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Abstract 

Objectives. Effective goal-directed decision-making relies on both memory and planning–processes that are each 

known to decline with age. We tested the hypothesis that these declines stem from a common mechanism by 

focusing on mnemonic discrimination, a measure of memory precision that shows unique vulnerability to age-

related decline. 

Methods. We used a latent learning task that measures the ability to learn and make judgments about multi-step 

associations among interconnected stimuli, assessing performance across the adult lifespan. In Experiment 1, we 

examined relationships between judgment performance and mnemonic discrimination ability. In Experiment 2, 

we tested whether a learning schedule designed to reduce memory interference (by temporally separating 

overlapping object pairs) could improve performance, particularly for individuals with weaker memory abilities. 

We also implemented an artificial neural network simulation varying training sequence and the network’s 

representational capacity to model performance. 

Results. Across the lifespan, both young and older adults showed evidence of successful latent learning and 

inference, but variability in judgment performance was explained by mnemonic discrimination ability. In 

Experiment 2, mnemonic discrimination interacted with training condition: intermixed training benefited those 

with high memory precision, whereas blocked training benefited those with low memory precision. The neural 

network simulation reproduced these patterns. 

Discussion. These findings suggest that age-related declines in complex judgments may stem from declines in 

mnemonic discrimination. Importantly, they demonstrate that individualized, memory-based training 

interventions can improve learning and reasoning processes that support goal-directed planning, offering a 

promising approach to preserve decision-making abilities across the lifespan. 
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Introduction 

Humans across the lifespan must often make decisions with lasting consequences for themselves and 

others. Increasingly, older adults occupy positions of power at the highest levels of government and major 

corporations, making their decision-making abilities particularly consequential for constituents and employees  

(Akhtar, 2019; Hall & Hickey, 2022; Ingraham, 2014; Schnoor, 2020). Yet aging is associated with declines in 

several cognitive abilities, including decision-making (Craik & Salthouse, 2011; Hess et al., 2015; Raz, 2000). In 

particular, older adults show impairments in complex decision-making requiring multi-step associations and 

judgments, such as forward planning (Drummond & Niv, 2020; Eppinger et al., 2013; Eppinger & Bruckner, 

2015). However, the mechanism by which multi-step inference and planning declines with age is unclear, limiting 

efforts to develop effective interventions to reverse age-related cognitive decline. One challenge is that existing 

behavioral assays do not distinguish whether age-related declines arise from the judgment process itself or from 

difficulties learning the associations needed for such judgments, as in model-based planning (Konovalov & 

Krajbich, 2020; Silva et al., 2020).    

Many real-world decisions require inferring structure from disparate experiences to form flexible, goal-

directed plans. For instance, consider a student, Alice, preparing to present at an out-of-town conference. She 

books a 4PM Friday flight and plans to call a taxi at noon to allow ample time for travel. Even if this is her first 

conference, she can engage in multi-step planning by assembling relevant knowledge from related experiences: 

after many delayed flights, she opts to arrive the night before her presentation (as opposed to the morning of); she 

anticipates heavier Friday afternoon traffic; and she chooses a taxi over driving due to past struggles finding 

airport parking. 

Recent work in younger adults suggests that such goal-directed planning depends on inferring structure 

from the environment. Rmus et al. (2022) developed a task that measures how participants learn the associative 

structure among image pairs (edges) arranged along a latent “graph.” (Rmus et al., 2022). Participants implicitly 

learned complex associative structures (latent structure learning) from randomized exposures to individual graph 

edges. This knowledge was assessed via shortest path judgments requiring multi-step inference. Importantly, 

performance on the judgment task predicted greater use of model-based planning on a goal-directed decision-
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making task. A major strength of the task developed by Rmus et al. (2022) is its sensitivity to both the degree of 

latent structure learning and the ability to measure performance across varying associative distances. One open 

question, however, is how structure learning occurs, and what type of knowledge representations support multi-

step inference judgments.  

One reasonable assumption is that memory may influence how individuals learn latent structures from 

experience, as model-based planning involves hippocampal contributions and effective memory search (Bornstein 

& Daw, 2013; Doll et al., 2015; Vikbladh et al., 2019). In the task by Rmus et al., accurate representation of 

individual associations is critical for learning the graph. More specifically, memory precision may be especially 

important for forming representations that enable efficient planning. For example, remembering Friday afternoon 

traffic patterns (rather than Monday afternoon or Friday evening) allows Alice to make more accurate predictions 

for her trip. In episodic memory, high precision can be achieved through pattern separation, in which competing 

information is encoded as distinct neural patterns (Bakker et al., 2008; Yassa & Stark, 2011). Pattern separation 

reduces or resolves memory interference, enabling discrimination of similar events (Lacy et al., 2011; Poppenk et 

al., 2013), but this ability declines with age (Burke et al., 2010; Stark et al., 2013; Toner et al., 2009; Yassa & 

Stark, 2011). Declines in pattern separation may explain older adults’ increased susceptibility to interference and 

related memory failures (Campbell et al., 2010; Wilson et al., 2006). We therefore asked whether age-related 

deficits in multi-step planning stem from impaired latent structure learning due to reduced precision and greater 

interference. 

