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Abstract. Making plans for upcoming actions is a computationally demanding process. To mitigate these demands,
individuals can build extensive internal models of their environment – states, actions, and their sequential relation-
ships – that allow for plans to be developed with minimal computational costs. Initially, these models reflect elaborate
networks of learned associative relationships, which can be used to generate plans for reward through more iterative
computations such as trajectory sampling. After sufficient experience, compressed forms of these models can effi-
ciently capture long-range sequential structure, allowing them to be used for rapid planning even in pursuit of novel or
changing rewards. Here, we review recent work on the multitude of representations that can support different forms
of planning. We discuss how cognitive graphs, a framework with roots in both cognitive psychology and computer
science, can provide a unifying view of these representations and their relationships to one another. Conceptualiz-
ing internal models as forms of graphs situates them on a spectrum where different kinds of structured sequences
can be queried to support both planning and the formation of iteratively more compressed predictive representations.
We discuss how each of these kinds of cognitive graphs are created during learning, and used to transfer and gener-
alize knowledge across environments. Taken together, this review highlights the significant impact that the various
associative structures of memory have on planning.
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1 Introduction

Planning is a common, and complex, form of decision-making. It requires both representing ac-
tions, along with their precedents and consequences, and sequencing them appropriately. This
process consists of offline stages, during which predictive representations of the environment are
formed and refined, and online stages, where extant representations of relevant past experience are
interrogated and their predictions for the outcomes of planned choices are arbitrated.

The term ‘representation’ used here refers to how elements of a given decision problem are
encoded in memory and associated with each other. Choices are strongly influenced by the for-
mat in which decision elements are arranged when presented to an individual – for instance, risk
attitudes often vary considerably when options are presented as explicit frequencies, rather than
summary probabilities (Kahneman and Tversky, 1979). More recently, researchers have begun to
systematically explore how choices depend on the ways in which decision-relevant information,
such as state spaces, are represented internally by the decision-maker (Doya et al., 2002; Wang,
Feng, and Bornstein, 2022). This work shows that the choice of internal representations can have a
similarly dramatic influence on the outcome of a decision. For example, individuals who remem-
ber their local environment as a series of routes they have taken (“egocentric” representation) may
be unlikely to try a novel route in face of a detour, unlike individuals who have integrated their
experiences to form a map-like (“allocentric”) summary of the environment (Chrastil and Warren,
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2014). This example highlights how internal, unlike external, representations, can be transformed
from one format into another given sufficient experience and/or time; critically, this process can
yield many intermediate formats, where some information is retained and other information is lost.

In the case of planning, representation format is critical in part because much planning occurs
ahead of time, by constructing a semi-flexible policy that establishes the rules by which sequences
of actions are to be taken. In these cases, the selection of which kind of internal model provides
the state space over which the policy is defined, and thus critically determines the actions ulti-
mately taken (Ho et al., 2022). The importance of representational format in planning is further
underscored by its role in transfer learning, which requires first identifying similar situations from
the past and subsequently selecting the relevant aspects of that previously learned structure. When
experience in related environments is extensive, allowing the agent to infer common latent struc-
ture, one could apply compact, “map-like” representations that allow for efficient planning with
minimal error (Geerts et al., 2022; Whittington et al., 2020). However, as the overlap between
well-learned settings and the current environment decreases, one must rely on approximations to
identify relevant instances of previous experiences with the current or similar environments (Zhao,
Richie, and Bhatia, 2022). Internal simulations informed by these sorts of instance samples can
be used for iterative, vicarious evaluation of decision problems that not only informs the decision
at hand, but allows the agent to accelerate the inference of more general latent structure (George
et al., 2021).

An implication of this representation-centric view of planning is that a key problem for agents
to solve is how to summarize the available experience in a way that best supports efficient and
effective planning and transfer learning. The type of summary representation best suited to each
situation thus depends on the complexity of the environment, the amount of experience the agent
has in it, and the time and computational resources available to evaluate candidate policies; these
quantities are often dynamic or not known ahead of time, thus licensing the agent to maintain
multiple representations that can be leveraged to different degrees in different settings (Doya et al.,
2002; Wang, Feng, and Bornstein, 2022).

We propose that these many distinct forms of internal representations – associative relation-
ships – can be fruitfully understood as types of graphs (Butts, 2009). Here, environmental states
are represented as nodes and the transitions between them are shown as various types of edges
(Schapiro et al., 2013; Lynn et al., 2020), depending on the information available (Chrastil and
Warren, 2014). The edges could be either unidirectional when describing causality or irreversible
transitions, or could be bidirectional when these conditions are not assumed. For instance, a deci-
sion tree is a specific example of a graph that encodes sequential, or unidirectional, relationships
between states (Bertsekas, 2012). Formalizing these structures as graphs can allow researchers
to formally connect seemingly disparate types of planning, to reason about their related algorith-
mic and implementational properties (Zhang, Yang, and Stadie, 2021), and to determine how and
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which information is transferred (“consolidated”) from one format to another, e.g. during sleep
(Feld et al., 2022).

Figure 1: A graphical illustration of the two extremes of representations as a function of com-
pression: an uncompressed cognitive graph (left) and a fully backed-up cognitive graph (successor
representation used as an example here) (right). left Numbers indicate labels of a node, or a dis-
crete state, in a cognitive graph. Edges between two nodes depict the transition between two states.
right A backed-up version of a cognitive graph that fully captures future trajectories from a given
node (state). Row identification numbers (ID; i) indicate the current state, and column IDs (j) indi-
cate the successor state. The values in the matrix represent the expected general future occupancy
of j from i, and are color-coded for visualization. Note that while future occupancy statistics pre-
serve the coarse community structure, route information is diminished (e.g. the adjoining gateway
nodes, such as 3 and 11 for the cluster of states 5-9, are only slightly distinguished.)

