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Abstract
Memory function declines in normal aging, in a relatively continuous fashion

following middle-age. The effect of aging on decision-making is less well-understood,
with seemingly conflicting results on both the nature and direction of these age effects.
One route for clarifying these mixed findings is to understand how age-related
differences in memory affect decisions. Recent work has proposed memory sampling as
a specific computational role for memory in decision-making, alongside well-studied
mechanisms of reinforcement learning (RL). Here, we tested the hypothesis that
age-related declines in episodic memory alter memory sampling. Participants (total
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N=361; ages 18-77) performed one of two variants of a standard reward-guided
decision experiment with additional trial-unique mnemonic content and a
separately-administered task for assessing memory precision. When we fit participants’
choices with a hybrid computational model implementing both memory-based and
RL-driven valuation side-by-side, we found that memory precision tracked the
contribution of memory sampling to choice. At the same time, age corresponded to
decreasing influence of RL and increasing perseveration. A second experiment
confirmed these results and further revealed that memory precision tracked the
specificity of memories selected for sampling. Together, these findings suggest that
differences in decision-making across the lifespan may be related to memory function,
and that interventions which aim to improve the former may benefit from targeting the
latter.
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Introduction
It is widely accepted that memory, at least that for individual experiences,

declines with age 1,2. The results on decision-making, however, are more mixed. While
some studies identify a decrease in the ability of older individuals (and/or those
experiencing cognitive decline) to engage in multi-step planning 3–5 - a function which,
like episodic memory, is critically linked to an intact hippocampal formation 6 - others
report that older individuals have spared, and sometimes improved, decision-making
abilities, such as in a resistance to sunk costs 7. Still others have identified increases in
choice randomness with age 8, which at first blush seems incompatible with reports of
increasing perseveration - repetition of the same choice irrespective of learned values
9–11. The field has yet to settle on a unifying explanation for these seemingly disparate
phenomena.

One route to a synthesis may be via understanding the role of memory in decisions. A
number of findings have shown that memories for individual experiences can bias
decision-making even in repeated selection tasks, where individuals gain extensive
experience with the probabilistic outcomes of choice options 12,13. The role of memory in
decisions via sampling (i.e. the selective retrieval of memories of similar past choices
during decision-making, to estimate the value of one action or another14,15) has been
shown to capture the influence of recent rewarding experiences on choice 16, while also
serving an adaptive role in decisions when familiarity with an environment is low or
uncertainty about the structure of the environment is high17. To illustrate the difference
between these routes to value estimation, consider choosing between two restaurants:
One, an old favorite that you have been to many times; the other, a brand-new shop of a
well-known type - e.g. a slice pizza stand. For the former, you can rely on your repeated
experiences to estimate the value of dining there tonight. For the latter, you must draw
on memories of similar experiences, and extrapolate from there. When evaluating
repeated choice options, and assuming that recent memories are more likely to be
retrieved, these two approaches give similar results on average, but can diverge,
especially when the content of memory contains more than just recent experience.

Building on the findings that each system contributes to behavior, work has begun to
examine what factors influence the relative use of one or the other. A recent study in
young adults observed that the relative uncertainty of values estimated using memory
sampling and reinforcement learning indexed how strongly choices depend on each
system on a given trial18. In other words, when one system had more variable estimates
of option values on a given trial, it had less influence on choice. This finding concords
with theoretical frameworks in which multiple learning systems contribute to behavior in
proportion to the relative precision of their estimates of upcoming stimuli 19–22. An open
question is whether this mixture of decision processes is altered across the lifespan,
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perhaps as a result of relative declines in the fidelity of memory representations or
neural circuits communicating between valuation systems and action selection regions
23–26.

Therefore, the precision of memory representations may play a critical role in its
influence on choice. A link between memory precision and memory-guided
decision-making may be crucial to understanding age-related differences in choice
patterns. This is because a key aspect of memory that declines with aging is the ability
to pattern separate, or represent similar mnemonic stimuli with sufficiently distinct,
non-overlapping memory traces 5,27–30. Individuals with impaired pattern separation may
encode experiences in a manner that leads to impaired retrieval, perhaps due to the
relative imprecision of these representations. Pattern separation is used to store unique
memories of even highly similar information without interference, and age-related
reductions in pattern separation result in less precise, lower-fidelity memory in older
adults.

Here, we examined whether a behavioral measure of pattern separation - mnemonic
discrimination ability in the Mnemonic Similarity Task (MST; 27) - indexed the contribution
of memory sampling to behavior in a repeated choice task where outcomes were linked
with trial-unique memoranda 16,31. A lifespan sample of individuals (ages 18-77; total
N=361) performed a series of choices between three options, each of which had
steadily varying probabilities of paying reward. After selecting an option, they were then
asked to encode a trial-unique object photograph in concert with one of six scene
images. Their ultimate reward in the task depended both on their ability to identify and
track the winningest choice option, and also on their ability to later successfully recall
the object and scene pair that was associated with a randomly-selected subset of the
choice outcomes. Critically, the experiment included a second phase during which
individuals were presented with memory probes that incidentally reminded them of past
choices. These probes have previously been shown to influence subsequent choice via
intrusions of value representations linked to the reminded trials 16,31 and associated
contexts 31 in younger adults. It is important to note that this effect of incidental reminder
probes on choice is not adaptive - individuals would do best to attend only to recent
rewards, and not the values reminded by the probes. Therefore, this aspect of the task
serves as a strong test of the hypothesis that action selection incorporates value
information from recent memory, independent of or alongside continual reinforcement
learning-based approaches 17,21,32. To date, memory sampling has not been studied in
older adults.

We fit each participant’s series of choices with a computational model implementing
both memory sampling and reinforcement learning, and measured the degree to which
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the values estimated by each process influenced the individual’s choice behavior. We
then examined the relationship between their reliance on each process and their ability
to discriminate similar objects during the MST, administered in a separate session. We
predicted that, independent of age, the latter measure of mnemonic discrimination
ability would index the average precision of an individual’s trial-level outcome memories
in the choice task, and thus their use of memory sampling. We further predicted that
age would negatively influence choice performance.