If older adults’ increased susceptibility to memory interference undermines their ability to learn the 

structures necessary for multistep planning, training interventions aimed at bolstering encoding may improve 

multi-step inference judgments needed for complex decision-making tasks. In support of this idea, work in 

episodic memory has shown that manipulating learning sequences or temporally separating overlapping 

associations can reduce memory interference and bias formation of distinct neural representations to support 

associative inference (Zeithamova & Preston, 2017; Zhou et al., 2023).  

 

What is the nature of the representations that support structural inference? 
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Research suggests that associative inference can be supported by at least two kinds of neural representations 

(Eichenbaum, 2001, 2017; Poppenk et al., 2013; Schlichting et al., 2015; Zhou et al., 2023). In standard 

associative inference tasks, participants learn A–B pairs, then B–C pairs, and are later tested on their knowledge 

of the indirect association between A and C, despite never having been presented with an A-C pair. If participants 

encode A-B and B-C as separate episodes during learning via pattern separation, they may form localist 

(orthogonalized) representations of each pair (Kumaran & McClelland, 2012; Zhou et al., 2023) and A–C 

inference requires effortful retrieval and recombination at test (e.g., “A paired with B, and B paired with C, so A 

is associated with C”). While localist representations yield high precision and resist interference, they may be less 

efficient for making inferences due to the additional effort required for information retrieval and recombination. 

(Zeithamova et al., 2012; Zhou et al., 2023).  

Alternatively, encountering B–C may reactivate A–B, allowing integration of new (-C) information into 

an updated A–B–C representation (Morton et al., 2017; Schlichting & Preston, 2015; Zeithamova et al., 2012). 

These distributed representations support rapid inference but are prone to interference and false memories 

(Bowman et al., 2021; McCloskey & Cohen, 1989; Zhou et al., 2023), making them potentially challenging for 

individuals such as older adults who are already vulnerable to interference. If age-related declines in memory 

precision causes inference failures, then a learning method that reduces memory interference should improve 

latent structure learning and judgments. 

In the present study, we tested whether age-related declines in memory precision affect performance on a 

multi-step associative inference task (the “graph” task; (Rmus et al., 2022). In Experiment 1, participants studied 

randomly presented object pairs drawn from an underlying graph of 12 nodes (objects) and 16 edges (object pairs; 

Fig. 1). At test, they judged relative distances between object pairs (considered to be a fundamental computation 

for high-level planning; (Huang et al., 2019), assessing their ability to mentally navigate associations and make 

shortest-path judgments (Fig. 2A). We expected performance deficits with age, specifically driven by poor 

memory precision, so participants also completed the Mnemonic Similarity Task (MST; Fig. 3) to independently 

measure mnemonic discrimination, a sensitive behavioral index of pattern separation ability that tracks age-related 

decline (Stark et al., 2019) and predicts decision-making beyond chronological age (Noh et al., 2023). In 
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Experiment 2, we tested the prediction that separating overlapping edge pairs during learning (blocked training, 

Fig. 1C) would reduce working memory load and improve structural inference and multi-step planning for older 

adults or those with low precision (Schlichting et al., 2015). To affirm the relationship between training condition 

and memory precision, we simulated task performance using variants of artificial neural network models that 

differed only in their internal representational capacity and compared the model outputs to our behavioral 

findings.  

 

Method 

Transparency and Openness. All de-identified data, figure scripts, and PyTorch code will be shared at the UCI 

CCNL GitHub upon publication. This study was not preregistered. 

Experiments 1 and 2 were identical except for the learning-phase presentation order (intermixed vs. 

blocked). Data were collected concurrently, with participants randomly assigned to the intermixed condition 

(Experiment 1) or blocked condition (Experiment 2). We report them separately to reflect the study’s logical 

progression from replication to extension. Experiment 1’s intermixed task closely followed Rmus et al. (2022) but 

included a lifespan sample with older adults, was administered online, and incorporated an additional measure of 

memory specificity. Anticipating that older adults might find the original task difficult, we implemented the 

blocked sequence in Experiment 2, based on prior work in associative memory suggesting that temporally 

separating overlapping associations might reduce cognitive load and improve performance in populations with 

lower memory capacity (Schlichting et al., 2015). Methods are described jointly below, with procedural 

differences between the two experiments noted explicitly. 