Graph-like forms useful in planning range between extremes – at one end, sets of instances
of individual pairwise associations; at the other, compact, long-range multi-step contingencies –
with many points along the spectrum between these (Chrastil and Warren, 2014, Figure 1). Recent
work supports the simultaneous creation and updating of multiple graph-like knowledge structures
in support of planning. These internal models are distinguished by their content, format, and also
in what they entail for the dynamics of their learning and use in deliberative decision-making
(Doya et al., 2002; Bornstein and Daw, 2012, 2013; Smith and Graybiel, 2013; Tambini et al.,
2023). Below, we review findings that suggest that they influence behavior in accordance to their
suitability to the task at hand, and that the apparent shift in behavioral control from one form to
others is characterized by the transformation of information between representational formats, with
attendant trade-offs in function and fidelity.

Theoretical (Weber and Johnson, 2006) and empirical (Otto et al., 2022; Palminteri et al.,
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2015; Wu, Schulz, and Gershman, 2021) work supports the idea that the evaluation of an option
depends in part on how that option is remembered — for instance, if it is remembered as part of
a set of related options, with ranked preferences within that set (e.g. a favored restaurant among
those of similar cuisine), or if its visible features are associated with other latent features (e.g. a
food attribute linked to allergic reactions). Foundational work has demonstrated that successive
memory retrievals are related to the underlying associative structure of memory (Howard and Ka-
hana, 2002), supporting a form of trajectory sampling (Gershman and Daw, 2017; Wang, Feng,
and Bornstein, 2022), and that the content of extended memory retrieval at the time of choice has
meaningful influence on preferences (Bornstein and Norman, 2017). Taken together, this work
supports a critical influence on choice of the associative structure of memory. Therefore, it is im-
portant to understand the different forms this structure can take, and to identify commonalities and
points of divergence relevant to choice behavior.

2 Cognitive graphs

These associative structures can be understood as forms of cognitive graphs, that range from “un-
compressed” to “compressed” (Figure 1). The most uncompressed form, in which states are en-
coded as experienced sequences with minimal latent structure inference, conceptually aligns with
previous articulations of “cognitive graphs” (Muller, Stead, and Pach, 1996; Chrastil and Warren,
2014; George et al., 2021), and that is proposed to support types of model-based reinforcement
learning (Daw, Niv, and Dayan, 2005; Lengyel and Dayan, 2007; Gershman and Daw, 2017). A
cognitive graph can be characterized as a directed graph (Muller, Stead, and Pach, 1996), with
nodes representing states and edges indicating state transitions. These edges may be labeled, aug-
menting the topology with local metric information (Chrastil and Warren, 2014; Warren, 2019).
They may also be weighted, reflecting the transition probability between states (Natarajan and
Kolobov, 2022; George et al., 2021; Sutton and Barto, 2018). A cognitive graph is formed through
learning how different sequences of state transitions connect at intersections (Stiso et al., 2022),
enabling agents to flexibly navigate conceptual and spatial networks by recombining the segments
in novel ways (Warren, 2019; Mark et al., 2020; Peer et al., 2021). Additionally, their abstract
nature supports counterfactual simulations and generalizations to novel environments, thereby ac-
celerating the learning process (Zhu et al., 2020). Though the entire continuum of representations
are graph-structured, we will for clarity refer to the most uncompressed extreme form as “full” or
“flexible” graphs, and the most compact representations as “backed-up” or “compressed” predic-
tive representations.

At the other end of the spectrum, backed-up, predictive representations contain information
that is fully predictive of the N-step consequence of taking a given action a in the current state
s (Figure 1, right). To elaborate, a standard model of choice describes preferences between op-
tions as formed after a unitary expected value is computed by combining the reward distributions
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implied by each options’ features (Rangel, Camerer, and Montague, 2008). These values – both
unitary and the components – can be represented in different ways, each of which has different
implications for the preference construction process. Backed-up representations enable fast, cheap
evaluation of N-step plan outcomes, using an operation akin to matrix multiplication (though the
neural instantiation of this process has yet to be fully described (Gershman, 2018) and may be ap-
proximated by sampling (Gershman et al., 2012)). For example, model-free reinforcement learning
of action values (Sutton and Barto, 2018) captures this unitary value as a recency-weighted average
of the discounted total reward obtained in past episodes where the agent took the given action in
the given state. Here, the outcome values of multi-step actions are mediated by a discount factor, δ,
applied at each update operation. An alternative approach to constructing unitary values is to use
a backed-up representation of the discounted N-step state occupancy alone, irrespective of reward
obtained, which allows decoupling the environmental state dynamics, which may be more stable,
from reward contingencies that may fluctuate more often or be entirely trial-unique. Such suc-
cessor representations (or their mirror, predecessor representations; Jeong et al., 2022) compress
occupancy of sequences following or preceding a given state (Dayan, 1993), which can be used
to derive biological cell response types matching those observed in subfields of the hippocam-
pal formation (Stachenfeld, Botvinick, and Gershman, 2017). There are several related formats
that differ in what information is included in the backed-up representation, such as successor fea-
tures (Barreto et al., 2017) – which generalize the state-space learning approach to a space over
option dimensions (e.g., desirability for food) – and first-occupancy representations (Moskovitz,
Wilson, and Sahani, 2021) that only consider the first-time visits to each state. Inspired by the
need to bridge the gap between behavioral economics and reinforcement learning, λR incorporates
the concept of diminishing marginal utility (Moss, 1984) into reinforcement learning by discount-
ing multiple visits to a state, thereby providing an intermediate representation between successor
representations and first-occupancy representations (Moskovitz et al., 2023).