Consistent with theories of uncertainty-weighted arbitration between decision
systems19–21, which predict that decision systems with more precise estimates will have
greater influence on choices, we found that higher memory precision predicted a greater
influence of memory sampling-derived values on behavior, while not affecting an
individual’s sensitivity to values learned by recent reinforcement. At the same time, age
increased the appearance of “noisy” choices, reflected in a decreased reliance on
reinforcement learning, while also increasing the influence of perseveration.

To further understand how memory precision altered the influence of memory content
on decisions, we next performed a variant of the experiment in which individuals were
presented with perceptually aliased contexts - three matched pairs of scenes with
similar visual content, but distinct choice-reward associations. We then tested whether
individual memory precision corresponded to the influence on choice of the target
context (the scene image associated with the memory probe) or the gist context (the
target as well as its matched pair lure context, which had distinct choice-reward values).
Consistent with the idea that uncertainty in memory representations is itself
sample-based, rather than inherent to the representation, we found that lower memory
precision was associated with a greater influence of gist-level memories.

Taken together, these findings support the idea that age-related declines in memory
precision lead to changes in decision profiles, which can be decomposed with
normatively-motivated process models. They further suggest that individuals who exhibit
noisier choices with age may benefit from interventions that target the precision of their
memory representations. Lastly, our results shed light on the fundamental mechanisms
that guide the weighting of different decision strategies in individuals across the
lifespan.

Methods
Experiments 1 and 2 were identical in procedure other than the background

scene images (contexts) presented during the learning phase of the three-armed bandit
task. As such, we have combined the method across both experiments and specified
the differences across experiments where applicable.
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Participants
Participants across the lifespan were recruited online on Amazon Mechanical

Turk via the CloudResearch interface (N=295, ages 19-77, mean(sd) age = 46.7(16.5),
144 Male, 149 Female, 1 Other, 1 Unknown) and in-person (N=156, ages 18-45,
mean(sd) age = 24.2(7.0), 56 Male, 97 Female, 1 Other). The majority of data collection
occurred during the COVID-19 pandemic, which limited our ability to collect in-person
data, particularly those in older age groups. For online samples, we set eligibility filters
through Amazon Mechanical Turk such that only those who have completed at least 50
MTurk HiTs with over 95% approval rating were able to participate. All experimental
procedures were carried out in accordance with the guidelines of the University of
California, Irvine and University of California, Riverside, Institutional Review Boards
(IRBs). All participants indicated their consent to participate in this experiment according
to disclosures approved by the IRBs. Regardless of collection modality, all participant
data underwent rigorous quality control by independent raters blind to the study
hypotheses. Raters were instructed to identify individuals whose data indicated they
were inattentive to the experiment or appeared to be automating responses for more
than one quarter of the trials. Raters examined reaction times and response patterns for
each participant and coded each participant as either 0 - do not exclude, 1 - consider
excluding, or 2 - definitely exclude. Raters also provided reasonings for exclusion.
Some reasons for exclusion included: high frequency of no-response trials,
unrealistically low or high reaction times (which may have been indicative of connectivity
or computer issues or automated respondents - e.g. bots or scripts), “button-mashing”
(pressing the same button/choice for the majority of the experiment), or not sampling all
3 choices throughout the task (for instance, alternating between only 2 choice options
for the majority of the task). Ratings from 2 independent raters were summed, and
participants with scores greater than 2 were excluded. In other words, we excluded
participants whom at least one rater identified as ‘Definitely’ excluded (Score 2) and the
other rater scored at least ‘Maybe’ excluded (Score 1 or 2). Of the 451 participants
originally recruited across both experiments, 83 participants were excluded on this
basis.

We also excluded participants for whom the learning model did not fit better than
chance (p(choose) = ⅓ for all trials), as the parameters for these participants would not
distinguish from a participant who made random choices. An additional 7 participants
were excluded this way (all from Experiment 2), which left 361 participants (across
Experiments 1 and 2) for our analyses: 226 participants were retained in Experiment 1
(112 online / 114 in-person, 88 Male / 137 Female / 1 Other, ages 18-77, mean(sd) age
= 38.6(18.8)), and 135 participants were retained in Experiment 2 (117 online / 18
in-person, 66 Male / 68 Female / 1 Other, ages 18-74, mean(sd) age = 40.6(16.2)).
Participants had to complete a brief tutorial and screener of the three-armed bandit task
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to be eligible for the full experiment. The screener consisted of an interactive tutorial of
the task and practice trials of the learning phase to ensure participants understood the
instructions and were paying attention to each trial. Individuals had 2 opportunities to
complete the tutorial and 10 practice trials with a minimum 70% accuracy to continue on
to the full experiment. Those who were ineligible to continue on to the main task were
compensated $2 for the time spent on the tutorial. Participants received monetary
compensation for their participation: $12 for completing the experiment, and an
additional bonus of up to $8 obtained throughout the task.

Participants were recruited for two separate sessions to complete their two tasks
(one of the choice tasks and the Mnemonic Similarity Task). During early phases of data
collection, the order of recruitment for each task (choice task and MST) were
counterbalanced in case there may be differences in retention as a function of which
task was performed first. Our pilot data revealed that roughly 5 out of every 8
participants generally returned for a second session, regardless of which experiment
was performed first. For participants who were recruited first through the choice
experiment, participants who completed the entire experiment were invited back to
complete the Mnemonic Similarity Task (MST)27. For other participants, those recruited
to complete the Mnemonic Similarity Task first and those who completed the MST were
invited back to complete one of the three-armed bandit tasks. Ultimately, 130
participants from Experiment 1 (48 Male / 82 Female / 1 Other, ages 18-77, mean(sd)
age = 37.0(20.5)) and 97 participants from Experiment 2 (45 Male / 52 Female, ages
18-73, mean(sd) age = 40.3(16.7)) completed both the MST and three-armed bandit
tasks. Participants received a fixed fee of between $3 and $5 for their participation on
the MST, depending on the experiment modality and date of data collection (during the
course of data collection we adjusted our per-hour participant compensation to account
for inflation).

