
1

Interval timing as a computational pathway from early

life adversity to affective disorders.

Nora C. Harhen (nharhen@uci.edu)1,∗

Aaron M. Bornstein (aaron.bornstein@uci.edu)1,2
1. Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697 USA

2. Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697 USA

* To whom correspondence should be addressed.

I. ABSTRACT

Adverse early life experiences can have remarkably enduring negative consequences on mental

health, with numerous, varied psychiatric conditions sharing this developmental origin. Yet,

the mechanisms linking adverse experiences to these conditions remain poorly understood.

Here, we draw on a principled model of interval timing to propose that statistically-optimal

adaptation of temporal representations to an unpredictable early life environment can produce

key characteristics of anhedonia, a transdiagnostic symptom associated with affective disorders

like depression and anxiety. The core observation is that early temporal unpredictability produces

broader, more imprecise temporal expectations. As a result, reward anticipation is diminished,

and associative learning is slowed. When agents with such representations are later introduced to

more stable environments, they demonstrate a negativity bias, responding more to the omission

of reward than its receipt. Increased encoding of negative events has been proposed to contribute

to disorders with anhedonia as a symptom. We then examined how unpredictability interacts with

another form of adversity, low reward availability. We found that unpredictability’s effect was

most strongly felt in richer environments, potentially leading to categorically different phenotypic

expressions. In sum, our formalization suggests a single mechanism can help to link early life

adversity to a range of behaviors associated with anhedonia, and offers novel insights into the

interactive impacts of multiple adversities.
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II. INTRODUCTION

Across development, brain circuits adapt to reflect the environment’s structure, preferentially

encoding more frequent aspects of the world. The statistics of the early life environment tune

sensory receptive fields, producing non-homogeneous sensitivity to perceptual stimuli and deter-

mining discrimination abilities in adulthood (Tanaka, Ribot, Imamura, & Tani, 2006; Efrati &

Gutfreund, 2011). Early consistency in these sensory inputs are crucial for the future functionality

of involved circuits (Li, Fitzpatrick, & White, 2006). Similar developmental processes may take

place in reward and memory systems, those underlying associative learning, implying that the

consistency or predictability of associations in early life may shape the acquisition of associations

later on (Birnie et al., 2020).

Caregivers are primary contributors to the associative structure infants encounter. Associations

may take the form of a caregiver’s response to an action the infant preforms. These responses

may vary in their valence and predictability. Valence influences whether the infant will repeat the

action preceding the response, while predictability constrains the infant’s learning to associate

the two. Prior work has largely focused on the effect of valence on later child mental health

outcomes (Sroufe, 2005; NICHD Early Care Research Network, 2006; Belsky & Fearon, 2002;

Hane, Henderson, Reeb-Sutherland, & Fox, 2010). However, recent work has highlighted how

early life unpredictability, or ELU, may also contribute (Baram et al., 2012). Research done

in animals has illustrated that offspring exposed to unpredictable caregiver signals show a

reduction in motivation and the experience of pleasure, characteristics of the trans-diagnostic

symptom, anhedonia (Bolton et al., 2018). Work in humans accords with these findings, showing

relationships between experiences of early life unpredictability, reduced reward anticipation, and

symptom severity in anhedonia, depression, and anxiety (Hanson et al., 2016; Dillon et al., 2009;

Mehta et al., 2010; Goff et al., 2013; Spadoni et al., 2022).

Here, we propose that the study of early-life unpredictability can be understood in part via

its influence on the development of temporal representations (TRs) that serve as basis sets for

associative learning more generally (Jin, Fujii, & Graybiel, 2009; Howard et al., 2014). TRs

capture the intuition that the strength of learned associations is dependent on the time between

events (Balsam, Drew, & Gallistel, 2010). These tuning curves are similar to those found in

sensory areas, but rather than being tuned to visual angle or auditory pitch, are sensitive to the

temporal duration between related events.
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We specifically examine how early-life unpredictability can, via its influence on the adaptation

of temporal representations, result in an anhedonic phenotype. We extend a principled compu-

tational model of interval timing (Ludvig, Sutton, & Kehoe, 2008) to simulate how enhanced

volatility during an early period of heightened plasticity can, with minimal assumptions, affect

later predictions of reward during maturity. With this model, we formally demonstrate that

early unpredictability in timing, and adaptation of temporal representations to this timing, can

lead to the development of several defining characteristics of anhedonia – including slowed

associative learning, reduced motivation, and a bias towards learning from negative events – in the

absence of differences in the overall amount of reward. Our results reproduce empirical findings

that unpredictability in early life experience can heighten susceptibility to poor mental health

outcomes even after controlling for the childhood environment’s overall resource availability

(Glynn et al., 2019).