Between the extremes of compressed versus flexible-model representations, cognitive graphs
with intermediate modes of approximation can also be identified. We described above how the
discount factor allows the successor representation to be parametrically distinguished from the
outcomes of Monte Carlo trajectory sampling from a full model. Another axis along which these
representations can vary in their approximation of the full environment dynamics is the degree to
which they reflect hierarchical structure. For example, agents may cluster or abstract related states
as intermediate “sub-goals” that exist in multiple levels hierarchically to plan efficiently (Tomov
et al., 2020; Noh et al., 2023). Compression can also occur by compressing actions or policies
into higher-level actions, referred to as option or skill discovery (Sutton, Precup, and Singh, 1999).
Automated discovery of options at multiple levels has facilitated learning in artificial agents (Fox
et al., 2017). Likewise, humans appear to adopt policy compression to balance cognitive costs and
maximizing reward (Lai, Huang, and Gershman, 2022; Lai and Gershman, 2021). Similar to this,
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extracting a causal relationship between events at various levels of granularity could be seen as an
abstraction or compression of the environment (Kinney and Lombrozo, 2023a,b).

In this paper, we initially delve into the differences between planning predicated on the flexible
recombination of action sequences and planning employing compressed representations. Subse-
quently, we propose cognitive graphs as a potential unifying framework supporting both decisions
based on sampling potential future sequences and decisions based on full long-run occupancy
statistics. We discuss how these functions require key mechanisms – in particular, merging dis-
joint sequences and splitting aliased states – offered by some implementations of cognitive graphs.
We conclude with a discussion of further research directions, in particular understanding how the
spectrum of forms of cognitive graph may support distinct control strategies. This, in turn, could
potentially clarify the differential use of types of control in different stages of learning.

3 Planning as a function of representational compactness

3.1 Planning in a Markov Decision Process

For simplicity, planning is often conceptualized within the context of a Markov Decision Process
(MDP). In a classical MDP, the environment in which an agent plans is characterized as a tuple
of < S,A, T,R, π, γ> where S is a finite and discrete state space that is comprised of states, and
A is a set of actions that can be executed in each state s ∈ S. γ refers to the discount factor
that represents how future rewards are valued in comparison to immediate rewards. The models
consist of two functions, where T (s, a, s′) is the transition function for each s ∈ S and a ∈ A, and
R(s, a, s′) is a reward function that provides the immediate reward or value obtained after taking
action a in state s and transitioning to state s′. π refers to the policy, or the probability distribution
of the actions at a certain state. We assume that an agent starts from an initial state s0 and executes
a sequence of possible actions in the successor states (s′) up to a terminal or goal state s ∈ SG.
The agent’s goal in planning is to learn and execute actions based on an optimal solution, or policy,
that maximizes the cumulative value from an initial state to a goal state.

One of the most crucial components for successful planning is having an accurate internal
model of the environment, because the model is used for simulating or predicting behavior; in-
accurate models could entail incorrect predictions and thereby result in a chain of sub-optimal
actions (Talvitie, 2017). It is also important to adopt the most suitable models for each specific
context, given that optimal type of model to use may vary depending on the relationship of the
model to the environment – for instance, whether the model is known with certainty to correspond
exactly to the environment (Jiang et al., 2015). Below, we delve into the kind of model utilization
that may be optimal in scenarios where agents are still in the preliminary phases of environment
interaction (Section 3.2.1 Planning with uncompressed representations: sampling instances), or
in circumstances where they possess sufficient experience for compression of representations to
occur (Section 3.2.2 Planning with backed-up state/action sequences).
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Figure 2: A graphical illustration of planning based on the suggested spectrum of representations
– specifically, the degree to which they are pre-compiled – as a function of experience. Nodes
indicated with ‘s’ represent starting points. Arrows, or directed edges, describe possible plans for
the agent in the starting node to execute. The grey clouds represent the form of model the agent
is using to plan in a given phase. 1. Sequence-based planning This phase represents the early
learning phase where an agent has not yet constructed an integrated model of the environmental
dynamics. Here, agents are assumed to plan based on sampling instances previously experienced
trajectories. First, two sample trajectories are shown here, labeled ‘seq 1’ and ‘seq 2.’ From these
two trajectories, an agent is able to create a combined representation and plan efficiently with it
(e.g., taking the shortcut as seen in the red arrows). 2. Planning based on an uncompressed cog-
nitive graph After a few experiences, an agent is able to build cognitive graphs by conjoining past
trajectories. Agents are thought to iteratively sample next actions based on the cognitive graph.
As agents gain more experience, simultaneously, a ‘diffusion-like’ process is thought to take place
such that information about neighboring nodes are integrated into each node. 3. Planning with
a fully compressed cognitive graph After sufficient experience, a compressed trajectory from a
given node to each other node is available in a summary format. Rows of such a successor rep-
resentation are shown here. The availability of information in this representational format allows
agents to plan for novel or changing rewards in a statistically efficient manner.

3.2 Planning with learned cognitive graphs: uncompressed vs. backed-up

Models in planning capture statistical regularities of the environment, and could be either given a
priori or learned from experience. If an agent has full information about the transition structure
of the environment, then the agent is able to plan even without experience. This is conceptually
relevant to a classical control problem or search algorithm (Korf, 1987): for example, for the
game Tic-Tac-Toe, an agent can be endowed with a complete model (or a human can be verbally
instructed about the rules of the game). Given this starting point, the player can construct a tree-
like graph of possible future states and actions, and perform search to find the optimal decision
(Sriram et al., 2009). However, in more naturalistic contexts, the dynamics of the environment are

7



unknown to us initially and our internal models develop and change with our experience with the
environment (Schrittwieser et al., 2020; Lengyel and Dayan, 2007). We confine further discussion
to these latter, learned models of the environment.