To examine the possibility that there may be significant differences between our
online and in-person participant samples influencing our main analyses, we examined
the distribution of each model parameter of interest (ꞵsampler, ꞵTD, ꞵperservation) for
comparable online and in-person participants (younger adults between the ages of
18-40). For each parameter, we conducted an independent samples t-test to verify that
the parameter distribution did not differ between online and in-person samples. All
comparisons showed there was no significant difference in parameter distributions as a
function of online or in-person data collection (p>0.2 for all 3 t-tests), alleviating possible
concerns that data collection source may be significantly influencing our variables of
interest.

Three-Armed Bandit Task
Tutorial/Practice. Participants first completed a practice tutorial screener to determine
eligibility for the main task. Participants engaged in an interactive tutorial during which
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they practiced the various aspects of the task: 1) pressing keys corresponding to each
card deck option of the 3-armed bandit task in a “virtual casino”, 2) experiencing the
probabilistic payoff structure of each option, 3) making choices and remembering the
casino room in which various item rewards (“lottery tickets”) were received within the
trial’s time window, and 4) practicing the memory probe recognition trials in Phase 2.
The instructions unfolded slowly in order to give participants adequate opportunities to
familiarize themselves with all aspects of the task, and there was a final quiz. If
participants did not successfully complete the quiz with at least 70% accuracy, they
were given the opportunity to repeat the tutorial and quiz. Those who failed a second
time were ineligible to continue on to the main task.

The main task followed protocols outlined in the method section of previous work that
used this three-armed bandit task31. Additional information on the task can be found
there.

Phase 1 (Learning Phase). Participants completed 180 choice trials of a 3-armed bandit
task that occurred across 6 different contexts (“casino rooms”; Fig. 1A). Participants
were told they are playing a card game across 6 casino rooms and that they should try
to maximize reward by picking one of three card decks that most often leads to reward.
The context was presented as a background image on the screen, which changed every
30 trials. In Experiment 1, the contexts presented in Phase 1 consisted of 6 unique
outdoor scenes (Fig. 1B, “Experiment 1”). In Experiment 2, there were 2 contexts for
each of 3 outdoor scene categories (i.e., 2 beach, 2 mountain, 2 forest). One context
from each category was sampled first (e.g., beach #1, forest #1, mountain #1) before
sampling from the same-context foils (e.g., forest #2, mountain #2, beach #2). There
was an additional constraint that two rooms from the same category (e.g., forest #1 and
forest #2) were not assigned to adjacent contexts (i.e., context 3 and 4).

Participants were told that the deck that most often leads to reward can change
over time, so the optimal strategy is to periodically sample all choices to ensure that
they are picking the best deck. Critically, it was emphasized that the decks “and dealer”
followed participants between rooms - this feature was emphasized by the actual payout
probabilities, described below. Participants had up to 2.5 seconds to make their choice
by using the “1”, “2”, or “3” key on their keyboard to select one of the 3 presented card
decks. After making their choice, participants were shown the chosen deck in isolation
for 0.5 seconds, followed by a trial unique object image for 2 seconds, followed by a $1
or $0 reward for 1.5 seconds (Fig. 1A). Each trial was tagged with a trial-unique object
image to later be used as an item-memory probe and remind participants of rewards
received on a given trial. Participants were told that the trial-unique objects are “lottery
tickets” that they will have to recognize to receive their associated rewards later.
Participants learn to follow which deck most frequently yields reward through
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trial-and-error, while simultaneously learning to associate the different contexts (casino
rooms) with trial-unique items (lottery tickets) experienced across the 180 trials.

Phase 2 (Probe Phase). During the probe phase, participants completed an additional
120 choice trials of the 3-armed bandit task. However, during this phase, no context or
trial-unique item was presented in any of the trials. Instead, 60 memory probe trials
were pseudorandomly interspersed amongst the choice trials. During a memory probe
trial, participants were shown an object from Phase 1 to serve as a reminder of its
associated reward and context from the learning phase. Participants were instructed to
continue to make choices in this “unfinished” room and follow the deck most frequently
associated with reward. They were also instructed that they may occasionally be shown
an object image and asked to recognize if it were one of the lottery tickets they collected
from Phase 1. Participants had up to 3 seconds to determine if the object was
previously seen. Each correctly identified lottery ticket added a small monetary bonus
(+$0.05), and each incorrectly identified ticket resulted in a small monetary deduction
(-$0.05).

Reward Structure. In Phase 1 and 2, each card deck followed a probabilistic reward
structure that changed throughout the task (Fig. 1B). Each deck was assigned to initial
payout probabilities ( , the odds the deck would return a $10 reward, rather than $0) ofπ
60%, 30%, or 10% randomly, without replacement. These payout probabilities then
slowly drifted across trials (t) within each context according to a decaying Gaussian
random walk with reflecting bounds at 5% and 95% that was centered at the target
probability ( ) assigned to each deck (i)31:θ

𝑖

(1)π
𝑖,𝑡+1

= λπ
𝑖,𝑡

+ (1 − λ)θ
𝑖
 +  ν

Parameters were set as follows: (stickiness) was 0.6, (diffusion noise) was aλ ν
zero-mean Gaussian with SD 8. To confirm to participants that the decks “carried with
them” across rooms, the stickiness parameter was temporarily set to 0.95 for the first
three trials of each room.

The key feature of the payoff structure was as follows: the target payout probabilities θ
𝑖

were reassigned after the first 10 trials within a given context and persisted for 30 trials
before resetting again. Critically, item probes were selected only from these first ten
trials, resulting in the memory probes having a reward distribution that is dissociable
from the reward distribution of the context within which the item was presented. For both
experiments, four payoff time series were pre-generated according to this procedure
and randomly assigned to participants in the task. In Experiment 2, there was an
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additional constraint that the reward distribution for one context (e.g., forest #1) was
distinct from its same-category foil (e.g., forest #2), thereby allowing us to determine if
evoked memory content from memory probes in Phase 2 is consistent with memory for
1) the target context, 2) the same-category lure, or 3) a gist representation of the
category (target + lure).

Analysis of choice behavior.
Regression analysis.
Our initial analysis of interest examined how reminder probes - and the trials and
contexts they referred to - affected choices in Phase 2. Following our previously
employed procedure 31, we constructed a three-part logistic regression model, with each
part corresponding to one of the three card decks. For each deck and each trial, we
modeled: for all trials, the identity of the deck chosen on the previous trial (DI: 1 for the
given deck, 0 for others) and the recent rewards up to three steps back (DR: 1 if the
given deck was chosen and rewarded on trial t-k, k=1..3, 0 otherwise); for trials
immediately following the memory probes, the deck identity (EI: 1 if the same deck as
probed, 0 otherwise), the deck-specific value received (ER: 1 if the same deck and
rewarded, 0 otherwise) on the individual trial reminded by a memory probe, and the
average reward of the probed deck, across the reminded context room (EC; Eqn. 2).