While we show that a singular type of adversity can alone produce an anhedonic phenotype, in

the real world, individuals are often subject to multiple adversities. Modeling the nature of these

interactions and their combined effect on learning will be critical for characterizing the develop-

mental trajectory of psychopathology. As a first step, we model how temporal unpredictability

interacts with the environment’s availability of reward, or richness, to shape later learning and

expectations of reward. Under the common cumulative risk approach to conceptualizing and

measuring early life adversity (Felitti, 2002), these two adversities are assumed to have an

additive effect on development: individuals facing both are predicted to have the most negative

outcomes. Our model predicts that unpredictability always has a negative effect on associative

learning, however, contrary to the cumulative risk prediction, this effect is most pronounced

in richer environments. Both unpredictability and an abundance of rewards individually alter

temporal representations to be more expansive or diffuse, producing the observed interaction.

Our results highlight the potential value of computational psychiatric approaches to tackling the

heterogeneity of early life adversity and making sense of its developmental consequences.

III. ISOLATING THE CONTRIBUTIONS OF ONE FORM OF ADVERSITY, UNPREDICTABILITY

A. Methods

During the initial phase (“critical period”), agents’ temporal representations were allowed to

adapt to the environment’s temporal statistics. Agents belonged to one of two groups, early life

unpredictability (ELU) or control. The two groups were differentiated by the distributions their
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Fig. 1. Stimulus encoding by microstimuli. From left to right, the memory trace produced by a stimulus is approximated

with a set of temporal basis functions, whose centers vary such that they evenly cover the trace’s possible heights. The decaying

nature of the memory trace produces microstimuli that become shorter and wider the further their center is to the stimulus onset.

The microstimuli are weighted and averaged to estimate the future expected reward following the stimulus. The weights can be

adjusted with experience to support accurate predictions of reward.

reward timings were sampled from, with the ELU agents’ distribution having the same mean as

the control agents’ but a higher variance. In the second phase (“post critical period”), both groups

received reward at the same time step on each rewarded trial and, critically, agents’ temporal

representations were not allowed to adapt to the novel environment’s statistics.

1) The Temporal-Difference Learning Model: Temporal-Difference (TD) models aim to ac-

curately estimate the value of world states, V , in terms of the future rewards they predict. Time

is explicitly represented in these models with each time step identifying a world state.

V ∗ = E[
∞∑
k=1

γk−1rt+k] (1)

where rt is the reward received at the current time step, and γ is a parameter controlling how

heavily future rewards are discounted. Future rewards are less influential on the estimation of

V when γ is low. A TD agent learns V via an error driven learning rule — the difference, δt,

between the reward received (rt + γVt) and the previously predicted reward (Vt−1) is used to

update the estimate of V at the next time step.

δt = rt + γVt − Vt−1 (2)

2) Microstimulus Representation of Time: All TD models explicitly represent time, but do

so in various ways. Basic TD models use a complete-serial-compound (CSC) representation in

which each time step is treated as independent from one another and agents are assumed to have

perfect knowledge of when events occur. This representation prohibits temporal generalization,

creating issues in environments where the time between cue and reward varies. The microstimulus
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representation addresses this problem by relaxing its temporal markers (Ludvig et al., 2008).

CSC’s discrete markers are replaced with continuous “microstimuli” which allow for temporal

uncertainty to be represented (Figure 1). A stimulus is assumed to leave behind a memory trace

that decays with time. The trace is approximated by a set of Gaussian temporal basis functions

uniformly distributed across the heights of the memory trace. This approximation produces a set

of microstimuli increasing in their peak and width from the time of stimulus onset.

f(y, µ, σ) =
1√
2π

e(−
(y−µ)2

2σ2 ) (3)

A time step’s value, Vt, is estimated as the weighted average of the microstimuli.

Vt = wT
t xt =

n∑
i=1

wt(i)xt(i) (4)

Vt is compared to the reward received to compute an error term, δt that is used to adjust the

weights on the microstimuli. Adjusting the weights updates the predicted value at the next time

step.

wt+1 = wt + αδtet (5)

α is the learning rate controlling the time window over which experiences are integrated. et

is a vector containing each stimulus’s eligibility traces.

et = γλet + xt (6)

Following the stimulus, its eligibility trace decays at a rate determined by γ and λ. γ is

a temporal discounting factor as it was for the TD model with a CSC representation, while

λ controls the time window over which a stimulus can induce learning within a trial. For all

simulations, we use the parameter settings from Ludvig et al, 2008 — α = 0.01, γ = 0.98, λ =

0.95, n = 50, and σ = 0.08.

3) Simulating Development: To model developmental changes in learning, we restrict the

updating of microstimuli weights to the initial period which we treat as a “critical period”

during which the temporal representations are tuned to support accurate estimation of V . This

adaptation process is designed to mimic the observed tuning of sensory receptive fields during

analogous sensitive periods of development (Simoncelli & Olshausen, 2001). During the second
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Fig. 2. Simulated agents learned to associate a cue with reward in two different environments. The cue was partially

reinforced — 75% of the time in the initial environment and 55% in the second. On rewarded trials, reward was delivered at a

variable time step. Agents belonged to one of two groups, differing in the variability they experienced in the initial environment.

