vs. 
hybrid; Supplementary Figure 1). In addition to AC integration, we assessed the indirect AC 
association by using the activation (e.g., retrieval) strength of item C given item A. To obtain an 
activation strength, we applied a sigmoid function to the outputs of the neural networks. This 
sigmoid function produces a probability value ranging from 0 to 1. Memory capacity also affects 
the retrieval of item C given item A. This retrieval strategy is a distinct process from the pattern 
completion strategy that benefits from AC integration. We operationalize the retrieval strength as 
the magnitude of the sigmoid activation of item C when the model is given item A as input. 
Higher memory capacity allows for training to reach a higher activation of C given A than lower 
memory (Supplementary Figure 2A). The hybrid schedules appear to show stronger C 
activation than the pure schedules. Indeed, this benefit of the hybrid schedules for C activation 
is particularly prominent when memory is low (Supplementary Figure 2B). As memory capacity 
increases, the C activation increases overall and differences between the hybrid and pure 
schedules are diminished. These results show that the hybrid and pure schedules, despite both 
containing blocked and interleaved schedules, are not equivalent. Rather the hybrid schedule 
confers a benefit towards the retrieval strategy over the pure schedule.  
 

 
Supplementary Figure 1. Effect of hybrid versus pure schedules on AC integration. (A) 
These are more granular results of Figure 2 from the main text, separated by the “pure” or 
“hybrid” types of the schedule. For the blocked schedule, the pure schedule resulted in higher 
distributedness and lower sparsity whereas the hybrid schedule resulted in lower 
distributedness and higher sparsity when controlling sparsity with the parameter α. For the 
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interleaved schedule, the pure schedule resulted in more distributedness and more sparsity 
whereas the hybrid schedule resulted in less distributedness and less sparsity. (B) The learning 
curves were also split by the pure or hybrid schedule type. (C) The magnitude of integration of A 
and C differs by pure or hybrid schedules, but schedule format (pure vs. hybrid) did not 
fundamentally change the pattern of results with respect to which schedule is optimal under 
varying capacity conditions (e.g., blocked > interleaved in low capacity conditions, regardless of 
format). 

 
Supplementary Figure 2. Learning indirect AC association by retrieving C. (A) The 
activation of item C given item A for different memory capacities as the models are exposed to 
items from different schedules. The activation strength was greater for hybrid schedules than 
pure schedules across memory capacities. (B) The strength of retrieval for item C when 
presented with item A depends was measured as the sigmoid activation of item C given item A. 
The retrieval strengths increase with memory capacity. Retrieval benefits from hybrid versus 
pure schedules. Outputs appear stratified due to our parameter sweep and the input-output 
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non-linearity of the sigmoid function being more extreme at the midpoint. Error bars depict 95% 
confidence intervals. 
 
Catastrophic interference as a possible modeling confound 
 

Trained models often fail to learn both direct pairs because BC learning may partially 
overwrite AB. An important confound to consider is whether greater AC similarity is an artifact of 
a degenerate state of the model that is suffering from catastrophic interference. We consider 
models to be learning AB when AB cosine similarity increases and BC when BC cosine 
similarity increases. We quantify evidence of BC overwriting AB (catastrophic interference) as 
when BC similarity is greater than AB similarity and AB minus BC similarity is negative. When 
the BC association is being learned the AC association is unlearned. The Spearman’s 
correlation between AB-BC similarity and AC similarity is modest: rho=-0.08, p<0.001. In the 
lowest memory models where catastrophic interference would presumably be most severe, 
there is no correlation (rho=-0.005, p=0.56). 

Nevertheless, there is evidence in the low memory models that catastrophic interference 
could explain our models (Supplementary Figure 3). Low memory models are especially 
susceptible to such overwriting. However, the models with medium and high memory still exhibit 
the pattern of results we report in the main results.  

To further investigate the importance of direct pair learning, we trained another set of 
models with larger capacity to evaluate the importance of direct pair learning for our main 
results (Supplementary Figure 4). All models now have greater capacity relative to the input 
dimension, where the encoding layer is expanded to low having 128 units, medium having 256 
units, and high having 384 units. We obtain above-chance performance (50% in binary choice 
tests of target versus foil) in direct pair learning of AB and BC. The Spearman’s correlation 
between AB minus BC similarity and AC similarity is modest: rho=-0.05, p<0.001. The lowest 
capacity model exhibited a slightly higher correlation of rho=0.07, p<0.001.   
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Supplementary Figure 3. Representational similarity analysis with top and bottom 
5th percentiles of ceiling and floor associations excluded. While the original low 
memory model results appear driven by ceiling and floor associations, the models with 
higher memory remain consistent with the original results. These findings reinforce the 
importance of memory capacity for the integration of representations. 
 

