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A B S T R A C T   

Humans appear to represent many forms of knowledge in associative networks whose nodes are multiply connected, including sensory, spatial, and semantic. Recent 
work has shown that explicitly augmenting artificial agents with such graph-structured representations endows them with more human-like capabilities of compo-
sitionality and transfer learning. An open question is how humans acquire these representations. Previously, it has been shown that humans can learn to navigate 
graph-structured conceptual spaces on the basis of direct experience with trajectories that intentionally draw the network contours (Schapiro, Kustner, & Turk- 
Browne, 2012; Schapiro, Turk-Browne, Botvinick, & Norman, 2016), or through direct experience with rewards that covary with the underlying associative dis-
tance (Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018). Here, we provide initial evidence that this capability is more general, extending to learning to reason 
about shortest-path distances across a graph structure acquired across disjoint experiences with randomized edges of the graph - a form of latent learning. In other 
words, we show that humans can infer graph structures, assembling them from disordered experiences. We further show that the degree to which individuals learn to 
reason correctly and with reference to the structure of the graph corresponds to their propensity, in a separate task, to use model-based reinforcement learning to 
achieve rewards. This connection suggests that the correct acquisition of graph-structured relationships is a central ability underlying forward planning and 
reasoning, and may be a core computation across the many domains in which graph-based reasoning is advantageous.   

1. Introduction 

Humans have a remarkable ability to construct representations of 
their environment by integrating sparse observations, and to use these 
representations to control different forms of complex behavior (Whit-
tington et al., 2020). These sorts of structure representations allow us to 
plan the words we will use to communicate a new idea; plan a route 
through an unfamiliar city; or plan an event months or even years away. 
Acquiring such representations allows for efficient learning, and facili-
tates the transfer of learned strategies between environments with 
similar structures (Sutton, Precup, & Singh, 1999). So far, research has 
mainly focused on how individuals learn by linking states that are 
experienced in temporal sequences (Schapiro et al., 2012; Schapiro 
et al., 2016). However, experiences in the real world are rarely ordered 
in this way. Rather, people often have to infer these underlying struc-
tures representations from sparse or disconnected experiences. How 

they achieve this remains unclear. Here, we combine a graph theoretic 
approach with a novel task to examine how people infer the structure of 
their environments under such conditions of sparsity, and then test for 
links between one's ability to infer structure under these conditions, and 
their use of structure information when engaging in goal-directed 
planning. 

1.1. Inferring structure 

One body of work has examined how people develop internal models 
of their environment based on their experience with individual states in 
that environment and the transitions between them (Behrens et al., 
2018; Fermin, Yoshida, Ito, Yoshimoto, & Doya, 2010). However, for the 
most part, research in this area has studied how people develop cogni-
tive models of their environment in contexts where they are transitioned 
sequentially through that environment, eliminating the need for the 
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individual to infer relationships between states that are not directly 
linked. These studies therefore fail to capture a distinctive property of 
human cognition – the ability to infer latent structure based on sparse (e. 
g. non-sequential) information (Bunsey & Eichenbaum, 1996). 

Furthermore, much of this work (Behrens et al., 2018; Bellmund, 
Gärdenfors, Moser, & Doeller, 2018) has aimed at elucidating forms of 
basis representations that can be used to generalize within and across 
environments that have certain geometrical regularities. In our experi-
ment, participants learned an asymmetric branching structure of multi- 
step associations between individual items, which corresponds to a 
“cognitive graph” rather than a “cognitive map” (this division was 
identified by Chrastil & Warren, 2014). The key property of a cognitive 
graph is that it allows for representing metric information (e.g. distance) 
that supports reasoning about relative relationships between nodes, 
without requiring a globally consistent coordinate system of the sort 
usually associated with a map. In other words, it describes a relational 
substrate that can be extremely useful for a wide range of judgments, 
without requiring extensive experience. Both of these representational 
formats can co-exist, and can differentially support higher-order 
cognitive operations such as composability, transfer, and relative dis-
tance judgments, as a result of distinct representational properties. 
Therefore, it is important to determine both whether this representation 
can be formed, and also whether it can support the proposed cognitive 
operations. 