The reward timings experienced by agents in the early life unpredictability (ELU) group were on average the same as those

experienced by the control group. However, in the initial phase (“critical period”), they experienced more variably timed rewards

trial to trial. In the second phase (“post critical period”), agents’ weights were frozen, and all agents received reward at the

same time step.

phase (“post critical period”), the weights are frozen, prohibiting representation adaptation, to

simulate adulthood.

We simulated two groups of agents learning to associate a cue with reward across the two

phases (Figure 2). One group of agents, the early life unpredictability (ELU) group experienced

a volatile critical period environment in which the timing of reward was much more variable than

the timing experienced by the control group. Critically, however, the average timing of reward

and the average amount of reward received (i.e. same probability of reward on each trial) was

matched between groups.

On each of the 1000 simulated trials during the critical period, a cue was always presented at

10 time steps and there was a 75% probability of a reward following it. If a cue was followed by

reward on a trial, the timing of reward was sampled from a normal distribution with µ = 30 and

truncated at 10 and 70 time steps. σ varied between agents. For agents in the ELU group, σ was

sampled from a zero-truncated normal distribution with µhyper,elu = 10 and σhyper,elu = 3. The

control group experienced much less variability, with σ being sampled from a zero-truncated
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Fig. 3. A-B. Positively weighted microstimuli. With experience, the ELU group grew to more heavily weigh delayed, imprecise

microstimuli to account for the frequent delayed rewards. C. Temporal Imprecision. We computed a summary statistic of

temporal representation (TR) imprecision by taking a weighted average of the standard deviations of the positively weighted

microstimuli at the end of the critical period. ELU agents’ temporal representations were, on average, more than twice as

imprecise as control agents.

normal distribution with µhyper,control = 1, σhyper,control = 2. We varied σ within groups to reflect

the variation observed in real life samples, particularly early life adversity facing ones, and to

ensure our results were robust to such variation.

In the second phase, the microstimuli weights were frozen (“post critical period”), allowing

us to directly examine the influence of highly variable early-life experiences. The temporal

statistics of this environment differed from the critical period’s environment in two ways: 1.

The reward was delivered at the same time step each trial for both groups of agents. 2. This

time step was later (50 time steps) than the previous environment’s average time of reward (30

time steps). By testing ELU agents’ learning in novel environments that are more stable than the

environment they “developed” in, we formalize the Mismatch Hypothesis of Early Life Adversity

and Depression (Schmidt, 2011). Under this hypothesis, depression and other mental illnesses are

proposed to be the byproduct of a mismatch between the developmental environment to which

neural systems are optimized for and the later adulthood environment. We were particularly

interested in characterizing how an agent’s early adaptation to unpredictability would affect their

response to uncertainty in adulthood. Within the simulated task, uncertainty should rise once

the mean time of reward has passed and reward has failed to be delivered. This is because it
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becomes unclear whether the reward is delayed or is omitted altogether on the trial. To produce

this circumstance, we moved back the time step of reward in the novel, post critical period

environment to examine how the ELU and control groups differ in their response to reward and

its omission following a period uncertainty. All agents completed 2 trials. On both trials, the

cue arrived at 10 time steps. On one trial, reward followed the cue at 50 time steps. On the

other, reward was omitted. We simulated agents only on two trials because the weights were no

longer updated. Thus, the prediction error response on every trial of the same time (rewarded

vs. omitted) would be identical.

4) Statistical Analyses: Each simulated agent encountered a different sequence of reward

timings during the initial critical period. Thus, a potential concern is that our results are largely

driven by a subset of simulated agents. To assess the reliability of the relationship between

prediction error magnitude and unpredictable experience, we performed a bootstrap analysis

across agents within a group (Kim, Lewis-Peacock, Norman, & Turk-Browne, 2014; Bornstein

et al., 2023). For each group, we sampled agents with replacement until we reached the total

number of agents, 100. We then computed the test statistic for a two sample t-test with the

selected groups. We repeated this procedure 1,000 times to obtain a distribution of test statistics

across shuffled permutations of the simulated groups. This re-sampling procedure provides a

p-value that is the fraction of test statistic values with a different sign from the base effect size

(the test statistic for the original two groups). We also computed the Cohen’s d in order to

evaluate the size of the difference between simulated populations. By convention, effect sizes

greater than 0.80 are considered “Large”, and thus reliable (Cohen, 1992).

B. Results

1) Critical Period: First, we validated that the critical period environment shaped temporal

representations by comparing the groups’ microstimuli weights at the end of the critical period.