This modest relationship between AC similarity and direct pair performance suggests 
that the degenerate state of the model is not a confound which can fully explain these modeling 
results. 

 

 
 
Supplementary Figure 4. Performance over training for direct and indirect 
pairs. A new set of models with larger memory capacity (low having 128 units, 
medium having 256 units, and high having 384 units) exhibit learning. The 
dashed horizontal line indicates chance performance for the two-forced choice 
task of whether target similarity is greater than foil similarity. Foils were selected 
such that one element of the pair is from a different triad but still within the same 
schedule type.  
 

Memory capacity and representational dimensionality  
 

Memory capacity. We operationalized memory capacity as dimensional expansion or 
compression across two encoding/decoding layers, with a fixed-size embedding layer to support 
comparable representational similarity outcomes and analyses. Under-complete (integrated) 
codes encourage compact, interference-resistent memory, whereas over-complete (separated) 
codes support flexible, robust representations (Kumaran & McClelland, 2012; Treves & Rolls, 
1994). The width of the embedding layers in the “low” and “high” memory conditions were 
chosen based on conceptual abstractions of our framework–in the “low” memory capacity 
model, we picked a size that was smaller than the input layer, forcing a many-to-one mapping of 
incoming information. In doing so, we aimed to create a condition of high interference pressure, 
similar to what we believe individuals with poor memory abilities chronically face. We chose to 
reduce the 18-dimensional stimuli to 6 dimensions then to 3 dimensions, reflecting a 3:1 and 
then 2:1 compression ratio during encoding (and vice versa for the expansion ratio during 
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decoding). These ratios are within the biological 5:1 range observed for the input-output 
projection ratios in the human hippocampus (Cayco-Gajic & Silver, 2019), the 10:1 range in 
some computational models of the rodent hippocampus (Guzman et al., 2021), and the 29:1 
range for computational models of human perceptual memory (Bates & Jacobs, 2020). On the 
other end of the spectrum, we chose encoding layer sizes that would be sufficiently large to 
simulate a case in which there are no capacity-level constraints, which allow us to better 
examine how sparsity and distributedness constraints operate in the absence of capacity 
limitations. The capacity constraints were therefore motivated and abstracted from the 
theoretical assumptions of our framework, but not meant to be interpreted as a one-to-one 
mapping to human participants.  

Representational dimensionality. Building from the sparse coding and representation 
learning literature, we aimed to enforce the usage of either an “undercomplete” or 
“overcomplete” encoding, where the representation layer is smaller or larger than the input 
layer, respectively (Luo, 2021). Undercomplete representations have been shown to encourage 
compressed memory and may track temporal structure, approximating the connectivity and 
processing of hippocampal and temporal regions (Bates & Jacobs, 2020; Schapiro et al., 2013; 
Spens & Burgess, 2024). In contrast, overcomplete representations have been shown to be 
useful for flexible and robust representations, approximating the connectivity and processing of 
the visual stream (Fusi et al., 2016; Olshausen & Field, 2004).  

The usage of layer size has been shown to approximate representational capacity by 
manipulating the expansion or compression of representation dimensionality (Litwin-Kumar et 
al., 2017; Luo, 2021). This approach has been successfully applied to synthesize several 
domains of memory under the shared framework of capacity limitations (Bates & Jacobs, 2020). 
However, there are several limitations to interpreting layer size as memory capacity. At the 
cognitive level, there are many distinct memory processes, each of which may be differently 
affected by capacity and each of which may dynamically allocate capacity depending on task 
demands. Hence, approximating general capacity is a simplistic view of varied memory 
processes, which limits generalizability to human memory. At the neurobiological level, the sole 
usage of layer size as a proxy for capacity overlooks other factors that affect the efficiency of 
codes. For this reason, in the present analysis, we incorporated additional constraints to induce 
more sparse or distributed codes. Finally, the usage of neural networks to model particular 
regional processes neglects the interactive contributions of other regions, motivating 
approaches such as multi-region recurrent neural networks (Perich & Rajan, 2020).  