(2)𝐸𝐶𝐶,𝑖  =  # 𝑜𝑓 𝑐ℎ𝑜𝑖𝑐𝑒𝑠 𝑜𝑓 𝑖 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑖𝑛 $10 − # 𝑜𝑓 𝑐ℎ𝑜𝑖𝑐𝑒𝑠 𝑜𝑓 𝑖 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑖𝑛 $0
# 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖 𝑐ℎ𝑜𝑠𝑒𝑛 𝑖𝑛 𝐶

This quantity, evoked context reward (ECC,i) reflects the expected value of samples of
this deck i from the reminded room context C. The total regression model was thus:

(3)𝐶
𝑖,𝑡

 ≈  β
𝐷𝐼

𝑖𝐷𝐼
𝑖,𝑡−1

+
𝑘=1

3

∑ β
𝐷𝑅

𝑖𝐷𝑅
𝑖,𝑡−𝑘

 + β
𝐸𝐼

𝑖𝐸𝐼
𝑖,𝑡−1

+ β
𝐸𝑅

𝑖𝐸𝑅
𝑖,𝑡−1

+  β
𝐸𝐶

𝑖𝐸𝐶
𝑖,𝑡−1

where Ci,t, the dependent variable, reflects whether deck i was chosen on trial t (1 or 0).

The resulting design matrix thus had seven columns, and 360 rows - one for each deck
and choice trial combination. For the second experiment, a second analysis was run
which included an eighth column representing the “gist-level” evoked context reward
computed across the trials from the combined target evoked context and its paired lure
context room. This regressor was orthogonalized against the target context regressor
using Gram-Schmidt orthonormalization as implemented by the SPM8 function
spm_orth 33. The coefficients produced by all regressions were tested against zero
across the population by two-tailed t-test.
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Figure 1: Three-armed restless bandit task. Across two experiments, participants performed a
three-choice decision-making task with uncertain reward contingencies and trial-unique memoranda. Task
was adapted from Bornstein & Norman (2017) 31. (a) Learning phase. Participants first performed 180
choice trials, split into six consecutive “casino rooms.” Each “room” lasted for 30 trials and consisted of
three differently-colored card decks on a green background at the top of the screen, and a scene image at
the bottom of the screen. The scene remained on screen for all 30 trials of each room. After selecting a
card deck, the top card was turned over to reveal a trial-unique item photograph. Then, a reward amount -
either a picture of a US $10 bill, or a phase-scrambled version of the same, the latter indicating a $0
reward for that trial. Participants were told to treat each trial as equally important, and that their total
payout would depend on the choice made on one randomly-selected trial. They were also told that the
decks and “dealer” would follow them through each room of the casino. (b) Reward structure. Each card
deck had a different, steadily-varying, probability of paying out a reward. Decks were initialized to 60%,
30%, and 10% randomly for each participant - these payouts then varied across trials according to a
gaussian random walk tending towards one of those three probabilities as its center. After trial 10 in each
room, the centers were rotated such that the new highest-paying deck was different from the previously
highest-paying deck. The payout rankings continued uninterrupted into the next room, reinforced by the
payout of the highest deck being set to 100% for the first three trials of that room. Though payout order
did not change between rooms, context images did. In Experiment 1, each room had a highly distinct
image as a background. In Experiment 2, two rooms were perceptually aliased, with background images
that were highly visually similar (i.e. two forests, two beaches, two mountains). Critically, the payouts for
the aliased rooms were opposed to each other - the highest paying deck in the first room of each kind
was different from the highest paying deck in the second. (c) Memory probe phase. Participants were
told that the remaining 120 trials would be performed in an “unfinished” room of the casino, which had no
background image. The payouts continued to drift slowly and rotate every 30 trials, however there were
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no further room boundaries. Here, choices no longer resulted in an item image - only a reward outcome.
Interspersed among the 120 choice trials were 60 memory probe trials, 50 of which presented an image
previously observed, and 10 of which presented a novel image. The key measure of interest was the
degree to which participant choices on trials following the memory probe were biased towards choices
made in the room brought to mind by the probed image.

Computational Model.
The hybrid model consisted of a participant-specific mixture of two value-estimation
processes, each drawing on previous experience in different ways 16,31. The first
process, reinforcement learning, is an incremental, error-driven updating process which
learns an expected value, Vt,RL(x) for each card deck, x, at each timepoint t (Eqn. 4; 34).
This process had one free parameter, the learning rate ( , which was fit to eachα

𝑅𝐿
)

participant individually, and captured the degree to which the expected value was
updated by the difference between the reward received for the choice made on that trial
(Rt(x)) and the value to be expected on the basis of previous experience (VRL,t(x)):

] (4)𝑉
𝑅𝐿,𝑡

(𝑥) =  𝑉
𝑅𝐿,𝑡−1

(𝑥) +  α
𝑅𝐿

[𝑅
𝑡
(𝑥) −  𝑉

𝑅𝐿,𝑡−1

(𝑥)

Choice values were initialized to zero, and were not updated for options not chosen on
a trial.

The second process, memory sampling, estimated values on the basis of a single
“sample” drawn from past experiences with each choice option. The probability of a
particular past experience serving as the value was proportional to how recently in the
past it was selected, with recency weighted according to the decay parameter (α

𝑠𝑎𝑚𝑝𝑙𝑒
):

(5)𝑃(𝑉
𝑠𝑎𝑚𝑝𝑙𝑒

(𝑥) == 𝑅
𝑖
) =  α

𝑠𝑎𝑚𝑝𝑙𝑒
(1 − α

𝑠𝑎𝑚𝑝𝑙𝑒
)𝑡−𝑖

For the model-fitting procedure, the value was computed as the expectation-weighted
average value across all combinations of possible samples for each choice option 16.