For each agent, we computed a temporal imprecision measure by taking a weighted average

of the microstimuli’s standard deviations, with the weights being the same as those used to

generate the value signal. Consistent with our prediction that temporal representations would

adapt to reflect the statistics of their environment, we found that the ELU group relied on more

broadly-tuned temporal representations relative to controls (Figure 3; t(198) = 8.43, p < .001,

Cohen’s d = 1.19).
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Early life unpredictability has been shown to produce slower learning from reward in adulthood

(Birn, Roeber, & Pollak, 2017; Dillon et al., 2009). We next examined the model’s ability to

capture this. As a proxy for learning, we used a particular pattern of prediction error responses.

If a cue has become associated with reward, then there should be large positive prediction error

in response to the cue, a smaller positive prediction error at the time of reward, and a large

negative prediction error when reward is omitted. To compare prediction errors between groups,

we computed, across time within each trial, the prediction error extremum for each agent. On

rewarded trials, the maximum prediction error magnitude following the cue was taken and on

omission trials, the minimum was taken. We then took the average of these values across trials

of the same type for each participant. We found that, on rewarded trials, the ELU group’s

positive prediction errors were larger than the control group’s (Figure 4, 5; t(198) = 12.59,

p < .001, Cohen’s d = 1.78) but, were less negative on omission trials (t(198) = 6.23, p < .001,

Cohen’s d = 0.88). Despite both groups experiencing the same amount of reward, the ELU

group showed slower learning under reinforcement. Collectively, these results demonstrate how

impaired associative learning, as observed in anhedonia, can emerge from experienced temporal

volatility alone during a period of plasticity.

Early life unpredictability has also been shown to impair motivation (Hanson, Williams,

Bangasser, & Peña, 2021), potentially stemming from reduced expectations of reward. Thus,

we next compared the groups’ expectations of future reward, as reflected by their value signals.

When averaged across trials, control agents’ value signals quickly increased in response to the

cue (Figure 6; mean at 10 time steps = 0.43, sd = 0.022), gradually rose until the average time

of reward (mean at 26 time steps = 0.71, sd = 0.075) after which the signal rapidly dropped

off (mean at 32 time steps = 0.059, sd = 0.078). ELU agents’ value signals similarly rose in

response to the cue but peaked much earlier (t(198) = −27.75, p < .001, Cohen’s d = −3.92)

and fell more gradually (mean at 32 time steps = 0.29, sd = 0.045, t(198) = 26.34, p < .001,

Cohen’s d = 3.73). Importantly, ELU agents’ expectations of reward were diminished at the

time steps right before when reward as most likely (mean at 26 time steps = 0.48, sd = 0.048,

t(198) = −25.87, p < .001, Cohen’s d = −3.66). These differences could have a particularly

significant impact on decision making which requires deciding not only which option to take but

also when to take it. Diminished expectations of reward should produce slower decision times, a

characteristic found in anhedonia (Dubal, Pierson, & Jouvent, 2000; Gollan, Pane, McCloskey,

& Coccaro, 2008; White, Myerson, & Hale, 1997; Day et al., 2015). ELU agents also showed
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Fig. 4. An example ELU and control agent’s prediction errors (δ) from individual trials within the critical period. A cue

always occurred at 10 time steps, while the reward’s timing varied from trial to trial. Temporal variability was determined by

which group an agent belonged to — an ELU agent experienced a much wider distribution of reward times. Reward elicited a

strong positive prediction error from both agents on the first trial. Even very early on, the control agent demonstrated a positive

prediction error in response to the cue, a weak positive prediction error at the time of reward, and a strong negative prediction

error when reward was omitted, matching the pattern of responses expected for well-learned, consistent contingencies using

this temporal-difference learning rule. This pattern held throughout the 1000 trial critical period. In contrast, even very late

into the critical period, the ELU agent’s prediction errors continuously moved around in time and were larger in magnitude, a

consequence of their more volatile environment.

Fig. 5. Critical period prediction error signals. Reward elicited larger positive prediction errors in ELU agents while reward

omission produced weaker negative prediction errors, a pattern of responses suggesting ELU agents were slower in learning

from reward.
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Fig. 6. The value signal, V , averaged over all critical period trials. Individual agents’ value signals are depicted by the thin

lines. The thicker lines depict the group averages. Control agents’ expectations of future reward quickly rose following the cue

and steadily increased until the average time of reward, after which their expectations quickly dropped. ELU agents’ expectations

of reward similarly rose in response to the cue but subsequently decreased at a gradual rate rather than increasing. Notably,

ELU agents had higher expectations of reward at later time steps compared to controls — a consequence of having experienced

more delayed rewards which required relying on more diffuse, later peaking microstimuli. When aggregated across trials, ELU

agents’ expectations were more spread out. This is both because they relied on more diffuse microstimuli and because their

value signals fluctuated from trial to trial in response to variably timed rewards.

greater variability in their value signals from trial to trial as revealed by taking the standard

deviation of the time steps at which value signals peaked (ELU mean = 10.49; Control mean

= 1.50; p < .001, Cohen’s d = 3.39). This aligns with prior empirical work that found more

variable ventral striatal activity following early life stress (Hanson et al., 2016).