Cognitive graphs at different levels of compression could serve as models that can support
different forms of planning (Figure 2). Raw, uncompressed cognitive graphs support planning via
iterative sampling of subsequent states or actions from a given state, or node. Here, individual
instances or nodes have minimal information about other nodes, thus making it crucial to traverse
graphs based on the relationship between nodes, or edges. Thus, in this form of planning, the
sampling algorithm is critical.

At the other extreme, actions and states in a cognitive graph are fully backed-up – for instance,
successor or predecessor representations. In the successor representation, each node-state contains
the expected future state occupancy given a current state and according to a given policy (Dayan,
1993); these can be thought of as integrated trajectories sampled from the current state. Con-
versely, predecessor representations can be thought of as fully bootstrapped versions of eligibility
traces, a memory-like mechanism that assigns credit to past states and actions from a given state
(Bailey and Mattar, 2022; Sutton and Barto, 2018). Predecessor representations could be seen as
a hindsight version of successor representations in that it bootstraps the possible trajectories that
could have lead to a current state. Whether directed forward or backward, once these bootstrapped
representations converge, the expected cumulative reward or credit can be efficiently computed
for planning, just by taking the product of the representation and a separate reward function. With
fully backed-up cognitive graphs, the need for edge-based sequences, or sampling successor states,
becomes negligible.

3.2.1 Planning with uncompressed representations: sampling instances

During early stages of learning an environment, planning could be facilitated by instance-based
methods instead of relying on an explicit model, or rule-based methods. Take, for example, the
task of choosing a restaurant to dine in an area that one has just moved to and thus has limited
experience with. It might be more effective to decide based on a few recent dining experiences
rather than attempting to decide based on a general summary of what little experience one has. A
model of decision-making under uncertainty captures this intuition as case-based decision theory
(Gilboa and Schmeidler, 1995), which suggests that to make decisions under uncertainty, people
rely on memory of similar cases that had worked well in the past.

This non-parametric, kernel-based method offers several cognitive advantages that could po-
tentially bolster decision efficiency, and provides a better account of human decision making com-
pared to rule-based methods. For instance, a small group of samples reduces memory load (Barron
and Erev, 2003), simplifies the decision rule (Fiedler, 2000; Hertwig and Pleskac, 2010), facilitates
generalization to unseen observations (Wimmer and Shohamy, 2012; Barron, Dolan, and Behrens,
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2013), and reduces time (Hertwig et al., 2004; Fox and Hadar, 2006). Also, instance sampling has
been shown to be a superior explanation of decision behavior in several laboratory tasks (Bhatia,
2014; Hotaling and Kellen, 2022; Zhao, Richie, and Bhatia, 2022; Bornstein et al., 2017; Wang,
Feng, and Bornstein, 2022). For example, in a repeated decision task, individuals appear to rely on
small numbers of samples of recent experiences. When intermittent reminder probes were added
to the task, manipulating the apparent recency of past experiences, these probes had a significant
effect on subsequent choice (Bornstein et al., 2017). Critically, the choice of instances is sensitive
to current task demands: Recent experiences may be more likely to be sampled in an environment
that does not have an explicit structure, but the introduction of periodic structure can lead to more
adaptive sampling of relevant events (Plonsky, Teodorescu, and Erev, 2015).

An example of cased-based decision theory applied to reinforcement learning is episodic con-
trol (Dayan, 2008; Lengyel and Dayan, 2007). Episodic control enables agents to make an in-
formed guess about the value of unseen states by averaging the values of the stored past instances
that are most similar to the current state. The kernel-based nonparametric approach that under-
lies case-based decision theory improves sample efficiency since the same amount of observations
could be used to inform estimates about a greater number of states, compared to classic reinforce-
ment learning, as well as providing a method for generalization, which is particularly important
in continuous state spaces (Gershman and Daw, 2017; Bhui, 2018). Simulation results show that
this advantage renders episodic control superior to model-based or model-free control during ini-
tial learning stages, as it accelerates the learning process under a low-data limit compared to other
control methods (Lengyel and Dayan, 2007; Blundell et al., 2016). One drawback of episodic
control is that the search process could be inefficient as the number of episodes stored increases.
For scalability, neural episodic control (NEC) uses deep learning methods to embed the keys of
each state into a fixed-length vector (Pritzel et al., 2017). Embedded inputs are then fed into a
differentiable neural dictionary, or a learnable episodic memory system that maps keys to values.
The final value of an observation is obtained by the weighted sum of the values in the differentiable
neural dictionary, where the weights are computed by the similarity between the current key and
the keys of states in the memory system.

Sampling-based accounts of human multi-step planning have also provided descriptive value
in at least two aspects. First, an extension of decision field theory toward the realm of planning
– named decision field theory-planning (DFT-P; Hotaling, 2020) – can explain human planning
behavior better than backward induction, at least in situations where multi-step plans contend with
high payoff variability. Here, the unreliability of experience may be a critical factor favoring
this instance-based approach. In large, continuous, and highly uncertain environments an agent
would require unrealistically extensive experience to develop stable, compressed, and predictive
representations. Silver and Veness (2010) show that in these environments, asymptotically optimal
plans can be constructed using Monte Carlo trajectory sampling over an iteratively updated internal
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model. A second advantage of representing the full, uncompressed, model of the state space,
with all its intermediate states is that it supports effective exploration strategies: in particular,
one can perform ‘far’ jumps across state spaces to distal, weakly connected nodes (Zhu, Sanborn,
and Chater, 2018); the resulting “Lévy flight” behavior matches observations of biological agents
exploring novel environments (Hunt et al., 2021) and performing memory search (Rhodes and
Turvey, 2007).