These values were transformed into action probabilities Pt(x) via a softmax
action-selection function, with separate inverse temperature parameters (β

𝑠𝑎𝑚𝑝𝑙𝑒
,  β

𝑅𝐿
)

reflecting how sensitive action selection is to the value differences estimated by that
process, for that participant. A third parameter ( reflected the influence ofβ

𝑝
)

perseveration, or “stickiness” of recent choices, independent of the estimated action
values.
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(6)𝑃
𝑡
(𝑐ℎ𝑜𝑜𝑠𝑒 𝑥) =  

exp[β
𝑝
𝐼(𝑥

𝑡
==𝑥

𝑡−1
) + β

𝑠𝑎𝑚𝑝𝑙𝑒
𝑉

𝑠𝑎𝑚𝑝𝑙𝑒,𝑡
(𝑥) + β

𝑅𝐿
𝑉

𝑅𝐿,𝑡
(𝑥)]

exp[
𝑥=1

3

∑ β
𝑝

𝐼(𝑥
𝑡
==𝑥

𝑡−1
) + β

𝑠𝑎𝑚𝑝𝑙𝑒
𝑉

𝑠𝑎𝑚𝑝𝑙𝑒,𝑡
(𝑥

𝑡
) + β

𝑅𝐿
𝑉

𝑅𝐿,𝑡
(𝑥

𝑡
)]

The resulting temperature parameters were treated as the variables of interest for our
analyses below.

Models were fit using maximum a-posteriori estimation via unconstrained optimization
(MATLAB function fminunc). Parameters were input to the optimizer as unbounded
real numbers, and then logistic-transformed within the likelihood function to appropriate
bounds: . Randomly-sampled startingα

𝑠𝑎𝑚𝑝𝑙𝑒
, α

𝑅𝐿
~[0, 1];  β

𝑠𝑎𝑚𝑝𝑙𝑒
, β

𝑅𝐿
~[0, 20];  β

𝑝
~[− 3, 3]

points were selected for each run of the optimizer until the minimum observed value did
not change for five consecutive runs.

The following weakly informative priors, truncated within the ranges specified above,
were used in the final likelihood calculation:
α

𝑠𝑎𝑚𝑝𝑙𝑒
, α

𝑅𝐿
~𝐵𝑒𝑡𝑎(1. 1, 1. 1);  β

𝑠𝑎𝑚𝑝𝑙𝑒
, β

𝑅𝐿
~𝑁𝑜𝑟𝑚𝑎𝑙(0,  10)𝑇[0, 20];  β

𝑝
~𝑁𝑜𝑟𝑚𝑎𝑙(0, 10)𝑇[− 3, 3].

.

Mnemonic Similarity Task
Participants were invited to return to complete the Mnemonic Similarity Task 27 in a
separate session (Fig. 2). The Mnemonic Similarity Task was used as an individual
difference measure of memory precision for each participant, which we reasoned would
play a role in the degree to which participants would be influenced by evoked memories
following probe trials in the second phase of the choice task. In the study phase,
participants view 128 object images in an incidental encoding task in which participants
are tasked with judging whether each image is an indoor or outdoor object. In a surprise
recognition test, participants are shown 192 object images, with one-third consisting of
exact repetitions of the same object that was shown during study (Fig. 2B, “repetition”),
one-third consisting of perceptually similar objects (Fig. 2B, “lure”), and one-third
consisting of objects that were never shown during the study phase (Fig. 2B, “foil”).
Participants are asked to judge whether each object is old, similar, or new relative to
what was shown during the study phase. A lure discrimination index (LDI) was
computed for each participant using the following formula: LDI = p(“similar”|Lure) -
p(“similar”|Foil). The LDI is widely used to measure individual and age-related
differences in mnemonic discrimination, with higher scores being associated with better
memory precision 27,28,35–38.
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Figure 2. Mnemonic Similarity Task. (A) Participants view a sequence of objects during an incidental
encoding phase in which participants classify each object as an indoor or outdoor object. (B) In a surprise
discrimination test, participants view a series of objects and are asked to determine whether each object
is “old,” “new,” or “similar” relative to the items that were shown during the encoding phase. (C)
Correlation between age and lure discrimination scores (LDI) for each experiment. Shaded bands indicate
95% confidence intervals around the trendline.

Parameter correlations
The critical test of our hypotheses involved correlations between parameters extracted
from computational model fits, described above, and external measures of interest (age,
LDI). Because the hypothesized relationship between model parameters and these
measures is ordinal, and because the variables exhibit “ties”, we report the rank-based
Kendall’s 𝝉b correlation statistic39. Comparisons between correlations (i.e. across
experiment populations) were assessed by z-test after first converting to the
corresponding linear R value using the mapping 40.𝑅 = 𝑠𝑖𝑛(0. 5 * π * τ)

To determine the specificity of LDI~parameter relationship, correlations were also
examined after regressing out the linear relationship with age. This computation was
performed by first estimating the residuals of the regression model X ~ *age, andβ
performing the corresponding correlation against the resulting values.

Results

Experiment 1.
The influence of memory intrusions on choice is observable across the lifespan.
Following the preceding study which examined behavior in this task in young adults
(Fig. 1;31), our measure of interest was performance on choice trials following
recognition memory probes. Previous research using this decision-making task has
shown that memory probes result in intrusive recollection of past choices such that
evoked item memory content and evoked context memory content have separable
contributions to subsequent choice behaviors, independently of recently received
rewards31. Our initial question of interest was whether this general pattern of findings
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was replicable in our lifespan sample of participants. Following previous work, we ran a
multiple regression to model the contributions of each of our variables of interest on
choice behavior. As previously observed in young adults 16,31, there was a significant
influence of both the reminded trial and reminded context on choices following the
memory probe, while controlling for the influence of recent rewards (Fig. 3A;