2) Post Critical Period: To simulate adulthood, in the second phase, we closed the “critical

period” by preventing the updating of the microstimuli weights in the novel environment. Thus,

their expectations of reward are carried over and fixed once the developmental period ends. In

this environment, reward was delivered at a later time step than the average time of reward during

the critical period. This induces an interval of uncertainty during which its unclear whether the

reward is delayed or omitted. We examined how the expectations acquired in an unpredictable

early life environment shape the prediction error response when this uncertainty is resolved.

Because ELU agents experienced rewards at more variable time steps, they grew to have a higher

expectation that reward could arrive at later time steps (Figure 7A). This affects their response

to the cue and reward. Control agents have a strong positive prediction error immediately after

the cue is presented because they have learned well that the cue predicts reward (Figure 7B).
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Fig. 7. A. Representative agents’ value signals. The value signal, taken from the end of the critical period, reflects the

individual agent’s expectation of future reward following the cue. These expectations are “frozen” and determine the agent’s

response to reward and its omission. B. Example prediction error signals for a single rewarded trial. The ELU agent’s

expectation of future reward only begins to rise at 40 time steps whereas the control agent’s rises immediately at 10 time steps

in response to the cue. Accordingly, the ELU agent demonstrates a weaker and delayed response to the cue. When reward is

delivered at 50 time steps instead of its average previous time, 30 time steps, the control agent shows a more positive prediction

error than the ELU agent. Again, this is a result of their expectations. The control agent does not expect the reward to arrive

this late in the trial, and thus, is surprised when it does. The ELU agent, having experienced more delayed rewards, is less

surprised. C. Example prediction error signals for a single omission trial. The ELU agent’s greater expectation of reward at

later time steps also produces a larger negative prediction error when reward is omitted.

ELU agents instead have a weaker and delayed response to the cue because of their weaker

association between the cue and reward. Control agents experience a slightly negative prediction

error when reward is not delivered at the most expected time step (Figure 7C). But, when

reward ultimately arrives at a later time step, they show a large positive prediction error, a

consequence of their low expectations of reward this late in the trial. ELU agents had relatively

higher expectations of reward at the time step when reward was delivered, thus they showed

relatively blunted positive prediction errors (t(198) = −2.25, p < .001, Cohen’s d = −0.32).

The same expectations produced amplified negative predictions error when reward was omitted
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Fig. 8. Sensitivity to increasing rewards. We varied the magnitude of rewards delivered during the second phase. As the

magnitude of rewards increased, both groups showed larger positive prediction errors on rewarded trials. ELU agents were more

sensitive to changes in reward magnitude – their prediction errors increased to a great extent in response to larger rewards. At

the lowest reward magnitude, which was the magnitude experienced during the critical period, the control group experienced

larger positive prediction errors than the ELU. This pattern reversed at larger magnitudes with ELU agents demonstrating

hypersensitivity to rewards. Error bars are 95% bootstrapped confidence intervals.

(t(198) = −12.29, p < .001, Cohen’s d = −1.74). In other words, their higher expectations

allowed them to experience greater disappointment.

We next examined how early life unpredictability affected agents’ response to rewards of

varying magnitudes. When given a reward of the same magnitude as those received during

the critical period, control agents responded with larger positive prediction errors (Figure 8;

βelu = −0.51, p < .001). As the reward magnitude increases, diverging from those previously

experienced, both groups show increasingly large prediction errors (βmagnitude = 0.55, p < .001).

The ELU agents do so at a faster rate than control agents, demonstrating larger prediction

errors than controls in response to higher magnitude rewards (βelu∗magnitude = 0.43, p < .001).

When coupled with their blunted response to the cue, ELU agents appear to be hyposensitive

to rewards in anticipation but hypersensitive to them in consumption. This pattern has been

observed in a monetary incentive delay task designed to distinguish between reward anticipation

and consumption (Boecker et al., 2014). More generally, it concords with wide-spread findings

that early life adversity impairs cue-reward learning (Dillon et al., 2009; Stuart, Hinchcliffe,

& Robinson, 2019; Birn et al., 2017; Dennison et al., 2019) while increasing sensitivity to

dopamine-releasing drugs (Kosten, Miserendino, & Kehoe, 2000; Wakeford et al., 2019; Cruz,
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Fig. 9. Learning Asymmetry Indices. The ELU group showed a negativity bias, experiencing more extreme prediction errors

on the omission trial than the rewarded trial. In contrast, the control group demonstrated a positivity bias, experiencing larger

prediction errors on the rewarded trial. Error bars are 95% bootstrapped confidence intervals.

