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Curiosity and creativity are expressions of the trade-off between leveraging that with which we are familiar or seeking out

novelty. Through the computational lens of reinforcement learning, we describe how formulating the value of information

seeking and generation via their complementary effects on planning horizons formally captures a range of solutions to

striking this balance.

Ivancovsky et al. propose fruitful connections between curiosity and creativity under an exploration–exploitation trade-off.

The explore–exploit trade-off is the decision between a familiar option with known value and an unfamiliar option with

unknown or uncertain value (Addicott, Pearson, Sweitzer, Barack, & Platt, 2017). Choosing unfamiliar options is risking time,

energy, and foregone reward in return for information (Rubin, Shamir, & Tishby, 2012).

These ideas have history in reinforcement learning. For example, novelty-seeking is important to prevent failures of learning

where subpar solutions are settled on prematurely (Fox, Pakman, & Tishby, 2015). Despite the benefits of novelty-seeking,

seeking novel information can also carry a high cost when forgoing familiar opportunities and accruing a burdensome

amount of information (Wilson, Bonawitz, Costa, & Ebitz, 2021). Thus, one must manage costs by taking “sensible risks”

which balance exploring to learn novel information about the environment with accruing increasingly complex information

for different tasks at hand (Sternberg & Lubart, 1996). One way to encourage taking on these risks for exploration is to use

heuristics which locally track what has and has not been seen (Tang et al., 2017; Wittmann, Bunzeck, Dolan, & Du¨ üzel, 2007;

Wittmann, Daw, Seymour, & Dolan, 2008). By contrast, preferring familiarity can manifest as a form of perseverative

information seeking that was associated with deprivation curiosity (Lydon-Staley, Zhou, Blevins, Zurn, & Bassett, 2021), a

drive to reduce uncertainty and acquire missing information (Kashdan et al. , 2018; Litman, 2008). This preference for

familiarity has been seen as prevalent in people with greater depressed mood and anxiety (Zhou et al., 2023), and may be

an important heuristic strategy to reduce uncertainty for better reliability of future-oriented decisions (Harhen & Bornstein,

2023; Jiang, Kulesza, Singh, & Lewis, 2015). However, in large environments, such local heuristics are impoverished,

particularly when higher-order associations are needed for planning. This need for richer measurements motivates the use

of network science tools to formalize both local and global relationships as internal representations of the environment

(Yoo, Bornstein, & Chrastil, 2023; Zhou, Lydon-Staley, Zurn, & Bassett, 2020). Thus, we propose expansions of the

novelty-seeking model using reinforcement learning approaches to exploration and network science perspectives on

information complexity and compression.

Ivancovsky et al. rightly note that curiosity and creativity must involve a dynamic policy of behavior that adaptively

alternates between modes of exploration and exploitation. Reinforcement learning approaches reveal what behavior

pattern, or policy, is appropriate for a given task and environment, for instance adapted to the sparsity of rewarding

solutions (Gershman & Niv, 2015). To this end, the reinforcement learning approach of Harada (2020) was described.

However, notably this paper reported that divergent and convergent thinking measures of creativity and the personality trait

of openness to experience (a proxy for being “inventive/curious”) were not robustly associated to exploration and
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exploitation behavior based on model-free reinforcement learning (Harada, 2020). This finding and other work (Jach et

al., 2023 ; Molinaro et al., 2023) highlights the need for understanding creativity via more sophisticated models of the value

of exploration.

The value of information is sometimes treated as a simple heuristic for predisposing choices toward exploration (Gottlieb,

Oudeyer, Lopes, & Baranes, 2013), but the value can also be formally expanded as the change in future expected value that

results from increasing certainty over representations of the environment and sequence of choices (Kaelbling, Littman, &

Cassandra, 1998). These planning and policy iteration approaches aim for more global knowledge about the environment,

and thereby differ from the local count-based reward functions to encourage exploration (Masís, Chapman, Rhee, Cox, &

Saxe, 2023; Oudeyer & Kaplan, 2007; Tang et al., 2017; Wittmann et al., 2008). Here we focus on approaches that balance the

increased long-run discounted expected value of knowledge with the cost of sampling (exploration) (Kaelbling et al., 1998).