1.2. Goal-directed planning 

The advantages of building internal models by inference extend 
beyond just navigation benefits. A separate body of work has examined 
the process by which people navigate these internal models in order to 
determine the course of action that will maximize their future rewards 
(Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Daw, Niv, & Dayan, 
2005; Sutton & Barto, 1998). Early work demonstrated that these goal- 
directed forms of decision-making trade off against habitual behavior, 
enabling an animal to adapt to rapid changes in their environment 
(Balleine & Dickinson, 1998; Balleine & O'Doherty, 2009). More 
recently, it has been shown that goal-directed decision-making can be 
formalized as model-based reinforcement learning (RL) (Daw et al., 2005; 
Dolan & Dayan, 2013; Sutton & Barto, 1998). Model-based RL repre-
sents a form of RL that stores a model of how different states in the 
environment are connected to one another (e.g., the likelihood of 
transitioning from one state to another), and the rewards that an agent 
can expect upon reaching a given state. By contrast, model-free forms of 
RL only store the value of previous actions taken in a given state, and 
therefore are less sensitive to changes in the structure of one's envi-
ronment (e.g., if a certain state is no longer rewarded or if two states are 
no longer connected, requiring a detour). 

These two types of RL - model-based and model-free - are commonly 
dissociated with a task developed by Daw et al. (2011). In this task, 
participants must choose between a pair of states at 2 sequential stages, 
at the end of which they receive an outcome (either rewarding or non- 
rewarding). Importantly, the 2 stages are linked via probabilistic tran-
sitions, and the probability of receiving the reward at the second stage 
states gradually shifts during the task. Therefore, in order to behave in a 
goal-directed way, though not necessarily earn more points, one must 
integrate information about transitions and the outcomes. The patterns 
of decisions on this “two-step task” can therefore reveal the extent to 
which a participant engages in model-free decision-making - choosing 
actions based only on whether they were recently rewarded - or model- 
based planning - choosing actions based on a consideration of both the 
recent rewards and the likelihood of reaching those rewards given the 
transition structure of the task environment (Daw et al., 2011; Decker, 
Otto, Daw, & Hartley, 2016). Using this task, researchers have shown 
that individual differences in one's tendency to engage in model-based 
decision-making have been linked to variability in working memory 
capacity (Otto, Raio, Chiang, Phelps, & Daw, 2013), cognitive control 

(Daw et al., 2005; Otto, Skatova, Madlon-Kay, & Daw, 2015), temporal 
discounting (Shenhav, Rand, & Greene, 2012; Hunter, Bornstein, & 
Hartley, 2018) and psychiatric symptoms associated with compulsive 
behavior and social isolation (Gillan, Kosinski, Whelan, Phelps, & Daw, 
2016). 

1.3. Inferential ability as a potential constraint on goal-directed planning 

Goal-directed planning thus depends critically on both our ability to 
(1) learn the structure of one's environment and (2) our ability to leverage 
the representation of this structure in pursuit of rewards. Recently, a 
consensus has developed that these capacities share overlapping 
computational and neural substrates (Behrens et al., 2018; Collin, Mil-
ivojevic, & Doeller, 2015; Shohamy & Turk-Browne, 2013; Vikbladh 
et al., 2019). However, while the mechanisms that support learning, 
navigating, and deploying an internal model have separately been well- 
characterized, the relationships between these domains remain poorly 
understood. In particular, tasks that are commonly used to study model- 
based learning (Daw et al., 2011; Konovalov & Krajbich, 2016, 2020) de- 
emphasize structure learning by making the associative structure 
explicit and focus exclusively on goal-directed behavior that makes use 
of these structures. As a result, little is known about whether and how 
one's ability to infer the structure of an environment relates to their 
ability to leverage such a representation when engaging in goal-directed 
planning. Recent work hints that when provided with more information 
about the task structure (i.e. more detailed instructions), participants 
appear more goal-directed/model-based (Feher da Silva & Hare, 2020). 
This suggests that having information about the structure boosts 
behavioral patterns consistent with model-based planning, providing 
more empirical evidence of the link between model-based planning and 
structure representations. 