Quadros, Planeta, & Miczek, 2008; Paine et al., 2021; Kosten, Sanchez, Zhang, & Kehoe, 2004;

Kosten, Zhang, & Kehoe, 2006; Zhang, Sanchez, Kehoe, & Kosten, 2005).

Prediction error magnitude determines the extent to which an agent learns or updates their

expectations. Because valence asymmetries in learning have been proposed to be clinically

relevant (Rouhani, Norman, Niv, & Bornstein, 2020; Pike & Robinson, 2022; Rouhani & Niv,

2019), we next compared prediction error magnitude on the rewarded and omission trials to

probe for such asymmetries. We computed an asymmetry index for each agent as follows:

index =
|PE+| − |PE−|
|PE+|+ |PE−|

(7)

ELU agents’ asymmetry indices were overall negative (Figure 9; t(99) = −5.62, p < .001,

Cohen’s d = −0.79) while the control agents’ were positive (t(99) = 8.49, p < .001, Cohen’s

d = 1.20). Because prediction error magnitude enhances learning and memory, this suggests that

negative events would have an outsized influence on ELU agents, making their value estimates

overly pessimistic while control agents’ are overly optimistic (Sharot, 2011). Our model provides

a mechanism through which both of these biases could emerge under minimal assumptions.
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IV. INTERACTIONS BETWEEN MULTIPLE FORMS OF ADVERSITY

A. Methods

1) Critical Period: To examine the interaction between multiple forms of early life adversity

— temporal unpredictability and low reward availability, we additionally manipulated the richness

of the critical period environment and observed its effect on both groups. This allowed us to test

the assumptions of the cumulative risk conceptualization of early life adversity which assumes an

additive effect of adversities on developmental outcomes. We simulated groups of the ELU and

control agents in environments with 25, 55, 75, and 95% probability of reward. As in previous

simulations, the time of reward delivery was sampled from a normal distribution with µ = 30

time steps and truncated at 10 and 70 time steps, and the distribution’s σ differed between groups

— ELU agents’ σ were sampled from a zero-truncated normal distribution with µhyper,elu = 10

and σhyper,elu = 3 and controls’ were sampled from a zero-truncated normal distribution with

µhyper,control = 1, σhyper,control = 2.

2) Post Critical Period: In the novel environment during the second phase, the cue was

presented at 10 time steps on each trial. They experienced one rewarded and one omission trial.

On the rewarded trial, reward was delivered at 50 time steps. As before, we only include two

trials because the weights are no longer updated, thus, the response on each trial of the same

type would be identical.

B. Results

1) Critical Period: As before, we assume that the smaller positive prediction errors are in

response to reward and the larger negative prediction errors are in response to its omission then

the more strongly an agent has learned to associate a cue with reward. Under this assumption, both

temporal unpredictability and low reward availability were found to slow associative learning.

On rewarded trials, positive prediction errors were larger for ELU agents and both groups’

prediction errors became weaker with environment richness (Figure 10A; βelu = 0.057, p <

.001, βrich = −0.90, p < .001). On omission trials, negative prediction errors were stronger for

control agents and with increasing environment richness (Figure 10B; βelu = −0.022, p = .015,

βrich = −0.98, p < .001). The two dimensions interacted, with the difference between groups

increasing as environment richness increased (βelu∗rich = 0.15, p < .001). In particular, the effects

of unpredictability on learning were only observed in richer environments, with no main effect of
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Fig. 10. Varying critical period environment richness to examine the impact of multiple adversities. A. Critical

period prediction errors in response to reward. Positive prediction error magnitude was modulated by the environment’s

richness (probability of reward) and its temporal unpredictability (ELU vs. Control), with richness attenuating magnitude and

unpredictability amplifying it. B.Critical period prediction errors in response to reward omission. Negative prediction error

magnitude was amplified by richness and attenuated by unpredictability. This pattern of responding suggest richness supports

associative learning while unpredictability impairs it. C. Value Signal. Mirroring the reward statistics of their environment, agents’

expectation of future reward increased accordingly with the overall richness of the environments. Notably, group differences

were emphasized by richness. D. Post critical period asymmetry indices. Control agents demonstrated a consistent positivity

bias that diminished the richer the environment. ELU agents showed a positivity bias only in the poorest environment and a

negativity bias in richer environments. Error bars are 95% bootstrapped confidence intervals.

group but an interaction effect between group and richness (βelu = −0.015, p = .11, βelu∗rich =

0.093, p < .001). Taken together, our results reveal that the effect of temporal unpredictability

is most fully felt when reward is abundant, a consequence of both dimensions increasing the

imprecision of temporal representations (βelu = 1.04e − 05, p < .0001, βrich = 1.47e − 05, p <

.001, βelu∗rich = −1.91e−07, p = .95). When rewards are both unpredictably timed and abundant,

it increases the range of timings an agent’s representation must accommodate.