 

Participants. Sample size was based on prior work with similar designs (N = 81, Rmus et al., 2022), with a ~25% 

increase to offset higher noise in our online data (relative to the supervised in-person data collected by Rmus et 

al.). We aimed for ~100 participants per experiment post-exclusion. A total of 219 participants (112 female, 108 

male; ages 19-84, mean(sd) age = 55.7(14.2)) were recruited via Amazon Mechanical Turk: 113 in Experiment 1 

(59 female / 54 male, ages 22-84, mean(sd) age = 56.7(13.8)), and 106 in Experiment 2 (53 female / 53 male, ages 
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19-79, mean(sd) age = 54.8(14.7)). Upon consent, participants reviewed an online information sheet outlining 

procedures, rights, risks, and compensation. Participants received monetary compensation and completed a 

tutorial plus a rotation-detection screener (10 practice trials; ≥70% accuracy required within two attempts to 

ensure attention to task instructions) to be eligible to participate in the full task. All protocols were classified as 

“Exempt Online Survey” by UCI’s IRB. Participants logged in with their Amazon Worker ID, which was 

anonymized using a one-way hash before storage.  

 

Procedure  

Structural Inference (“Graph”) Task 

Study Phase. Participants viewed and were told to memorize a series of object pairs (Fig. 1A), each presented for 

1s in random order. Participants provided a rotation judgment on each trial to ensure attention. No information 

about the underlying structure was given, though pairs were drawn from a hidden 12-node, 16-edge graph (Fig. 

1B). In Experiment 1, all 16 unique edge pairs were repeated 44 times (704 trials total) in random sequence (Fig. 

1C, “intermixed”). Experiment 2 grouped object pairs into 4 mini-blocks, each with 4 unique, non-overlapping 

pairs (Fig. 1C, “blocked”). This separation of potentially confusing (overlapping) edges across time aimed to 

reduce memory interference and improve learning of the graph structure. 



 

 

 

Figure 1. Structural Inference Task learning phase.  Participants learn individual edges (A) drawn from a latent structure 

made up of several overlapping edges (B). In Experiment 1, edges are drawn randomly and presented in an intermixed 

fashion (C, intermixed), whereas in Experiment 2, overlapping edges are separated in time across different mini-blocks (C, 

blocked). 

 



 

 

Following the study phase, participants completed two different tests to measure how well participants can use 

their knowledge of the graph structure (Fig. 2A, Judgment Test), as well as how well they learned the graph 

structure (Fig. 2B, Graph Reconstruction Test). 

 

Judgment Test. After completing the learning phase, participants completed a relative distance judgment task (Fig. 

2A). This task measured participants’ ability to use learned information for structural inference. Participants were 

asked to judge which of two objects (left vs. right) was closer to a central object, based on indirect relationships 

learned previously (i.e., graph distance). Responses were made using keyboard buttons, across 204 trials with up 

to 10 seconds per trial. Each unique object served as a central node 17 times. Choice options were randomly 

selected with the following constraints: 1) neither option was directly paired with the central node during study, 

and 2) the shortest path length between the central node and the two options (associative distance) was not equal. 

Trial difficulty varied based on the difference in associative distance between choice options and the reference 

node (ranging from 1 to 3). Accuracy was calculated within each difficulty bin. 

Because online data are unsupervised and noisier, judgment test data were screened for outliers prior to 

analysis using a two-step reaction time (RT)–based procedure, as RTs were not analyzed directly. Data were first 

combined across all conditions (age, training sequence). We excluded trials with RTs <400 ms, which were 

determined to be unrealistic (the lowest participant-level average RT was 463.2 ms), and >3000 ms, which may 

indicate connectivity issues, lag, or lapses in attention. This initial filter yielded a general acceptable range of 

[400, 3000 ms]. From this set, we further retained trials within twice the interquartile range ([Q3 – 1.5×IQR, Q1 + 

1.5×IQR]) of the remaining data ([494, 2226 ms]). This range still encompassed the IQR of the original data 

(median = 1368 ms, IQR = [951, 2062]) and preserved sufficient variability to examine potential strategy 

differences, while excluding trials where participants were likely disengaged. These criteria align with prior 

approaches for filtering noise in online RT data (Ratcliff & Hendrickson, 2021).  

Filtered judgment-phase data were analyzed using linear mixed-effects models (R nlme package; 

(Pinheiro et al., 2017), with difficulty (distDiff = 1, 2, 3; 1= most difficult), age, LDI, and Sequence (blocked vs. 

interleaved) were specified as fixed effects, and participant as a random effect.  
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Graph Reconstruction Test. Following the judgment test, participants completed a graph reconstruction task to 

assess explicit knowledge of the learned structure (Fig. 2B). All 12 study-phase objects were displayed above a 

blank canvas, and participants arranged them by clicking and dragging each object onto the canvas. Participants 

were asked to place and link objects that were directly paired during study by selecting two objects sequentially; 

linked items were connected with a straight line. All objects had to be placed on the canvas and linked to at least 

one other object before submission. 

We scored reconstructions as follows: “hits” for correctly linked study pairs (Fig. 5A), “false alarms” for 

incorrectly linked pairs (Fig. 5B), and total number of edges drawn (Fig. 5C). Accuracy was computed in two 

ways: 1) sensitivity (d’) defined as hit rate - false alarm rate (Fig. 5D; ℎ𝑖𝑡𝑠/16	 − 	𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠/50), and 2) 

precision (Fig. 5E; ℎ𝑖𝑡𝑠	/	𝑡𝑜𝑡𝑎𝑙	𝑒𝑑𝑔𝑒𝑠	𝑑𝑟𝑎𝑤𝑛). The precision metric adjusts performance by the number of edges 

drawn, allowing for better comparisons across individuals with varying memory capacity.  