In the current work, we developed a novel set of tasks to measure 
participants' ability to infer the structure of an abstract (non-spatial) 
graph, based on disjoint experiences with pairs of adjacent nodes 
throughout that graph. Multiple measures supported the hypothesis that 
participants are able to infer the structure of the graph by integrating 
over sparse information. Choices and response times revealed that par-
ticipants were able to flexibly reason about relative and overall distances 
within the graph, and an explicit reconstruction task demonstrated that 
their representation of graph structure preserved metric distance infor-
mation. We also asked whether the measures indexing structure infer-
ence correlated with measures of model-based planning from a separate 
task. We found that participants who exhibited better structure infer-
ence ability were also more likely to engage in model-based planning in 
the two-step task. This work validates a novel approach to measuring 
individual differences in the ability to infer and navigate latent struc-
tures in one's environment, while also providing preliminary evidence of 
connection between structure inference and model-based planning. 

2. Methods 

2.1. Participants 

We recruited 81 participants (38 female, Age range 18–27, Mean(SD) 
Age = 20(1.8)) from the Brown University participant pool. Participants 
received either course credit or monetary compensation for partici-
pating in the study. All participants provided informed consent in 
accordance with the policies of the Brown University Institutional Re-
view Board. We excluded two participants with a high rate of persev-
erative responses in the two-step task (repeating the same response on 
more than 95% of the trials), and 2 participants due to the issues with 
data saving, resulting in the sample of total 77 participants included in 
the analyses. This study was approved by the Brown University Insti-
tutional Review Board. 
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2.2. Procedure 

2.2.1. Two-step task 
The two-step task is a sequential decision-making task, which en-

ables assessment of dissociation between model-based and model-free 
choice strategies. In the task, participants made choices on two 
sequential stages, with the aim of obtaining a reward. In this version of 
the task (Decker et al., 2016), participants chose between two spaceships 
at stage one, which probabilistically transitioned to one of the two states 
(planets) at stage two (Fig. 1A). In particular, each of the spaceships 
transitioned to one of the planets 70% of the time (common transition), 
and to the other planet 30% of the time (rare transition). These transi-
tion probabilities remained fixed throughout the task, and were taught 
to participants during training. At the second stage, participants 
encountered two aliens and chose one to solicit the space treasure/ 
reward. The two aliens awarded treasure with independent probability, 
which shifted slowly over time according to a Gaussian random walk. 
Participants were instructed to earn as many pieces of treasure as 
possible. They had 3 s to make their choice on each stage. If they failed to 
make a response within the given time frame, a red ‘x’ appeared on top 
of the stimulus, and the trial terminated. Each time participants made a 
rewarding choice, they earned one point. Participants performed 40 
practice trials, followed by 200 experimental trials. 

The two-step task characterizes dissociable trial-by-trial adjustment 
of stage 1 choices, reflecting model-free and model-based choice stra-
tegies. On each trial, participants could choose between repeating the 
previous stage 1 choice and switching to the other spaceship. The model- 
free strategy predicts that the likelihood of staying or switching 
(repeating or changing the previous choice) on the first stage is informed 
by the outcome of the previous trial. The model-based strategy, on the 
other hand, predicts that the arbitration between staying and switching 
based on the observed outcome is modulated by the knowledge of 
transition type (common or rare) which on average led to that outcome 
over the course of trials. Thus, model-free reasoners choose to stay 
(repeat their prior stage 1 choice) if the outcome of that choice was 
rewarding on the previous trial, regardless of the transition type. On the 

other hand, model-based reasoners utilize the transition structure to 
select options that will most likely transition to the rewarding state 
(Fig. 1B). 