).𝑖𝑡𝑒𝑚:  𝑡(226) = 2. 09,  𝑝 = 0. 038;  𝑐𝑡𝑥:  𝑡(226) = 2. 32,  𝑝 = 0. 021
Previous work has documented a decline in memory specificity with age 41. Such

an effect could dampen the intrusive influence of retrieved values on decisions. On the
other hand, other work has shown that memory’s effect on value-guided choice reflects
an elaborated retrieval process, and so the presence of memory-biased choice would
itself necessitate the retrieval of specific information 42. Therefore, we examined whether
memory effects were modulated by either chronological age or cognitive decline, the
latter indexed by the Lure Discrimination Index (LDI) computed on performance during
the separately-administered Mnemonic Similarity Task (Fig. 2). The LDI, which
measures the participants’ selective accuracy in identifying similar lures, is widely used
as a behavioral measure of the specificity of encoded memories, and is known to
decrease with age and more specifically with the onset of age-related cognitive decline
28. Intriguingly, and consistent with the idea that value itself is the specific memory
content of interest in this task 42, we found that neither age nor LDI modulated the effect
of item or context-based intrusions (

;𝑎𝑔𝑒 * 𝑖𝑡𝑒𝑚:  𝑟
τ
(225) =− 0. 039,  𝑝 = 0. 391 𝐿𝐷𝐼 * 𝑖𝑡𝑒𝑚:  𝑟

τ
(128) =− 0. 925,  𝑝 = 0. 355

).𝑎𝑔𝑒 * 𝑐𝑡𝑥:  𝑟
τ
(225) = 0. 050,  𝑝 = 0. 271;  𝐿𝐷𝐼 * 𝑐𝑡𝑥:  𝑟

τ
(128) =− 0. 583,  𝑝 = 0. 560

Figure 3. Influence of recent reinforcement and memory on choices. (A) Recent reinforcement and
reminded memories both influence choices. Boxplots of logistic regression beta estimates (log relative
choice odds) quantifying the contributions of reinforcement learning (recent reward history) and memory
content (specific item memory vs. context memory) on subsequent choices following memory probes in
Phase 2. In both Experiments, we observed a significant and consistent influence of both recent rewards
and memory probes on subsequent choices. (Experiment 1: Yellow; Experiment 2: Blue.) (B) Subjects
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exhibit a mixture of Memory sampling and Temporal-Difference Reinforcement Learning
strategies. Across participants, the relative use of temporal-difference reinforcement learning and
memory sampling varied. The bulk of subjects exhibited a near-equal mixture of the two, but overall
recent reinforcement was a greater influence on choices (Experiment 1, yellow: 𝑡(225) =− 3. 43, 𝑝 <. 001
; Experiment 2, blue: ).𝑡(134) =− 3. 75,  𝑝 <. 001

Memory sampling and RL are separately modulated by memory precision and age.
Having observed that memory intrusions were consistent across the lifespan and the
range of memory precision scores, we next examined factors that guided the use of
behavioral strategies to perform the choice task. To answer this question, we fit to
choice behavior a hybrid computational model implementing two distinct approaches to
value-based decision-making. The key measure of interest in this model is the degree to
which an individual’s choices reflect values estimated by memory sampling 15,16 and also
values estimated using standard temporal-difference reinforcement learning 43. Models
were fit to choices in the first six rooms of the “casino”, absent the influence of memory
probes. The result of this model fitting is that the reliance on each strategy is reflected in
the inverse softmax temperature parameters that best describe each participant’s
behavior as a function of the values estimated by each process. Overall, we found that
most subjects exhibited a near-equal mixture of TD and memory sampling, but that TD
was a greater contributor to behavior across the population ( ;𝑡(225) =− 3. 43, 𝑝 <. 001
Fig. 3B). Consistent with the hypothesis that the use of memory-based decision
strategies is guided by the relative uncertainty of memory representations 12,19–21, we
found that, at a subject-level, increased memory precision (as measured by LDI)
predicted the use of a memory sampling strategy ( ); this𝑟

τ
(128) =  . 22,  𝑝 <  . 001

effect remained even when regressing out age ( ). Notably, LDI did𝑟
τ
(128) =. 13,  𝑝 =. 03

not predict the use of the reinforcement learning strategy (
), but, consistent with previous work suggesting𝐿𝐷𝐼 * β

𝑇𝐷
:  𝑟

τ
(128) =. 01,  𝑝 =. 9

increased choice noise and perseveration with age 44, we found that age predicted less
reliance on reinforcement learning ( ; Fig. 4A), as well as a𝑟

τ
(128) =  −. 11,  𝑝 =  . 019

greater influence of perseveration ( ; Fig. 4B).𝑟
τ
(128) =  . 11,  𝑝 =  . 017
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Figure 4. Memory precision and age differentially modulate the influence of experience on
decisions. Both Lure Discrimination Index and Age separately tracked individuals’ use of distinct
experience-derived choice influences. (A) Memory sampling increases with memory precision.
Consistent with theoretical and empirical findings that uncertainty is a critical factor in the weight of
decision strategies, increased memory precision was associated with an increase in the use of the
memory sampling strategy in choice: . (B) Choices are less sensitive to𝑟

τ
(225) =. 228,  𝑝 <. 001

reinforcement learning with age. Consistent with previous findings that choice noise increases with
age, participants exhibited less influence of Reinforcement Learning-derived values with age.

. (C) Perseveration increases across the lifespan. Consistent with previous𝑟
τ
(359) =−. 087,  𝑝 =. 015

findings, participants exhibited a greater tendency towards perseverative responding with age.
. All correlations plotted for each experiment individually (Experiment 1: Yellow,𝑟

τ
(359) =. 101,  𝑝 =. 0048

Experiment 2: Blue. Shaded bands represent 95%CI around the trendline), and statistics reported for the
combined sample. Correlations were not different between experiment samples (
𝐿𝐷𝐼 * β

𝑠𝑎𝑚𝑝𝑙𝑒𝑟
:  𝑧 =− 0. 21,  𝑝 =. 417;  𝐴𝑔𝑒 * β

𝑇𝐷
:  𝑧 =− 0. 704,  𝑝 =. 241;  𝐴𝑔𝑒 * β

𝑝𝑒𝑟𝑠𝑒𝑣
:  𝑧 = 0. 446,  𝑝 =. 328

).