The value signal reveals a similar impact of the environment’s temporal unpredictability and

overall richness on learning. The value signal correspondingly increased as richness increased

(Figure 10C; βrich = 0.32, p < .001). Yet, only when the environment is sufficiently rich can

unpredictability exerts its blunting effect on the signal (βelu = 0.0041, p = .52, βelu∗rich =

0.035, p < .001).
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2) Post Critical Period: In the post critical period phase, we found the same complex re-

lationship between the environment’s temporal unpredictability and richness, in which greater

reward availability allows unpredictability to exert its influence. Across all environments, control

agents maintained a bias towards learning from reward over its omission as indicated by positive

asymmetry indices (Figure 10D; 25% - t(99) = 21.88, p < .001, Cohen’s d = 3.09; 55% -

t(99) = 15.79, p < .001, Cohen’s d = 2.23; 75% - t(99) = 8.49, p < .001, Cohen’s d = 1.20;

95% - t(99) = 8.62, p < .001, Cohen’s d = 1.22). The valence of ELU agents’ biases, in

contrast, was dependent on the richness of the critical period environment. ELU agents who

experienced the sparsest rewards during the critical period exhibited a positivity bias, similar to

control agents although weaker (Figure 10D; 25% - t(99) = 9.098, p < .001 Cohen’s d = 1.28).

Those who experienced a less sparse environment showed no bias (55% - t(99) = −0.46,

p = 0.64, Cohen’s d = −0.065), and those who experienced an environment abundant with

rewards exhibited a negativity bias (75% - t(99) = −6.60, p < .001, Cohen’s d = −0.79; 95%

- t(99) = −17.72, p < .001, Cohen’s d = −2.51). This pattern of results is a byproduct of

the reward expectations built up during the critical period. ELU agents whose representations

are adapted for richer environments have a stronger prior expectation that reward will have a

delayed arrival rather than being omitted altogether. Thus, when reward is omitted on a trial,

they experience a particularly large negative prediction error. Our simulations contradict the

predictions that would be made under the cumulative risk approach which assumes an additive

effect of adversities.

V. DISCUSSION

Here, we propose a novel computational link between early life unpredictability and the emer-

gence of anhedonia — the optimization of temporal representations to the early life environment.

By simply assuming that temporal representations are adapted to the statistics of the early life

environment, several behaviors associated with anhedonia emerge — impaired learning from

reinforcement, reduced anticipation of reward, and a greater response to the omission of events.

These findings are consistent with behavioral outcomes observed in the laboratory and clinical

settings. One representative set of such findings is of an asymmetric attentional bias in anhedonia.

If we treat the omission of reward as a negatively valenced event and the presence of reward

as a positive event, this suggests a negative attentional bias in the ELU group and positive

bias in the controls, reproducing empirical findings (Dillon & Pizzagalli, 2018; Frank, 2004).
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Larger negative prediction errors may not only affect attention in the moment but also have

longer lasting consequences via memory. Surprising events, like prediction errors, are known

to be more easily retrieved from memory (Rouhani et al., 2020; Sinclair & Barense, 2018).

This provides a mechanism by which singular negative events can have an outsized influence

on expectations and consequently, shape mood over the longer term (Eldar, Rutledge, Dolan,

& Niv, 2016). Frequent large negative prediction errors could produce the persistent negative

mood that characterizes anhedonia (Dillon et al., 2009). We found that the development of this

negativity bias was critically dependent on the overall richness of the environment. To experience

a pronounced negative prediction error when reward was omitted, agents needed to have a strong

expectation that reward would come but a weak expectation of when that would be. Only in

environments rich with variously timed rewards did such expectations emerge.

Our results contradict the assumptions and predictions of the cumulative risk conceptualiza-

tion of early life adversity (Felitti, 2002). The cumulative risk approach has been crucial in

establishing the robust association between negative events early in life and a wide array of

negative outcomes later in development. However, aggregating over heterogeneous experiences

may obscure the mechanisms linking such experiences to later psychopathology (Smith & Pollak,

2021; McLaughlin, Sheridan, Humphreys, Belsky, & Ellis, 2021). One proposed alternative

are dimensional models which identify influential features of the early life environment on

development and seek to characterize how these features exert their influence. Supporting the

dimensional approach, recent work has found divergent associations between measures of threat

and deprivation in the early life environment with later developmental outcomes including

amygdala reactivity to threat, aversive learning, cognitive control, and pubertal timing (Lambert,

King, Monahan, & McLaughlin, 2017; Machlin, Miller, Snyder, McLaughlin, & Sheridan, 2019;

Miller, Machlin, McLaughlin, & Sheridan, 2021; Rosen et al., 2020; Sheridan, Peverill, Finn, &

McLaughlin, 2017; Sumner, Colich, Uddin, Armstrong, & McLaughlin, 2019; Sun, Fang, Wan,

Su, & Tao, 2020). However, adopters of these approaches have been criticized for an unprincipled

choice of dimensions, particularly lacking neurobiological grounding (Smith & Pollak, 2021).