Analyses were conducted in R using linear regression (lm). We separately modeled hits, false alarms, 

total edges, accuracy, and precision as a function of LDI, training sequence (blocked vs. intermixed), and their 

interaction. For each analysis, the full model was specified as follows: DV ~ LDI + Sequence + LDI*Sequence. If 

no significant interaction was found, the model was refitted without the interaction term to test for main effects 

(Grace-Martin, 2011). 
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Figure 2. Structural Inference Task test phases. (A) After the learning phase, structural inference-based judgments were 

assessed for each participant. Participants were presented with 3 objects and asked whether the object on the left or right was 

closer to the center object, based on the associations they learned in the previous study phase. Judgment phase trials varied in 

difficulty based on the difference between choice options. The most difficult trials were ones in which options differed by an 

associative distance of 1 (distance 2 vs. 3, 3 vs. 4, or 4 vs. 5), whereas the easiest trials were ones in which choice options 

differed by an associative distance of 5 (distance 2 vs. 5). (B) After the judgment phase, participants were asked to 

reconstruct the graph to the best of their knowledge by placing all studied objects on a “canvas” on their screen and 

connecting objects only if they had been directly paired together during the study phase. Correctly drawn connections were 

classified as “hits,” whereas incorrectly drawn connections were classified as “false alarms.” Participants were required to 

place all object on the canvas, and each object had to be connected to at least one other object to complete this phase. 

 

Mnemonic Similarity Task (MST) 

Participants completed the MST (Fig. 3) as an independent measure of memory ability to assess whether 

mnemonic discrimination explained individual differences in graph task performance.  

 



 

 

Encoding Phase. Participants viewed object images and made indoor/outdoor judgments (cover task). No MST 

images overlapped with those used in the graph task, and participants were unaware that their memory would later 

be tested.  

Mnemonic Discrimination Test. On a surprise discrimination test, participants saw object images that were 

identical (old), similar (lures), or novel (foils) relative to objects shown during encoding, and judged each object 

as “old”, “similar”, or “new”. A Lure Discrimination Index (LDI) was calculated for each participant: p('sim'|lure) 

- p('sim'|foil). Higher LDI values indicate better ability to classify lures as “similar” relative to foils, reflecting 

greater mnemonic discrimination and better memory encoding precision (Stark et al., 2019). 

 

Figure 3. The Mnemonic Discrimination Task. (A) Participants view a sequence of objects during an incidental encoding 

phase in which participants are asked to classify each object as an indoor or outdoor object. (B) In a surprise discrimination 

test, participants view a series of objects and are asked to determine whether each object is an “old,” “new,” or “similar” item 

relative to what was shown during the encoding phase. (C) Relationship between chronological age and LDI across 

participants in both experiments. Shaded bands indicate 95% confidence intervals around the best fit regression line for each 

experiment (dashed lines). 

 

Artificial Neural Network Model (ANN) 

To further examine the behavior of participants under different simulated conditions, we implemented a 

minimal-assumption feedforward network in PyTorch (Version 1.13.1, (Paszke et al., 2019)) under varying 

representational capacities. To avoid terminology confusion, node/edge refer to the graph task and unit/weight to 
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the neural network. Given one node of a studied pair, the network learned to predict (pattern-complete) its 

complementary vertex. To simulate variance in memory encoding ability, the number of units in the 2nd and 4th 

layers of the network was varied. We used a fully connected five-layer network not including the 12 units input 

and output layers (one per item) with an 12-unit hidden layer. To model different degrees of pattern separation, 

the widths of the second and fourth layers were varied at increments of one-quarter the input size: 6, 12, 18, 24, 

36 units. Smaller widths simulate low memory capacity by forcing many-to-one mappings (greater potential for 

interference). The model’s activation function at unit i of layer l was defined as: 

ℎ!(𝑖) = 𝑓(𝑤"
#!ℎ!$1)	 

where f is a pointwise function, wil is a vector of learnable parameters, hl−1 represents the output of the previous 

layer, and T is the matrix transposition operation. The input layer is referred to as h0. For each condition (blocked 

vs. intermixed), the model saw the same image-pair stimuli as participants, <x,y>. Each of the 12 images was one-

hot encoded (the input unit for the presented node set to 1, others 0). The target was a one-hot vector for the 

paired node (1 for the complement; 0 otherwise). Training used both directions of each undirected pair with 

equalized exposures per direction. We estimated the parameters wil, for all i and l, using stochastic gradient 

descent with the Adam optimizer (Kingma & Ba, 2014) to minimize the cosine similarity between the input and 

output. We used a rectified nonlinear unit for the pointwise function, f, for all layers except the output layer, 

where we used a sigmoid function. To account for variability due to stochastic weight initialization and to 

evaluate model generalizability, we trained 1000 models per condition (blocked and interleaved) across 5 

different latent layer widths (6, 12, 18, 24, 36). All models used He initialization, which samples weights from a 

uniform distribution scaled for ReLU activations to maintain stable gradients. We optimized cross-entropy over 

the 12-way next-item distribution using Adam without label smoothing, applying ReLU after the first two layers 