Experiment 2.
Age-related memory decline predicts the intrusion of gist, rather than specific-context
memories on choice.
Experiment 1 demonstrated that the effect of memory intrusions on choice was not a
function of age or memory specificity, but that both factors contributed to the relative
influence of decision strategies on choice. We thus conducted a follow-up experiment
examining whether a more fine-grained distinction, about the content of intrusive
memories, might be revealed by a direct test of memory specificity. Specifically,
motivated by previous research suggesting that age-related memory decline is
associated with a greater reliance on ‘gist’ representations, rather than specific
memories 45–48, we examined whether the content of probe-triggered memories was
more ‘gist’-like in individuals with lower memory precision. In our previous study using
this task31, we found that neuroimaging measures of specific-scene reinstatement on
each trial–which indicated the degree to which an individual reinstated alternative,
rather than target, contexts on that trial–modulated the value that guided subsequent
choice. This finding is consistent with the idea that samples are drawn from the context
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reinstated at the time of each decision. Therefore, we reasoned that making the
distinction between scene contexts more difficult might lead individuals with lower
memory precision to sample, at least partly, from the alternate, ‘lure’ room.

In Experiment 2, individuals again performed a three-armed restless bandit task
across six distinct room “contexts.” However, in this experiment the contexts were split
into perceptually aliased pairs - two scene images each of mountains, beaches, or
forests (Fig. 1B). Critically, we controlled the payoff probabilities such that the
best-performing card deck in the first room of a given type was not the best-performing
in the second room. This allowed us to distinguish the effect of specific-context
intrusions (e.g. ‘this particular beach’) versus intrusions based on a more ‘gist’-like
representation (e.g. ‘beaches’). We first analyzed whether, consistent with Experiment 1
and previous observations, behavior was significantly modulated by reinstated target
context intrusions, across the lifespan. Indeed, across the population, participants
showed an effect of context-memory intrusions ( ). We next𝑡(133) = 2. 81,  𝑝 = 0. 006
examined whether age or LDI correlated with the influence of the target context relative
to its same-category lure (the other image of the same type (‘beaches’)). As expected,
including the (orthogonalized, see Methods) lure context reward in the regression
competed with variance for the target context, reducing the effect of the former (Fig.
5A), suggesting that, across the population, participants relied on a mixture of both
target and lure context representations (i.e., a ‘gist’ category level representation of the
context). We then examined the relative reliance on one (target context) versus the
other (lure context), at a participant level, as a function of age and LDI. Consistent with
the idea that age-related cognitive decline in memory precision alters decision-relevant
representations, we found that the influence of the target context on choice was
correlated with LDI score ( , but not𝐿𝐷𝐼 * 𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐿𝑢𝑟𝑒:  𝑟

τ
(95) = 0. 148,  𝑝 = 0. 0329)

age ( ; difference between𝐴𝑔𝑒 * 𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐿𝑢𝑟𝑒:  𝑟
τ
(95) = 0. 070,  𝑝 = 0. 317

correlations: ); the relationship between LDI and target context𝑧 = 0. 854,  𝑝 = 0. 197
influence held even after controlling for age ( ).𝑟

τ
(95) =. 144,  𝑝 =. 038
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Figure 5. Experiment 2: Two kinds of reminded context influence choices. (A) Specific and gist
context memory compete for influence on choice. Boxplots of logistic regression beta estimates
measuring the contributions of reinforcement learning (recent reward history) and memory content
(specific item memory, evoked target context memory, and evoked lure context memory) on subsequent
choices following memory probes in Phase 2. Target and Lure contexts compete for variance in this
analysis, reducing the effect of context observed in Fig. 3 (Blue). (B) Memory precision tracks the
influence of Specific and Lure context memory. Across subjects, individual estimates of memory
precision (LDI) predict a greater influence of memory intrusions for the target reminded context relative to
its same-category lure ( ).𝑟

τ
(95) = 0. 148,  𝑝 = 0. 0329

Strategy use. Again, participants placed greater weight on the temporal-difference
learning strategy than the memory sampling strategy ( ; Fig.𝑡(134) =− 3. 75,  𝑝 <. 001
3B), and memory precision, but not age, predicted the use of the memory sampling
strategy (
𝐿𝐷𝐼 * β

𝑠𝑎𝑚𝑝𝑙𝑒𝑟
:  𝑟

τ
(95) =. 238,  𝑝 <. 001;  𝑎𝑔𝑒 * β

𝑠𝑎𝑚𝑝𝑙𝑒𝑟
:  𝑟

τ
(133) =−. 027,  𝑝 =. 641

). In this smaller sample, neither the correlation between age and;  𝑧 = 3. 149,  𝑝 =. 001
TD strategy ( ; Fig. 4B, blue) nor between age𝐴𝑔𝑒 * β

𝑇𝐷
:  𝑟

τ
(133) =−. 0582,  𝑝 =. 321

and perseveration ( ; Fig. 4C, blue) was𝐴𝑔𝑒 * β
𝑝𝑒𝑟𝑠𝑒𝑣

:  𝑟
τ
(133) =. 0766,  𝑝 =. 192

statistically significant. Further, the differences between these correlations and those
observed in Experiment 1 were not themselves significant (

) 49. Combining𝐴𝑔𝑒 * β
𝑇𝐷

:  𝑧 =− 0. 704,  𝑝 =. 241;  𝐴𝑔𝑒 * β
𝑝𝑒𝑟𝑠𝑒𝑣

:  𝑧 = 0. 446,  𝑝 =. 328

across experiments, both effects of age on strategy use were statistically significant (
; Fig.𝐴𝑔𝑒 * β

𝑇𝐷
:  𝑟

τ
(359) =−. 087,  𝑝 =. 015;  𝐴𝑔𝑒 * β

𝑝𝑒𝑟𝑠𝑒𝑣
:  𝑟

τ
(359) =. 101,  𝑝 =. 0048

4B,C).

Discussion

Individuals across the lifespan are often called on to make value-based decisions under
uncertainty that have important consequences for themselves and others. However,
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despite extensive characterization of age-related differences in decision-making
capacities, little is known about the mechanisms by which these arise. Here, we
examined the hypothesis that age-related differences in decisions may be linked to
age-related differences in memory, which have been studied for longer and are better
understood at a mechanistic level.