Research has shown that in an environment based on graph-like reward structure (e.g., subway
maps), people leverage learned graph structure to guide sampling-based decisions (Wu, Schulz,
and Gershman, 2019, 2021). Nevertheless, whether people are able to spontaneously construct
cognitive graphs from sequential experiences in graph-like structures and still leverage this to guide
decision has not yet been directly investigated.

3.2.2 Planning with backed-up state/action sequences

Earlier, we introduced the concept of backed-up representations as a way of incrementally learning
compact summaries of multi-step contingencies. Successor representations have been devised to
balance the possible computational intractability of fully model-based methods and inflexibility of
computationally cheap model-free methods, providing a robust solution to this problem (Dayan,
1993). These compressed, predictive representations summarize expected future occupancy of
successor states from a current state given a policy. Using successor representations compresses the
multi-step planning process into a single-step process, since long-range outcomes of all possible
future trajectories are considered at once (Dayan, 1993). This not only reduces computational
complexity, but it also facilitates generalization and learning when adapting to variable reward
contingencies. Empirical evidence from studies conducted on humans (Momennejad et al., 2017)
and artificial agents (Barreto et al., 2017) suggests that using transition dynamics compressed in
a successor representation lead to faster adaptation to value-function changes, because only the
reward function requires re-learning, thus significantly enhancing learning efficiency.

Another example of compressing sequences of observation, or states, is seen in robust pre-
dictable control (Eysenbach, Salakhutdinov, and Levine, 2021). This algorithm is explicitly en-
couraged to find a compressed policy by penalizing complexity, which is operationally defined as
the amount of information needed from observations for a policy to make decisions. The intuition
behind this is that agents will rely less on gathering information from observations as they become
better at predicting the future accurately. Agents trained on compressed policies are less suscepti-
ble to unknown or missing observations (i.e., perturbations), since compressed policies have been
trained to use fewer bits of information per observation. This leads to improved open-loop control
– producing a plan of action sequences at the beginning and executing it without checking the
progress along the way.
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In sum, compressed representations lower the cost of planning by reducing complexity at the
representational level. This kind of representation also fosters open-loop planning by enabling the
execution of action sequences as a single operation (Eysenbach, Salakhutdinov, and Levine, 2021).
This could be efficient in environments where transition dynamics are relatively well-known and
unchanging. On the other hand, when models of the environment have not been fully developed
yet, instance-based control can be useful. In particular, sampling trajectories of instances to pre-
serve the sequential nature of experiences provides a method with less complexity and greater
scalability, while still maintaining high performance. In the following section, we discuss how
graph-structured representations can improve trajectory-based planning.

4 Ways in which uncompressed cognitive graphs could facilitate planning

Recent approaches transform planning into a graph-search problem (Savinov, Dosovitskiy, and
Koltun, 2018; Liu et al., 2020). One study leveraged graph-based representations to identify land-
marks or subgoals in latent graphs, and then performed graph search on the nodes (Zhang, Yang,
and Stadie, 2021). Here, edges between the nodes are weighted with “reachability” between nodes,
making it as a form of a labeled graph. In the domain of spatial navigation, algorithms construct
graphs based on subgoals and then plan based on the constructed graphs for efficiency (Bagaria,
Senthil, and Konidaris, 2021).

It has also been found that people spontaneously construct graph-like representations when
observing a sequence of events, where these latent graphs could be either correlational (Rmus et al.,
2022; Solomon et al., 2019; Kahn et al., 2018; Schapiro et al., 2013, undirected graphs) or causal
(Gopnik and Schulz, 2004; Gopnik et al., 2004; Sommerville and Woodward, 2005a,b, directed
graphs). Furthermore, people have been shown to be able to capture the topological structure
of an underlying graph (i.e., identifying bottleneck states; Schapiro et al., 2013; Solway et al.,
2014), even after passive observation of trajectories through the graph space. Intriguingly, the
general tendency to use plans over model-free approaches appears to be correlated with the ability
to infer latent graph-based structure from jumbled sequences of experiences (Rmus et al., 2022),
potentially underscoring the utility of learning graph-structured representations in planning.

4.1 Mechanisms by which cognitive graphs could facilitate planning

States and observations or instances may not be mapped onto each other in a one-to-one fashion.
This phenomenon, referred to as perceptual aliasing, could potentially destabilize control in re-
inforcement learning (Whitehead and Ballard, 1991). To overcome this, agents must employ an
accurate and parsimonious representation of experience that is able to split identical observations
into different underlying states or merge seemingly different observations into a single state for
generalization, depending on the context (Niv, 2019). In other words, correctly identifying the un-
derlying latent state associated with an observation is crucial. Latent state inference thus plays an
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important role in constructing cognitive graphs – especially during early learning, when the small
amount of experience can lead to highly uncertain estimates of the state structure, which adaptive
decision-makers must account for (Jiang et al., 2015; Harhen and Bornstein, 2023).

When observations are aliased with respect to the underlying latent states, inferring the gener-
ative structure requires interpreting each observation relative to the others; formally, conditioning
inference on some subset of the history of observations, rather than just the one presently available
sensory input (Whittington et al., 2022). Hidden Markov Models (HMM) provide a computational
solution to latent state inference by decoupling the transition structure of the latent states (transi-
tion matrix) and the probability that a given observation maps onto latent states (emission matrix;
George et al., 2021; Mark et al., 2020); this dichotomy is also dubbed as “stimulus-stimulus” as-
sociations and “stimulus-context latent” associations of content representations, respectively (see
Wang, Feng, and Bornstein, 2022).