To this end, the focus of choices shifts from an explore-or-exploit distinction to the iterative improvement of knowledge of

the environment by testing predictions and simulations of future outcomes according to a given action policy (Gruber &

Ranganath, 2019; Kobayashi, Ravaioli, Baranès, Woodford, & Gottlieb, 2019 ; Wilson, Wang, Sadeghiyeh, & Cohen, 2020 ;

Dubey & Griffiths, 2020 ; Liquin & Gopnik, 2022).

We describe two areas of future research. First, creative insights can emerge from expanded planning horizons. Planning is

commonly implemented as a search over a decision tree, wherein expanded horizons entail a deeper search in the tree.

When the internal representation of information about the causal structure of the environment is accurate, longer planning

horizons are useful. However, when the representation is incomplete, a smaller planning horizon compresses the policy

space and prevents overfitting to past observations (Jiang et al., 2015). Humans can search over more complex structures in

knowledge representations (Yoo et al., 2023). That knowledge may be more modular and compressible, allowing for the

grouped representation of a more diverse chain of actions (Lai & Gershman, 2021; Momennejad, 2020; Patankar et al., 2023;

Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013; Stachenfeld, Botvinick, & Gershman, 2017). The ability to use

more complex knowledge structures may involve a spatial-like ability to navigate those structures (Rmus, Ritz, Hunter,

Bornstein, & Shenhav, 2022), as well as a metacognitive ability to balance knowledge uncertainty with deeper

planning  (Schulz & Bonawitz, 2007; Wade & Kidd, 2019; Nussenbaum et al., 2023). Indeed, a form of mental navigation

that spans diverse spaces has been proposed to be linked with both creativity and curiosity (Aru, Drüke, Pikamäe, & Larkum,

2023; Eysenbach, Gupta, Ibarz, & Levine, 2018; Zhou et al., 2023). Although such diversity and depth can decrease knowledge

uncertainty, it comes at the cost of time and computational resources to accrue and update information. Computational

cost motivates the next direction of research.

Second, creatively recombining knowledge benefits from unlearning or updating outdated knowledge. This form of

creativity complements a type of curiosity that is characterized by deconstructing and rebuilding current structures (Zurn,

2021). When an agent seizes onto a supposedly optimal choice that is actually suboptimal, future resources must be used to

unlearn those experiences (Fox et al., 2015). This is precisely a problem that deprivation curiosity can exacerbate (Kruglanski

& Webster, 2018; Zedelius, Gross, & Schooler, 2022). A solution to this problem involves aiming for simpler, compressed

policies by chunking actions (Lai & Gershman, 2021). Compression involves smartly discarding some information to

efficiently redescribe the information, such as by describing an elephant and a chicken with one joint description rather than

describing each alone (Cover & Thomas, 1991; Mack, Preston, & Love, 2020). In order to modulate the planning horizon,

policies could be compressed to increase certainty, albeit over an impoverished model. This idea is related to strategically

decomposing, aggregating, and reducing sequences of actions into a hierarchy of “options” (Botvinick, Niv, & Barto, 2009;

Sutton, Precup, & Singh, 1999) to balance the growing cost of planning (Botvinick, 2012; Correa, Ho, Callaway, Daw, &

Griffiths, 2023). The idea also relates to a computational form of curiosity that involves improving prediction of expected

long-term value (Gruber & Ranganath, 2019; Schmidhuber, 2008). Prediction is related to compression because the best

compression is the true data generating model, and the true data generating model is the most predictive (Shannon, 1948).

Notably, neural activity has been measured to be most compressed in the default-mode network (Mack et al., 2020; Zhou et

al., 2022), a network of regions central to the proposed novelty-seeking model. Default-mode activity is also associated

with the simulation of hypothetical episodes (Schacter & Addis, 2007) and the replay of episodic memories (Schapiro,

McDevitt, Rogers, Mednick, & Norman, 2018), which can help to plan or update actions from new experiences (Kauvar,

Doyle, Zhou, & Haber, 2023; Wilson et al., 2020).

In conclusion, curiosity could be thought of computationally as actions taken to justify the expansion of one's planning

horizon. The consequent cost of increased complexity can be managed by creatively compressing action policies, which

further support s the pursuit of long-term goals.
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