We specifically focused on the role of memory sampling, a process of retrieving
memories of previous choice instances during decision deliberation that has been
shown to affect neural signals and behavioral outcomes13,15,16,31,50, even during tasks for
which it is maladaptive to rely on episodic memories16,31,51,52. We used a
previously-validated task that, in younger adults, identified separable influences on
choice of values associated with item and context memory, the latter corresponding with
neural markers of context reinstatement that linked it to specific retrieved experiences -
even if those experiences were incorrectly attributed 31. In Experiment 1, we observed
that a lifespan sample of participants replicated previous findings obtained in young
adults. Further, we extended the previous findings by showing that memory precision -
as measured by the separately-administered Mnemonic Similarity Task27 - modulated
the influence of memory sampling, with greater precision leading to a greater effect of
memory sampling on choice. In parallel, and in keeping with previous findings in similar
repeated decision-making tasks, chronological age was associated with increasing
noisiness of choices relative to values estimated using standard reinforcement learning,
and a concurrent increase in perseverative responding. In Experiment 2, we delved
further into the relationship between memory precision and choice, by identifying a role
for memory precision in selecting which memories are sampled. Specifically, we
designed a variant of the previous task in which sampled context memories could be
identified as specific or ‘gist’-level (e.g. ‘beaches’ as opposed to ‘that one particular
beach’), with each having distinct, opposing effects on choice. We found that lower
memory precision was associated with a greater reliance on gist-based memory during
memory sampling. This result concords with an extensive literature on older adults’
greater reliance on gist, rather than specific, memories47, and connects it to a recently
developed computational model of action selection to explain why some memories are
sampled during decision deliberation, rather than others22.

These findings suggest that age-related differences in decision-making result at
least in part from interactions between systems for memory-guided and reinforcement
learning-based action selection. More specifically, they link age-related differences in
specific memory functions, in particular pattern separation, to age-related alterations in
value-based decision-making. The finding that older adults, broadly, may be less
sensitive to values estimated using reinforcement learning suggests that this decline in
sensitivity could be at least partly mitigated by a greater reliance on recency-weighted
memory sampling, if memory precision is spared. Examining the interactive influence of
these systems on choice across the lifespan is a promising topic for future research. For

19

https://paperpile.com/c/aEXIex/LHKfx+HnjS+7grhT+RtQnx+L1nIK
https://paperpile.com/c/aEXIex/RtQnx+L1nIK+0Wu6K+qMFmR
https://paperpile.com/c/aEXIex/L1nIK
https://paperpile.com/c/aEXIex/xyYjn
https://paperpile.com/c/aEXIex/6osPn
https://paperpile.com/c/aEXIex/3xQoR


instance, these results suggest that interventions that aim to improve older adults’
sensitivity to value may profitably focus on improving access to, or encoding of, specific
choice-related memories that may be of critical importance to future decisions.

Our results also bear on previous findings regarding the nature of mnemonic
discrimination deficits in aging. There is some evidence that age effects on
discrimination are amplified for objects compared to scenes 53,54. On the one hand, this
suggests that our scene-based context manipulation in Experiment 2 was appropriate
for participants across the lifespan and may explain why age did not modulate the effect
of context-based intrusions on choices. On the other hand, however, our use of a
separate object-based discrimination task to assess memory precision may not capture
the same pattern separation processes taxed by the context-specific value-based
decision task. Future examinations of the influence of age and memory precision (LDI)
may benefit from using scene, not just object, mnemonic discrimination tasks.

More broadly, the finding that memory precision guides decision strategy has
implications for the study of the computational nature of goal-directed decision-making
more broadly 55. For one, that memory sampling and RL appear to be independently
modulated by memory precision and age supports suggestions that these systems may
indeed be distinct approaches to action selection17,32, with the former supporting both
model-free 16 as well as model-based 6 choice. Second, the finding that memory
precision indexes both the specificity of contexts for sampling and also the overall
reliance on memory suggests that uncertainty is computed dynamically and adjusted for
in response to the available momentary evidence20–22, rather than cached as a
controller-specific quantity dictating patterns of choice across trials 56. At a neural level,
future studies could investigate whether the seemingly independent differences in
RL-based and memory-based choice processes are related to differences in
fronto-striatal and medial temporal systems, respectively, extending prior work that
typically examines these brain-behavior relationships separately for each neural
system57.

This study is not without its limitations: most of the limitations come from potential
issues with online data collection. Because this project began during a global pandemic,
a large majority of our data was collected online. As a result, our data was collected in a
largely unsupervised fashion, and thus there is a risk that the data quality may not be as
good as data collected through in-person means. We have taken several steps to
remedy this such as: 1) setting eligibility filters to ensure that we had reliable online
participants who have good experience participating in online studies and surveys, 2)
comparing model parameter distributions between in-person and online samples for
comparable groups, 3) manually inspecting data from all participants for quality using
independent measures taken from raters who were blind to the hypotheses of the
experiment, and 4) setting up detailed instructions and checks throughout the
experiment to promote participant engagement (details provided in the Method section).
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Despite our best efforts, it is likely there are limitations that we have not considered or
perfectly controlled for in our experiment. For example, we were unable to collect
in-person data from older adults during the project period, largely due to increased
health risks associated with bringing older adults to campus for in-person testing during
the global pandemic. Thus, our older adult data exclusively came from online sources.
In general, online older adult samples tend to perform better on several cognitive
measures (e.g., verbal fluency, subjective memory, subjective health, etc.)58, which may
result in weaker age-effects (specifically less evidence of age-related cognitive decline)
and reduced potential for generalizability of our findings. However, in our study, we are
still able to see significant age-related effects in the expected patterns (i.e., evidence of
age-related deficits in performance) across our variables and analyses of interest, such
as age-related increases in perseveration, and age-related decline in sensitivity to
reinforcement learning. We expect that these age-related effects would only get
stronger in a more diverse sample. Furthermore, by incorporating an independent and
more standardized measure of cognitive functioning such as the MST, we are able to
capture unique individual differences in cognitive functioning that may also be
influencing performance on our decision-making task. With that said, future studies
using this task could aim to collect a more representative and heterogeneous older adult
population, with age-related cognitive decline characterized using standard
neuropsychological and physiological measures, to strengthen the generalizability of our
findings.

In sum, the finding that memory and reinforcement learning each exhibit distinct
patterns with age and age-related cognitive decline provides new insights into the
computational basis of age-related differences in decision-making, and suggests
several new avenues for further research that may yield interventions of importance for
mitigating the harmful effects of cognitive aging on individuals and their communities.
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