A clone-structured cognitive graph is a version of the HMM that conditions the transition of
latent spaces on actions (George et al., 2021). To elaborate, a given observation is explained in
terms of two components: a transition tensor which accounts for the action-conditioned transitions
between latent states, and an emission matrix that assigns probabilities to the latent states given an
observation. Within the transition tensor, each latent state in a sequence is identified in relation to
its previous latent state and action, and whenever a new context – or a new combination of previous
latent state and action – is encountered, a new clone is created. Clone-structured cognitive graphs
have been able to capture phenomena thought to be important to structure learning in both spatial
(George et al., 2021) and non-spatial (Swaminathan et al., 2023) domains: splitting, the ability to
recover the ground-truth space from aliased observations, as well as merging, the ability to stitch
overlapping latent states together from two disjoint observations. Thus, the clone-structured cogni-
tive graph is an exciting proposal for how an agent can simultaneously learn both the structure (i.e.,
nodes) of the environment as well as its transition dynamics (i.e., edges). Within the framework
we discuss here, the resulting representation is considered uncompressed, as it is attempting to
capture the full, flexible environment model. Backed-up representations can be built by querying
the resulting graph, as it stabilizes with sufficient experience (Wittkuhn, Krippner, and Schuck,
2022).

Another variant of the HMM-based cognitive graph explicitly assumes the idea of predefined
schemas for identifying the transition structure. Here, it is postulated that the transition dynamics
emerge from predefined structural forms such as hexagonal grids or community structures (Mark
et al., 2020), which could be grounded in the wider notion of inherent basis sets (Kemp and Tenen-
baum, 2008; Tenenbaum et al., 2011; Luettgau et al., 2023) or generative grammar of sequences
(Dragoi, 2023). The idea that cognitive graphs are constructed using the prior knowledge of struc-
tures could be empirically supported by results that human transfer learning is best explained by
these models (Mark et al., 2020; Luettgau et al., 2023). The hippocampal-entorhinal system has
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been proposed to underlie decoupling, or factorizing, structure and sensory observations (Whit-
tington et al., 2018). Here, the medial entorhinal cortex contains grid cells (Hafting et al., 2005)
that provide a basis set along which transition structure is defined, and the lateral entorhinal cortex
supports sensory representations. The conjunctive code of the transition structure and “emission”
is hypothesized to be reflected in the hippocampus (Whittington et al., 2018). These distinct repre-
sentational forms each play a critical role in the use of hippocampal replay to infer compositional
structure across environments, permitting the construction of more compressed representations
that can support efficient planning in novel environments (Kurth-Nelson et al., 2023). An area for
future research is whether endowing artificial agents with this representational decomposition and
algorithmic approach to replaying and recombining structure elements can allow them to perform
an efficient approximation to graph compression.

Below, we describe how cognitive graphs support both merging and splitting in sequences of
observations, and what specific mechanisms an unfolded graph could provide to facilitate early
stage learning.

4.1.1 Merging: fast generalization by extrapolating trajectories

Associative memory could be seen as the building block of cognitive graphs. One such instantia-
tion is transitive inference, which is an example of leveraging relational information of instances
for faster generalization, observed in humans and animals (Bryant and Trabasso, 1971; Gillan,
1981; Davis, 1992). When an agent experiences A > B and B > C, the unobserved relationship
between A > C can be inferred without direct experience (Eichenbaum et al., 1999). This can
be achieved through forming supraordinate representations, comparable to cognitive graphs, such
that A > B > C, which has been found to be supported by the hippocampus (Greene et al., 2006;
Dusek and Eichenbaum, 1997; Zalesak and Heckers, 2009). Similarly, disparate fragments of
event trajectories can be fused together, creating graph-like formations by leveraging the intersec-
tions of these trajectories (Eichenbaum and Cohen, 2014; Rmus et al., 2022). From these graphs,
inferences can be made between instances that were not directly experienced together, supporting
flexible recombination and fast generalization (Eichenbaum, 2004). After learning sequences of
objects that are generated based on graphs that are either hexagonal or community-structured, hu-
mans are able to infer unobserved links using the transition structure of the latent graphs (Mark
et al., 2020). This study provides direct evidence that people are able to extract long-run transition
structure from sequences of events and also are able to transfer it for generalization.

Implementing this associative-memory-based cognitive graph leads to efficient planning algo-
rithms. For example, an episodic reinforcement learning algorithm called Episodic Reinforcement
Learning with Associative Memory (ERLAM) augmented with associative memory showed in-
creased sample efficiency compared to benchmarks (Zhu et al., 2020). In ERLAM, experienced
trajectories are reorganized into graphs, which speeds the propagation of value learned from one in-
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stance to other related instances, thereby enhancing sample efficiency. In addition, clone-structured
cognitive graphs introduced earlier have been shown to be capable of performing transitive infer-
ences (George et al., 2021). This capability was demonstrated in the spatial domain, in agents nav-
igating a larger environment divided into discrete “rooms.” Here, two separate rooms are stitched
together to form an overlapping region. Agents navigate each room separately and are tested on
whether they can travel from a non-overlapping region of one room to a region exclusive to the
other room. Results show that agents are able to construct a latent map by stitching sequential
observations from two disjoint episodes; overlapping observations from different trajectories are
correctly assigned to the same hidden state.