(L1 and L2), a linear bottleneck layer (B), and symmetric decoding layers back to the output logits. Learning rate 

and weight decay were set to 0.38 and 0.13, respectively, based on prior runs and sweep tests. Models were 

trained for 5 epochs, with each epoch containing 704 trials. In the blocked condition, these were divided into 4 

blocks of 176 trials each, presented in a strict block-wise schedule; in the interleaved condition, all 704 trials were 

shuffled. 

https://paperpile.com/c/59wCww/cAmTe


 

 

To assess the ability of the model to infer the latently learned graph, we performed a relative distance 

judgment task. We evaluated all non-adjacent triples of nodes (reference, option 1, option 2) with a shortest-path 

length difference |d12−d13| of 1 to 3. The model’s internal representations were taken from the bottleneck layer. 

For each trial, we estimated the number of hops from the reference to each option using a beam search (keeping 

only the top-k candidates by similarity at each step), and selected the closer option via a softmax over the two 

estimated hop counts. 

 

Results 

 

Experiment 1: Better memory encoding ability improves structural inference-based judgments 

 

Judgment Test. We used a linear mixed-effects model to examine whether trial difficulty (relative distance 

difference between choice options) and chronological age predicted judgment accuracy (Fig. 4A): judgment 

accuracy ~ age + distDiff + age*distDiff, random = ~1|subject (adjusted R2 = 0.23, AIC = -152.55). There was a 

main effect of age (βage = -0.030, SE = 0.012, t(110) = -2.57, p = 0.011), with older adults performing worse than 

younger adults. There was also a main effect of difficulty (βdistDiff = 0.032, SE = 0.009, t(216) = 3.50, p < 0.001), 

with performance improving as relative distance increased. The age × difficulty interaction was significant 

(βage*distDiff = -0.022, SE = 0.009, t(216) = -2.41, p = 0.017) such that younger adults showed greater performance 

gains with increasing relative distance.  

Adding mnemonic discrimination ability (LDI) to the model revealed it was a stronger predictor of 

judgment accuracy than age:  judgment accuracy ~ age + distDiff + LDI + age*distDiff + age*LDI + 

distDiff*LDI + age*distDiff*LDI, random = ~1|subject (adjusted R2 = 0.26, AIC = -133.98). When both age and 

LDI were included, the main effect of age (βage = -0.021, SE = 0.012, t(108) = -1.72, p = 0.088) and its interaction 

with difficulty (βage*distDiff = -0.012, SE = 0.010, t(214) = -1.24, p = 0.218) were no longer significant. Instead, 

higher LDI predicted better performance (βLDI = 0.031, SE = 0.013, t(108) = 2.42, p = 0.017), with a significant 

LDI × difficulty interaction (βLDI*distDiff = 0.033, SE = 0.010, t(214) = 3.34, p = 0.001) indicating that memory 



 

 

precision benefits emerged primarily in easier trials. Age × LDI and the three-way interaction were non-

significant. Given LDI’s predictive strength, we re-ran the model excluding age (Fig. 4B, adjusted R2 = 0.26, AIC 

= -164.19). This model confirmed significant main effects of LDI (βLDI = 0.035, SE = 0.012, t(110) = 2.99, p = 

0.003) and difficulty (βdistDiff = 0.032, SE = 0.009, t(216) = 3.50, p < 0.001) as well as a robust LDI × difficulty 

interaction (βLDI*distDiff = 0.034, SE = 0.009, t(216) = 3.84, p < 0.001), with higher LDI predicting greater gains in 

easier trials. 

 

Figure 4. Behavioral results from Experiment 1. (A) Judgment accuracy as a function of chronological age and trial difficulty 

(distance difference between choice options). The green band indicates 95% confidence intervals around the best fit 

regression line. (B) Judgment accuracy as a function of mnemonic discrimination ability (LDI) and trial difficulty (distance 

difference between choice options). The blue band indicates 95% confidence intervals around the best fit regression line. 



 

 

These results suggest that structural inference performance depends on the precision of encoded 

associations, with the largest differences observed in trials requiring comparisons across larger associative 

distances. Notably, participants with low memory abilities performed at chance across all difficulty levels, 

suggesting minimal or no latent structure learning. We hypothesized that this may reflect greater susceptibility to 

memory interference, which might be mitigated by training on non-overlapping subsets one block at a time. Thus, 

Experiment 2 introduced the “blocked” training intervention to reduce interference for low-LDI participants 

during study and potentially improve subsequent judgment performance. 

