Pattern separation using compressed and semantic representations of memory
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Abstract

Recognizing whether information is novel is crucial for
many behaviors. For example, decision-makers need
to discriminate between perceptually or mnemonically
aliased states when planning through uncertain contin-
gencies. In the mnemonic similarity task, images are
judged as novel, similar, or old when the presented im-
age was never seen, already seen, or slightly altered as
an image “lure.” Diminished lure discrimination has been
diagnostic of poorer memory in clinical settings, predic-
tive of imprecision in decision-making, and indicates al-
tered pattern separation computations in the hippocam-
pus. However, it is unknown what properties of stimuli
drive difficulties in discrimination and whether their in-
fluence varies across individuals. We hypothesize that
the lure discrimination is related to the image properties
of lossy compression, semantic similarity, and intrinsic
memorability. Consistent with our hypothesis, we find
that participants (» =366) perform better when original
and lure images have lossier compression, greater se-
mantic distance, and larger differences in intrinsic mem-
orability. Sensitivity to these image properties tends to
worsen with age. Perceptual, semantic, and mnemonic
differences may construct distinct memory representa-
tions to support pattern separation.
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Decisions often involve recognizing when information is
an example of prior experience or is new. Discriminating
among perceptually-aliased observations is a critical step in
decision-making, useful for identifying the appropriate current
state of the environment in order to select appropriate actions
(Bornstein et al., 2023; Khoudary, Peters, & Bornstein, 2022;
Noh, Singla, Bennett, & Bornstein, 2023; Aridor, da Silveira, &
Woodford, 2024). Discriminating remembered states depends
on pattern separation, the ability to distinguish between highly
similar inputs with distinct responses (Yassa & Stark, 2011).
However, it remains unknown what properties of stimuli char-
acterize pattern separation difficulties across individuals.

Pattern separation can be measured by the mnemonic sim-
ilarity task (Figure 1A-B). Performance is predictive of mem-
ory outcomes in clinical settings and the precision of mem-
ory representations used for decision-making (Stark, Kirwan,
& Stark, 2019; Noh, Cooper, Stark, & Bornstein, 2024). The
hippocampus is thought to implement auto-associative and or-
thogonalizing computations to separate representations as a
function of small differences in input (Yassa & Stark, 2011)
(Figure 1C). This allows for efficiency in stored representa-
tions and pattern separation.

Perceptual systems are thought to achieve this efficiency by
adapting representations to the properties of inputs, according
to the efficient coding hypothesis (Barlow et al., 1961). Due
to constraints on information processing, perceptually similar
stimuli are lossily compressed into efficient representations.
Sims (2018) showed this loss naturally explains when stimuli
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Figure 1: (A) Task stimuli with corresponding trial type and
correct response. (B) Five bins of mnemonic dissimilarity be-
tween original and lure images. (C) Putative neural function.

are discriminable. Here, we hypothesize that pattern sepa-
ration can be more richly understood by this and other prop-
erties of inputs: their lossy compressibility, semantic related-
ness, and intrinsic memorability.

Method

Mnemonic similarity task. Object images are judged as in-
door or outdoor during training (Figure 1A). Then they are
judged as novel, similar, or old, when the presented image
was already seen, never seen, or slightly altered (“repeat”,
“foil”, and “lure” trials, respectively). Pattern separation perfor-
mance is measured as the separation bias: p(similar|lure) —
p(similar|foil). Performance in an independent sample was
used to discretize the "mnemonic similarity” of original and
lure images into 5 lure bins (Figure 1B). Participants (n =366;
46 1 19 years old; 144 men, 218 women) were recruited from
Amazon Mechanical Turk.

Lossy compression. We use a convolutional autoencoder
to learn compressed memory representations of color images
in 256-dimensional latent space (Figure 2A). Sims (2018) es-
tablished that the loss function from efficiently coding (com-
pressing) an input x into an output X can explain when two per-
ceptually similar items are confused (generalized) or discrimi-
nated across many sensory modalities (Figure 2B). We deter-
mine the perceptual loss when compressing images Xoriginal
and xy,,. in latent space. To simulate the cost of remember-
ing, we linearly interpolate between x,iginar @and x;,. in latent
space. Then, we calculate the KL divergence between pairs
of representations, the information theoretic cost of remem-
bering a representation given the optimal encoding of another
representation. This produces a matrix for each pair of origi-
nal and lure images that represents the perceptual information
channel, where rows are input representations and columns
are output representations. We apply Bayesian inference to
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Figure 2: (A) Autoencoder’s learns compressed latent repre-
sentations. Discriminability of x and X (B) theoretically (Sims,
2018) and (C) empirically relate to the cost of compression

use the matrix to infer a cost of each matrix input-output ele-
ment, quantifying the lossiness of compression.

Semantic distance. We use pre-trained transformer mod-
els to perform image-to-text conversions, obtaining a 50-
dimensional semantic vector embedding per image (Radford
et al., 2021). Embeddings are used to calculate the cosine
distance between original and lure images (Figure 3A).

Intrinsic memorability. Some images have properties that
make them easier to remember than others. We used a pre-
trained residual network to predict the intrinsic memorability of
original and lure images (Needell & Bainbridge, 2022).

Results

Consistent with our hypotheses, original and lure images that
are more “distorted” from each other after lossy compression
tend to have greater mnemonic dissimilarity (Spearman corre-
lation p = 0.07, p < 0.001; Figure 2). The semantic distance
between original and lure images relates to mnemonic dissim-
ilarity (p = 0.29, p < 0.001; Figure 3), while intrinsic memo-
rability does not. Compression loss, semantic distance, and
memorability predict pattern separation performance (Figure
4). Older adults were less sensitive to changes in each prop-
erty (steeper slopes; property-by-age interactions p < 0.001).
Different slopes of semantic distance suggest that older adults
can use semantic memory to compensate as their semantic
knowledge increases (Park & Reuter-Lorenz, 2009).

Conclusion

The information compression, semantic representation, and
intrinsic memorability of images predict pattern separation
performance. Modeling these processes may help us better
understand decision-making using distinct representations of
varying complexity, uncertainty, and content.
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Figure 3: (A) Semantic embeddings projected to two dimen-
sions using UMAP. (B) Discriminability relates to semantic dis-
tance (C) but not intrinsic memorability.
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Figure 4: Empirical pattern separation functions with age in-
teractions. Non-linearities were fit using generalized additive
models with restricted maximum likelihood. Only the compres-
sion function is consistent with the previously hypothesized
hippocampal computation (Figure 1C). Aging participants de-
pend on starker differences in input, as previously hypothe-
sized (Yassa & Stark, 2011).
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