2.2.2. Graph task 
Following the two-step task, participants performed a structure 

inference task designed to assess their ability to infer the latent structure 
based on the sequence of disjoint node pairs which, when reassembled, 
form the graph. They viewed a sequence of object pairs, each of which 
represented a pair of adjacent nodes drawn at random from an under-
lying undirected graph with 12 nodes and 16 edges (Fig. 2A). Nodes in 
the graph were tagged by images of objects, which were randomly 
assigned for each participant. Each node-pair was presented for 1 s on 
the screen, after which the trial terminated and the next pair was 
presented. 

2.2.3. Phase 1: learning 
In phase 1, participants passively viewed a sequence of object pairs, 

each displaying a pair of adjacent nodes. Node pairs were drawn at 
random, such that consecutive trials sampled adjacent node pairs from 
different locations on the graph (Fig. 2B). Participants were not 
informed that there was an underlying structure, but were told that they 
would be tested on their memory of the pairs that had been presented. 
Each of the pairs was presented 44 times. In order to ensure that par-
ticipants sustained attention throughout this phase, they were also asked 
to respond any time an object in the pair was rotated from its default 
position (which occurred on 10% of trials). 

2.2.4. Phase 2: relative distance judgment task 
In phase 2, participants performed a relative distance judgment task, 

which required them to judge the relative distance between three 
randomly-selected nodes, unconstrained by edge relationship. In 
particular, participants viewed two nodes on either side of the screen 
and were asked to indicate which was closer to the reference node 
(shown centrally) based on the pairs they had seen in Phase 1 (Fig. 2C). 
Participants were presented with 204 trials, and had an unlimited 

Fig. 1. A) Two-step task design, adapted from Decker et al. (2016). The fixed structure of the probabilistic transitions from 1st stage states 2nd stage states enables 
the distinction of model-based and model-free choices by examining the influence of the previous trial on the subsequent first-stage choice. B) A model-free learner 
tends to repeat previously rewarded first-stage choices (“stay”), regardless of the transition type that led to the reward (a main effect of reward on subsequent first- 
stage choices). By contrast, a model-based learner exploits knowledge of the transition structure and will favor the first-stage action that is most likely to lead to the 
same state if rewarded and the action least likely to lead to the same state if not rewarded (a reward-by-transition interaction effect on subsequent first-stage choices). 
C) Consistent with previous literature, our results show that the participants exhibit a mixture of model-based and model-free choice strategies. 

M. Rmus et al.                                                                                                                                                                                                                                   



Cognition 225 (2022) 105103

4

amount of time to make their choice. 

2.2.5. Phase 3: graph reconstruction 
In phase 3, participants were shown all 12 nodes they had encoun-

tered in Phases 1 and 2 (Fig. 2D). They were instructed to arrange the 
objects freely, by using their mouse to click on and move the object 
images on the screen. Once they positioned the nodes on the screen, 
participants were asked to connect them by clicking on pairs of images 
that they wished to group together. Participants had an unlimited 
amount of time to complete this stage of testing, and were allowed to 
make as many connections as they wished. 

All of the tasks were programmed in Matlab (MATLAB and statistics 
toolbox release, 2016), using the Psychtoolbox 3 extension (Brainard, 
1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). 

2.3. Analysis 

2.3.1. Two-step task 
Following previous work (Gillan, Otto, Phelps, & Daw, 2015; Daw 

et al., 2011; Decker et al., 2016), we quantified model-based behavior by 
performing a logistic mixed-effects regression analysis. We modeled 
participants' choice to stay (repeat the previous stage 1 choice) or switch 
on the current trial, as a function of (1) previous outcome (reward or no 

reward), (2) transition type (common or rare), and (3) a reward-by- 
transition type interaction (Stay ~ Previous Reward * Transition Type 
+ (1 + Previous Reward * Transition Type | Participant)). The main effect 
of the reward in the model is an index of model-free behavior, quanti-
fying participant's choices as a function of recent outcome. The reward- 
by-transition interaction term serves as an index of model-based 
behavior, as it captures how much participants' choices were affected 
by the recent outcome, modulated by their knowledge of the transition 
structure. Therefore, variability in the interaction term demonstrates 
individual differences in how much participants relied on model-based 
reasoning in the task. The regression included maximal random slopes 
and intercepts for each participant. 