Given the potential relevance of reward systems to psychopathology, it may be valuable to look at

the statistical properties of the environment known to influence associative learning as potential

candidate dimensions.

Thus far in our interpretation of the results, we’ve treated the cue-paired outcome as reward.

However, the model is agnostic to the valence of the outcome — allowing for different interpreta-
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tions where the outcome is treated as neutral or aversive. Different valences will suggest different

behavioral phenotypes. Treating the outcome as aversive, like a shock, the ELU group’s prolonged

expectation of a negative outcome’s appearance could be interpreted as sustained hypervigilance

(perhaps akin to a form of “paranoia”), a symptom of anxiety. Treating the outcome as neutral,

impairments in associative learning become more general impairments in relational learning.

This may explain memory deficits and alterations in hippocampal structure in ELU individuals

(Granger et al., 2021; Molet et al., 2016) and anhedonia’s associated memory deficits. Prior work

has suggested that anhedonia is characterized not only by the inability to experience pleasure

in the moment but also the inability to recall past and anticipate future pleasurable experiences

(Dillon & Pizzagalli, 2018).

Here, we’ve only considered the mechanism under Pavlovian learning conditions. However,

it also suggests differences in ELU individuals’ instrumental learning and action selection. The

inability to accurately predict the timing of future outcomes diminishes an individual’s perceived

controllability of the environment, which has also been implicated in psychiatric disorders such

as anxiety (Bishop & Gagne, 2018).

Hidden-state inference models capture a similar idea as the microstimulus model at a different

level of analysis (Starkweather, Babayan, Uchida, & Gershman, 2017). Often, the true state of

the world is unknown or hidden and must be inferred from observations. This inference process

is in part driven by prediction errors (Rouhani et al., 2020), and by extension is more difficult

in volatile environments. As a result, ELU individuals may infer fewer states in the world (or,

analogously, more states in an environment where negative prediction errors predominate) and

group their experiences accordingly as a result of this early volatility. We have previously shown

that this assumption of reduced sensitivity with a hidden-state inference model can produce

reduced exploration in a foraging task (Harhen & Bornstein, 2023), a behavior found in ELU

populations (Lloyd, McKay, & Furl, 2022), and may also explain why individuals who experience

early life unpredictability are at higher risk of developing substance use disorders and relapsing

following treatment (Harhen, Baram, Yassa, & Bornstein, 2021).

Our model is predicated on the assumption that prediction error learning can serve as a

mechanism of environmental adaptation across multiple timescales — within a task and across

development. Embodying an extreme form of sensitive period, adulthood is conceptualized as a

period in which learning has altogether ceased. Future work could examine the effect of more

realistic, relaxed constraints on learning in adulthood – in which developmental experience lays
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the groundwork for the architecture of neural systems which later adulthood experience can

modify and reorganize (Galván, 2010; Karmiloff-Smith, 1994). Under this scenario, the prior

biases instilled by the developmental environment should have their greatest influence in few

shot or one shot learning experiences. When current experience underdetermines what an agent

should expect or do, past experience should largely influence the conclusion an agent reaches,

with early life experience having a particularly privileged role (Griffiths, Chater, Kemp, Perfors,

& Tenenbaum, 2010). Such inductive biases facilitate learning in environments aligned with

these biases and frustrate it in misaligned environments. If the influence of the developmental

environment on expectations and choice is greatest in environments in which the agent has limited

experience, this has implications for when symptoms for disorders like anxiety and substance

use disorder should worsen (Sharp, Miller, Dolan, & Eldar, 2020; Bornstein & Pickard, 2020).

Our results highlight the key role time plays in shaping reinforcement learning and conse-

quently its impact on behaviors associated with mental illness. The model’s ability to produce

varied phenotypes from the same computations suggests that the model’s implications extend

beyond anhedonia. Potentially it provides a common origin for a number of psychiatric disorders,

offering a potential explanation for high co-morbidity rates (Jacobi et al., 2004; Kessler, Chiu,

Demler, Merikangas, & Walters, 2005; Krueger, Chentsova-Dutton, Markon, Goldberg, & Ormel,

2003). Further research is needed to empirically test the model’s behavioral predictions, namely,

for early life unpredictability’s impact on interval timing, and interval timing’s relationship with

psychiatric disorders. Finally, our results offer a demonstration of the value of computational

modeling to understanding the development of psychopathology. By drawing on a reinforcement

learning framework, we can formalize the changing relationship between the agent and their

environment across development, produce testable predictions of how the environment shapes

the latent computations underlying clinically relevant behaviors, like learning, and propose

mechanistic links between altered computations and the later emergence of psychiatric symptoms.
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