In addition to conjoining separate sequences, associative memory binds seemingly indepen-
dent choice options together into a temporal context, so that learning the value of a chosen option
also influences the value of unchosen options (Biderman and Shohamy, 2021). This is referred
to as counterfactual reasoning, another example of associative memory accelerating learning since
information about an instance can be propagated to related experiences. Counterfactual reason-
ing is observed in reinforcement learning: humans not only deploy “factual” information through
direct trial-and-error, but also incorporate counterfactual learning (Boorman, Behrens, and Rush-
worth, 2011; Fischer and Ullsperger, 2013). Interestingly, counterfactual learning engages cogni-
tive graphs for both model-based and model-free learning (Moran, Dayan, and Dolan, 2021). In
this process, the model-free values of options are positively reinforced by direct rewards and neg-
atively influenced by the value of counterfactual options. Associative memory strength between
options in reinforcement learning being correlated with how much learning about one option influ-
ences other unchosen options suggests that counterfactual learning operates on a cognitive graph
where edge weights are defined by associative memory strength between items (Biderman, Gersh-
man, and Shohamy, 2023). An open question is whether factual and counterfactual learning are
performed on the same cognitive graph. Some evidence points to a single representation support-
ing both kinds of reasoning (Boorman et al., 2009; Fischer and Ullsperger, 2013), whereas other
evidence supports these forms of learning update distinct representations (Lohrenz et al., 2007; Li
and Daw, 2011; Kishida et al., 2016). A common finding is that individuals are generally biased
towards reinforcing their own choices (“confirmation bias”, or the tendency to collect information
partially according to the preexisting belief or action (Nickerson, 1998)), in a way that they in-
corporate more information when the chosen option is more rewarded (i.e., greater learning rate
for positive prediction errors of factual options) and when the unchosen option turns out to be
less rewarding (i.e., greater learning rate for negative prediction errors of counterfactual options;
Palminteri et al., 2017). Asymmetric updating in the other direction (more negative than positive)
has been observed in individuals diagnosed with psychiatric disorders (e.g. depression; Rouhani
and Niv, 2019); though this pattern has itself been shown to arise from individual differences in
representational precision (Harhen and Bornstein, 2024).
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ERLAM provides an example of leveraging counterfactual combinatorial trajectories to facil-
itate learning of artificial agents (Zhu et al., 2020). In this algorithm, trajectories are reorganized
into graphs by merging the common elements (nodes) of the two trajectories. This agent would
have an advantage over an agent who uses pure episodic memory in cases such as right after ex-
periencing two intersecting trajectories that each lead to reward (e.g., A > B > C > reward) and
no-reward (e.g., D > B > E > no-reward); while the ERLAM agent will be able to leverage
the graph to plan an unexperienced route (e.g., D > B > C > reward), an agent that only relies
on episodic reinforcement learning would associate D with reward only after direct experience.
Recently, expected eligibility traces have been introduced as a form of leveraging counterfactual
trajectories to accelerate learning (Hasselt et al., 2021). Eligibility trace is a mechanism in rein-
forcement learning that provides a hindsight credit assignment with regard to the current state by
keeping a trace of past experiences weighted by their recency (Singh and Sutton, 1996; Sutton and
Barto, 2018). Expected eligibility traces improves the limitation of eligibility traces – that only one
directly experienced trace is updated each time – by considering multiple counterfactual sequences
that could have preceded a current state. Mirroring the relationship between the full forward model
and successor representations, the predecessor representation is the fully backed-up version of the
state tree supporting expected eligibility traces (Bailey and Mattar, 2022).

4.1.2 Splitting: Recovering latent structure from aliased sequences

It is possible that two different states are “aliased”, or mapped onto overlapping observations.
In this situation, as opposed to the example above that agents should be able to create a graph
that merges two sequences – A > D > C and B > D > E – , an agent should be able to
split D into two different nodes according to their contexts. Clone-structured cognitive graphs are
able to accurately reconstruct correct latent graphs from sequences of aliased sensory observations
by making clones of observations (George et al., 2021). Impressively, clone-structured cognitive
graphs are not only able to both split aliased observation into latent states, but also able to merge
the reconstructed graphs as in transitive inference.

Indeed, as implied above, these are exactly the sorts of environments in which clone-structured
cognitive graphs have an advantage over backed-up representations. Specifically, when presenting
a clone-structured cognitive graph agent with a sequence of aliased observations from a graph with
community structure (e.g. Figure 1 left), the agent is able to recover the modular structure. How-
ever, an agent that used a successor representation was not able to recover this structure (George
et al., 2021). This suggests that environments in which modular structure is important to the task
at hand benefit from having available less-compressed representations of experience. This idea
aligns with the finding that sequences of observations generated by a modular vs. lattice graph
– where the two graphs only differ in terms of their higher-order structure – lead to more robust
latent representations (Kahn et al., 2023).
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5 Discussion

Multi-step planning is a critical ability for autonomous organisms. Extensive research has iden-
tified multiple kinds of planning, each with their own benefits and appropriate to specific situa-
tions. These distinct approaches rely on different representational substrates and have different
algorithmic commitments. Which kind of planning an individual performs in a given setting can
dramatically change the outcome of their decisions. Therefore, it can be valuable to judgment
and decision-making research to understand how to characterize the commonalities, differences,
and appropriate uses of each form of planning. Here, we suggest that these seemingly distinct
representational forms that support planning can be described as varying types of cognitive graph,
where these various manifestations of graphs exist along a spectrum of compression.