 

Experiment 2: Memory-based inference can be improved via individualized training 

To test whether training conditions modulate structural inference as a function of memory ability, we 

combined data from Experiment 1 (n = 113, intermixed sequence) and Experiment 2 (n = 106, blocked sequence) 

and fit a linear mixed-effects model (Fig. 5): judgment accuracy ~ LDI + distDiff + Sequence + LDI*distDiff + 

Sequence*LDI + Sequence*distDiff + LDI*Sequence*distDiff, random = ~1|subject (adjusted R2 = 0.21, AIC = -

304.55). There was a significant 3-way interaction between mnemonic discrimination ability, difficulty, and 

learning sequence (βLDI*distDiff*sequence = 0.054, SE = 0.013, t(422) = 4.10, p < 0.001) indicating that the relationship 

between mnemonic discrimination ability (LDI) and performance differed by training sequence and trial 

difficulty. Importantly, there was an interaction between learning sequence and mnemonic discrimination ability 

(βLDI*sequence = 0.038, SE = 0.016, t(214) = 2.26, p = 0.025): participants with low LDI benefitted from blocked 

training, whereas those with high LDI performed better with intermixed training. This crossover interaction was 

evident only in the easiest trials (distDiff = 3). Still, reducing memory interference via blocked training improved 

structural inference for individuals with weaker memory ability, enabling more accurate inference judgments 

when associative distances were large.  



 

 

 

Figure 5. Behavioral results combining data from Experiment 1 (blue) and Experiment 2 (red) showing judgment accuracy as 

a function of trial difficulty (distance difference between choice options), mnemonic discrimination ability (LDI), and 

training condition (blocked vs. intermixed learning sequence). Shaded bands indicate 95% confidence intervals around the 

best fit regression line for each training condition (dashed lines). 

Artificial neural network captures relationship between training sequence and memory capacity in distance-

dependent judgment performance. 

Given the observed interaction between training sequence and mnemonic discrimination ability (LDI) in 

Experiments 1–2, we tested whether such effects could be reproduced by manipulating a neural network’s 

representational capacity. To test this, we implemented a five-layer feedforward autoencoder which jointly 

optimizes encoding and decoding of sequential inputs (Blanco Malerba et al., 2024; Chandak et al., 2024). trained 

to associate paired items from the intermixed version of the task (704 randomized presentations; see Methods: 

Artificial Neural Network Model). The trained network performed the judgment task by estimating hop counts 

using its bottleneck representations and choosing the closer option using a softmax over the two estimates. 

Consistent with the hypothesis that the network provides a minimal mechanism for multi-step inference, its 

distance-dependent performance matched that of Rmus et al. (2022; aged 18–27, M = 22; Fig. 4a in that paper) 

and the young/high-LDI participants in Experiment 1 (Fig. 4).  

To model variability in memory precision, we manipulated the number of units in the second and fourth 

hidden layers (6, 12, 18, 24, or 36; Fig. 6a). Larger widths corresponded to more distinct, nonoverlapping 

representations of each node (high LDI), whereas smaller widths simulated representational merging before latent 
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structure extraction (low LDI). This manipulation was loosely inspired by pattern separation in the dentate gyrus, 

where higher neuron density supports more precise memory representations (Yassa & Stark, 2011). Consistent 

with this hypothesis, we found that judgment task performance scaled with hidden-layer width, with the largest 

effects on distDiff = 3 trials that required precise, orthogonalized representations to compare long vs. short paths 

(Fig. 6b). We fit a linear mixed-effects regression predicting judgment accuracy from difficulty (distDiff: 1, 2, 3), 

training sequence (blocked/intermixed), and layer width (6–36), with model ID as a random effect. For distDiff = 

3 trials, the analysis was: judgment accuracy ~ Width + Sequence + Width × Sequence, random = ~1|model_ID 

(AIC = −27,558.8; ML fit). At the baseline width, blocked models achieved a mean accuracy of 84.3%, whereas 

intermixed models were lower by 4.8% (SE = 0.0020, z = −23.83, p < .001). This substantial and highly 

significant difference indicates that, in low-difficulty conditions, blocked training improved structural inference 

accuracy, paralleling the behavioral advantage observed for low-LDI participants. 

 

 

Figure 6. (A) Schematic of the artificial neural network. To model memory capacities' effect on judgment accuracy, the width 

of the first and third hidden layer were varied from 6 units (low-LDI; reflecting the hypothesized diminished capacity for 

separating inputs) to 324 units (high-LDI; allowing for sparse, highly separated representations of each input object). (B) 

Model judgment task results across varying layer widths and training conditions, matching the pattern observed in human 

participants with varying memory precision. For Distance Difference 3, The effect of layer width differed significantly 

between training conditions(F(1,11,996)= 181.29, p<.001, ηp2=.015), indicating that network capacity influenced structural 

inference accuracy differently for blocked and intermixed training. Accuracy decreased with width for blocked models (slope 
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= −0.00035) but increased for intermixed models (slope = +0.00148), with blocked outperforming intermixed at low widths 

and intermixed closing the gap at higher widths. 