 
 
Simplicity and complexity of models 
 
We have taken a relatively simple modeling approach relative to some models in the memory 
literature (Bates & Jacobs, 2020; Beukers et al., 2024; Flesch et al., 2018; O’Reilly & Rudy, 
2001; Schapiro et al., 2017; Zhou et al., 2023). Our approach shares comparable complexity to 
some other neural network models of episodic memory (Benna & Fusi, 2021; Schapiro et al., 
2013) and is more complex than yet other approaches in the literature with respect to size and 
encoding scheme (Morton et al., 2020; Noh et al., 2025; Schapiro et al., 2013).  

We prioritized simplicity to make minimal assumptions for greater interpretability of our 
systematic manipulations to memory capacity and encoding strategy. Despite these advantages, 
one notable  drawback is that the model sacrifices biophysical accuracy for greater 
interpretability compared to more sophisticated models that include multiple regions, neuron 
profiles, and signaling mechanisms (O'Reilly & Rudy, 2001; Schapiro, Turk-Browne, Botvinick & 
Norman, 2017). While prior models are also sensitive to hyperparameter settings (Zhou, Singh, 
Tandoc, & Schapiro, 2023), the number of parameters is far larger in our neural networks, which 
is necessary to directly manipulate capacity and coding strategy differences. Thus, our results 

27 

https://paperpile.com/c/AY8vnM/vo9H
https://paperpile.com/c/AY8vnM/KvpV
https://paperpile.com/c/AY8vnM/2Fum
https://paperpile.com/c/AY8vnM/RxQO
https://paperpile.com/c/AY8vnM/Fo2z+2Fum+XJVsc
https://paperpile.com/c/AY8vnM/Fo2z+2Fum+XJVsc
https://paperpile.com/c/AY8vnM/xbXN+SmPG
https://paperpile.com/c/AY8vnM/vyU8+RxQO
https://paperpile.com/c/AY8vnM/vyU8+RxQO
https://paperpile.com/c/AY8vnM/2Fum
https://paperpile.com/c/AY8vnM/R4FG
https://paperpile.com/c/AY8vnM/4Kr6+AgkU+gMdF+2Fum+kwso+OoTzA
https://paperpile.com/c/AY8vnM/4Kr6+AgkU+gMdF+2Fum+kwso+OoTzA
https://paperpile.com/c/AY8vnM/XJVsc+ekXXY
https://paperpile.com/c/AY8vnM/XJVsc+ekXXY
https://paperpile.com/c/AY8vnM/XJVsc+0V23+bbIU


 

are highly sensitive to the initial conditions and hyperparameters for training. We mitigate this 
variability by performing a grid search and averaging performance over many (thousands) of 
model runs. 

 
Defining sparsity 
 

There are many definitions of sparsity used in the literature (Beyeler et al., 2019). In the 
brain, reducing activation magnitudes can be seen as a consequence of inhibitory signaling. It 
has been shown that under inhibition and considering the energetic cost of larger activity 
magnitudes, activating just a small proportion of units is the most energetically efficient solution 
(Laughlin, 2001). When applied to neural networks, this kind of regularization has useful 
outcomes for learning and generalization by helping to disentangle representations and lead to 
more local feature codes (Olshausen & Field, 2004; Whittington et al., 2022).  
 

A metric of sparsity from neuroscience is the Treves-Rolls sparseness (Treves & Rolls, 
1991), defined as: 
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The numerator penalizes the average magnitude of activation and the denominator 

normalizes the numerator by its spread and scale. For example, [0.5, 0.5, 0.5, 0.5] is just as 
sparse as [0.1, 0.1, 0,.1, 0.1] under this definition, both having a sparsity of 0.  
 

In contrast, the sparsity metric that we selected in the present manuscript characterizes 
[0.5, 0.5, 0.5, 0.5] as 20 times less sparse as [0.1, 0.1, 0,.1, 0.1]. Moreover, our distributedness 
metric characterizes [0.5, 0.5, 0.5, 0.5] as having the exact same distributedness as [0.1, 0.1, 
0.1, 0.1]. Taken together, our dual metrics disentangle the contribution of magnitude and activity 
spread to sparseness. 
 

In a subset of models, we calculate the relationship between these metrics. The 
Treves-Rolls sparsity positively correlates with the inverse-magnitude sparsity metric 
(r(883)=0.50, p<0.001) and negatively correlates with the entropy metric (r(883)=-0.12, 
p=0.0003). These correlations indicate that the Treves-Rolls sparseness relates to lower overall 
activity magnitude and a more concentrated (local) distribution of activity. Taken together, our 
neural network metrics are consistent with prior metrics of sparseness. 
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