At one end of the spectrum, fully uncompressed representations capture every element of an
associative network in detail. This full-featured model of the environment allows for flexible trajec-
tory sampling at the time of decision, and supports plans that are robust to changes in contingency
and reward structure. In addition, this kind of uncompressed representation is a necessary first step
for building more compressed representations, because the latent structure (edges) in compressed
representations requires inferring across multiple experiences (Wittkuhn, Krippner, and Schuck,
2022; Lynn and Bassett, 2020). Since observations are often aliased, uniquely characterizing their
latent state (nodes) and structure (edges) requires them to be placed in a sequence (Whittington
et al., 2022). Network model simulations show that uncompressed sequences of events are neces-
sary for building latent graphs that enable complex functions such as rapid value propagation (Zhu
et al., 2020) or extracting higher-order structures (George et al., 2021).

At the other extreme, a fully compressed graph – such as the successor and predecessor rep-
resentations – captures summary-level statistical structure. These graphs are formed by “boot-
strapping” – repeated sampling of the full model to identify the long-run relationships between
each pair of nodes in the network. These representations allow for fast, cheap multi-step planning
as they cache previous trajectory samples into a compact matrix format. Their factorized form,
separating transition (edge) information from reward values, allows for replanning in the face of
changing reward outcomes. However, the kind of planning they support is not robust to changes
in contingency structure – these must be re-learned, slowing planning until stable estimates can
be obtained again. This is because backed-up representations like the successor representation are
conditional on the specific policy that generated the compressed graphs; in other words, if the goal
changes, the optimal action in each state should be re-learned, thereby not transferable (Lehnert,
Tellex, and Littman, 2017). Linear reinforcement learning, which incentivizes learning a “default”
policy distributed uniformly across possible successor states, is a framework that addresses this
limitation and explains flexible replanning in humans (Piray and Daw, 2021).

These different kinds of representations are learned simultaneously, which allows the agent to
arbitrate between the most reliable representation at a given moment (Wang, Feng, and Bornstein,
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2022). In situations of high uncertainty, such as during the early phase of reinforcement learning
where there is not enough data to construct a reliable model (Lengyel and Dayan, 2007) or in
volatile environments (Nicholas, Daw, and Shohamy, 2022), consulting on a subset of episodic
samples provides a more reliable approximation of the value of observations. Arbitration between
different representations has been proposed to be reflected in discontinuous “jumps” of subjective
evidence (“jump-diffusions”) in evidence accumulation models, were these sudden jumps during
the sequential evidence sampling could indicate alternations to other sets of representations (Wang,
Feng, and Bornstein, 2022). The constantly changing ensemble of representations that lead to these
jumps is hypothesized to occur in a bottom-up manner, akin to product-of-experts in machine
learning (Wang, Feng, and Bornstein, 2022)

By which mechanism does compression happen, such that more experience gradually leads to
more compression? One possible mechanism could be the diffusion of information between nodes
through replay of events. The transition from the uncompressed graph to the fully backed-up form
occurs via repeatedly sampling and aggregating features from neighboring nodes, analogous to
message passing algorithms (Hamilton, Ying, and Leskovec, 2017; Parr et al., 2019; George et al.,
2021). At the beginning of the learning process, the cognitive graph resembles an undiffused graph
where a node, or a given state, holds limited information about others, thus requiring the agent in
a state to explicitly traverse edges to infer about other states. At the same time, uncompressed
graphs provide full representations of the contingency structure between states and actions, which
allow for flexibility at the cost of greater computation time and behavioral variability. With more
experience, the cognitive graphs undergo a transformation into a bootstrapped representation where
information about future states is aggregated into each adjacent state, making explicit edge-based
inferences between states less important. Caching these distal outcomes subserves rapid planning,
while still retaining sensitivity to changes in reward availability. However, without additional
mechanisms, it also confers a relative insensitivity to contingency changes that may be undesirable
in novel or volatile environments. Replay of events could be a biological instantiation of message
passing, given that the construction of backed-up representations is mediated by on-task replay in
humans (Wittkuhn, Krippner, and Schuck, 2022). A possible future direction for research would
be to investigate whether replay contributes to maintaining and arbitrating between multiple kind
of representations.

One interesting direction to expand this concept of representational spectrum would be to test
whether different modes of control arise as a function of the degree of compression (Moskovitz
et al., 2022). Recall that agents using compressed representations should be adept at open-loop
control because they can in principle select action sequences into a single operation. This elim-
inates the need for intermittent re-planning during action execution (Eysenbach, Salakhutdinov,
and Levine, 2021). However, if agents plan by sequentially sampling next actions using uncom-
pressed cognitive graphs, taking small steps could be more efficient than open-loop control, since
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the model has not been compiled yet to provide reliable future trajectories from a state. This
edge-based planning is conceptually more similar to closed-loop planning, where an agent stops
at each transition to re-plan. This leads us to the overarching question of whether the utility of us-
ing closed-loop vs. open-loop planning aligns with the degree of compression in cognitive graphs.
This alignment would be similar to the evolution of an episodic control system to model-based, and
then finally to model-free systems (Lengyel and Dayan, 2007). Based on an interpretation that the
seemingly model-free behaviors could actually be action sequences (Dezfouli and Balleine, 2012,
2013), an interesting hypothesis is that the model-free system at the end of the spectrum could be
in fact representing action sequences formed by open-loop control, likely a result of using highly
compressed models.

6 Conclusions

To conclude, we highlight the kind of representations that could be used to support instance-based
planning at early stages of learning – uncompressed cognitive graphs – and suggest that they could
be in a spectrum, rather than discrete concepts, with backed-up representations at the other end.
Further research may investigate whether this of spectrum of representations directly induces a
continuum of planning algorithms, such as closed- versus open-loop control.
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