 

Graph Reconstruction. To get a sense of the memory representations that participants may have formed during 

learning, we analyzed hits (correct edges), false alarms (incorrect edges), total edges drawn, and two accuracy 

metrics (sensitivity and precision) from the graph reconstruction phase as a function of mnemonic discrimination 

ability (LDI) and training sequence (blocked vs. intermixed). Across all five regressions, the LDI × Sequence 

interaction was not significant, so interaction terms were removed and models were refit to assess main effects; 

the results reported here are from those main-effects models. For hits, the linear regression (hits ~ LDI + 

Sequence) was significant, adjusted R² = .03, F(2, 212) = 4.09, p = .018, with a main effect of LDI, β = 0.65, SE = 

0.23, t(212) = 2.81, p = .005, indicating that participants with better memory ability produced more correct edges; 

there was no effect of training sequence (Fig. 7A). For false alarms, the model (false alarms ~ LDI + Sequence) 

was significant, adjusted R² = .03, F(2, 212) = 4.07, p = .018, with a main effect of training sequence, β = 1.53, 

SE = 0.55, t(212) = 2.77, p = .006, such that participants in the intermixed condition produced more false edges; 

LDI was not significant (Fig. 7B). For total edges, the model (total edges ~ LDI + Sequence) was significant, 

adjusted R² = .05, F(2, 212) = 6.38, p = .002, with main effects of LDI, β = 0.79, SE = 0.33, t(212) = 2.36, p 

= .019, and Sequence, β = 1.71, SE = 0.67, t(212) = 2.55, p = .011, indicating that higher-LDI participants and 

those in the intermixed condition drew more edges overall (Fig. 7C). We also assessed reconstruction accuracy 

using two metrics–sensitivity (proportion of hits - proportion of false alarms) and precision (number of hits 

divided by the total number of drawn edges). For sensitivity, the model (sensitivity ~ LDI + Sequence) was 

significant, adjusted R² = .02, F(2, 212) = 3.12, p = .046, revealing a main effect of LDI, β = 0.04, SE = 0.01, 

t(212) = 2.49, p = .014, with higher-LDI participants showing better reconstruction accuracy (Fig. 7D). For 

precision, which adjusts for the tendency of low-memory participants to draw fewer edges, the model (precision ~ 

LDI + Sequence) was marginal, adjusted R² = .02, F(2, 212) = 3.03, p = .050, with trending effects of LDI, β = 

0.04, SE = 0.02, t(212) = 1.72, p = .088, and Sequence, β = –0.09, SE = 0.05, t(212) = –1.86, p = .065, suggesting 



 

 

higher precision for participants with better memory ability and for those trained in the blocked condition (Fig. 

7E). 

 

Figure 7. Behavioral results combining data from Experiment 1 (blue) and Experiment 2 (red) for the graph reconstruction 

phase. Shaded bands indicate 95% confidence intervals around the best fit regression line for each training condition (dashed 

lines). 

Discussion 

The present study examined whether multi-step inference judgments requiring latent structure learning are 

affected by age-related cognitive decline. In Experiment 1, we found that older adults performed worse on 

structural inference judgments, but these deficits were better explained by individual differences in mnemonic 

discrimination ability (LDI) than by chronological age. Experiment 2 demonstrated that structural inference can 

be improved through individualized training: intermixing overlapping associations benefited those with high LDI, 



 

 

while blocked training benefited those with low LDI. Our findings suggest that the way individuals encode and 

organize information interacts with memory ability to shape representations that vary in their effectiveness for 

supporting accurate inference. Matching training to an individual’s representational tendencies may be critical for 

optimizing judgment performance. 

In Experiment 1, evidence of latent structure learning emerged only in participants with high mnemonic 

discrimination ability. High-LDI individuals achieved above-chance inference performance, especially on easier 

trials, whereas low-LDI participants performed at chance. High-LDI participants also produced more accurate 

graph reconstructions across multiple metrics (number of correct edges, reconstruction accuracy measured using 

sensitivity and precision), but they also generated more false alarms and total edges. One explanation is that 

making inference judgments before reconstruction induced false memories by misattributing inferred information 

as directly experienced (Bowman et al., 2021). However, this order effect should have applied equally to all 

participants, making it unlikely to explain the selective increase in false alarms for high-LDI individuals. A more 

plausible account is that high-LDI individuals tend to form distributed representations during learning (Kumaran 

& McClelland, 2012; Zhou et al., 2023). According to parallel distributed processing models such as C-HORSE, 

distributed representations support flexible inference but are prone to false alarms (Zhou et al., 2023). Our data fit 

this prediction: high-LDI participants outperformed others on inference judgments but also produced more false 

edges. 

 In Experiment 2, we tested whether separating overlapping pairs in time (blocked training) would reduce 

memory interference and improve inference for low-LDI individuals. Indeed, blocked training improved structural 

inference for low-LDI participants but impaired performance for high-LDI participants, producing a crossover 

interaction. Visual inspection of graph reconstructions of the best performers in each condition (Supplemental 

Fig. 1) suggests why: high-LDI participants in the intermixed condition tended to create highly interconnected, 

distributed graphs, whereas blocked training led them to form more fragmented, localist graphs. In contrast, low-

LDI participants generally produced localized graphs, but blocked training encouraged more interconnections 

relative to intermixing. These patterns suggest that memory encoding ability may bias representational style—
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distributed for high-LDI, localist for low-LDI—and that training sequences aligning with these preferences yield 

better performance.  

This framework may help reconcile conflicting findings in associative memory research. Some studies 

report that intermixing promotes distributed representations (Zhou et al., 2023), whereas others find it encourages 

more localist coding (Schlichting et al., 2015) with the reverse pattern for blocked learning. A key methodological 

difference is that Zhou et al.’s “blocked” condition still included intermixed trials within the same learning phase, 

likely negating interference-reduction benefits. This design may have disproportionately favored high-LDI 

participants while preventing low-LDI learners from reaching performance levels sufficient to influence overall 

effects. Supporting this, Zhou et al. excluded many low performers, yet performance remained low relative to 

Schlichting et al. 

Recent neural network modeling shows that distributed representations are more likely to emerge when 

information is presented in an intermixed sequence (Zhou et al., 2023). Models with distributed coding predict 

that blocked learning increases memory interference as new information is acquired (McCloskey & Cohen, 1989; 

Zhou et al., 2023). Our behavioral data support this: the high-LDI intermixed group showed the best inference 

performance but also the highest false alarms during reconstruction—consistent with distributed coding—while 

the high-LDI blocked group exhibited low false alarms (Fig. 7B) and high graph reconstruction precision (Fig. 

7E), suggesting more localist coding. However, this gain in precision came at the cost of impaired judgment 

performance (Fig. 5). This tradeoff parallels evidence that temporally contiguous presentation facilitates 

integrative encoding (Pudhiyidath et al., 2022; Schapiro et al., 2013; Zeithamova & Preston, 2017; Zhou et al., 

2023), whereas separating overlapping information can disrupt inference if it requires linking across longer 

temporal gaps (Zeithamova & Preston, 2017; Zhou et al., 2023). Visual inspection supports this: high-LDI 

blocked learners’ graphs were less cohesive than those in the high-LDI intermixed group (Supp. Fig. 1), 

consistent with blocking fragmenting an otherwise distributed network into more localized subgraphs, making 

cross-representation inference harder. 

For low-LDI learners—such as older adults with age-related decline—susceptibility to memory 

interference can severely impair learning in an intermixed schedule. With 16 overlapping pairs, interference may 
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be so severe that learners can only focus on memorizing only a small subset of pairs—similar to older adults’ 

strategy of selectively encoding high-value items (Castel, 2007; Castel et al., 2002). Indeed, the top performers in 

the low-LDI intermixed condition reconstructed only the minimum six edges required to complete the task, 

suggesting encoding of a few localized subsets. Since our graph task likely benefits from distributed 

representations, the main challenge for low-LDI learners is overcoming interference during encoding (Kirwan & 

Stark, 2007; Pettigrew & Martin, 2014; Shimamura & Jurica, 1994). Blocked training may mitigate this by 

spacing overlapping pairs across time, allowing learners to consolidate subsets (e.g., A–B) before encountering 

related pairs (e.g., B–C). Once initial representations are stabilized through repetition, new overlapping pairs can 

be integrated into existing knowledge (A–B–C) by pattern completing the overlapping memory traces 

(Schlichting et al., 2015). Consistent with this account, low-LDI participants in the blocked condition showed 

better inference judgments (Fig. 5) and fewer false alarms (Fig. 7B), indicating reduced interference. Visual 

reconstructions suggest blocked training promoted more integrated networks in low-LDI learners than 

intermixing, consistent with prior work showing that blocking overlapping pairs fosters integrated representations, 

while intermixing promotes pattern-separated representations (Schlichting et al., 2015). 

Collectively, these results indicate that structural inference depends on both memory encoding ability and the 

alignment of training structure with representational tendencies. For high-LDI learners, intermixing supports 

distributed networks that facilitate inference; for low-LDI learners, blocking reduces interference and fosters 

integration. These findings suggest that some age-related deficits in model-based planning and decision-making 

may stem from failures to form adequate latent structures. Future work should test how disruptions in latent 

structure learning impair multi-step planning (Harhen & Bornstein, 2023; Yoo et al., 2024), directly measure 

memory for individual associations, and use neuroimaging to track the formation of representations during 

learning. Given that successful inference can emerge from different representational formats, future studies should 

also examine their flexibility and limitations across different inference and planning contexts. Despite limitations, 

our results offer a mechanistic basis for individualized learning interventions to mitigate cognitive decline effects 

on decision-making across the lifespan. 
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Supplementary Material 

 

 

Supplementary Figure 1. Sample graph reconstructions from participants with the overall 
best judgment accuracy within each condition. LDI groups were created using a median 
split. 