2.3.2. Reinforcement learning model 
Participants' full trial-by-trial choice sequence in the task can also be 

fit with a computational reinforcement-learning model that gauges the 
degree to which participants' choices are better described by a model- 
based or model-free reinforcement learning algorithm. Indices of 
model-based learning in the two-step RL task were derived via Bayesian 
estimation using a variant of the computational model introduced in 
Daw et al. (2011). The model assumes choice behavior arises as a 
combination of model-free and model-based reinforcement learning. 
Each trial t begins with a first-stage choice c1, t followed by a transition to 

Fig. 2. Schematic of the graph task. A) Underlying graph. Node labels (the object images) were fully randomized across all subjects. B) Learning phase: Participants 
observed pairs of randomly sampled adjacent nodes. C) Relative distance judgment task trial: participants were asked to identify the more proximal node. D) Graph 
reconstruction: participants freely arranged objects and connections between them, based on the learned object associations. 
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a second state stwhere the participant makes a 2nd stage choice c2, t and 
receives reward rt. Upon receipt of reward rt, the expected value of the 
chosen 2nd stage action (the left vs. the right alien) Qt

s2(st,c2, t) is 
updated in light of the reward received. 

According to the model, the decision-maker uses a learned value 
function over states and choices Qs2(s,c) to makes second-stage choices. 
On each trial, the value estimate for the chosen action is adjusted to-
wards the reward received using a simple delta rule, Qt+1

s2(st,c2, t) = (1 
− α)Qt

s2(st,c2, t) + rt, where α is a free learning rate parameter that 
dictates the extent to which value estimates are updated towards the 
received outcome on each trial. Unlike the standard delta rule, in this 
equation and in similar references throughout, the learning rate α is 
omitted from the latter term. Effectively, this reformulation rescales the 
magnitudes of the rewards by a factor of 1/α and the corresponding 
weighting (e.g., temperature) parameters β by α. The probability of 
choosing a particular 2nd stage action c2, tin state st is approximated by a 
logistic softmax, P(c2, t = c) ∝  exp (βs2Qt

s2(st,c2)), with free inverse 
temperature parameter βs2 normalized over both options c2. 

First-stage choices are modeled as a product of both model-free and 
model-based value predictions. The model-based value of each 1st stage 
choice is dictated by the learned value of the corresponding 2nd stage 
state, maximized over the two actions: Qt

MB(c1) = max (Qt
s2(s,c2)), 

where s is the second-stage state predominantly produced by first-stage 
choice c1. Model-free values are governed by two learning rules, TD(0) 
and TD(1), each of which updates according to a delta rule towards a 
different target. Whereas earlier models posit a single model-free choice 
weight βMF and use an eligibility trace parameter λ ∈ (0,1) to control the 
relative contributions of TD(0) and TD(1) learning, here, as in recent 
work by Gillan et al. (2016), model-free valuation is split into its 
component TD(0) and TD(1) stages, each with separate sets of weights 
and Q values. TD(0) backs-up the value of the stage-1 choice on the most 
recent trial Qt+1

MF0(c1, t) with the value of the state-action pair that 
immediately (e.g., lag-0) followed it: Qt+1

MF0(c1, t) = (1 − α)Qt
MF0(c1, t) 

+ Qt
s2(st,c2, t). TD(1), on the other hand, backs up its value estimate 

Qt+1
MF1(c1, t) by looking an additional step ahead (e.g., lag-1) at the 

reward received at the end of the trial: Qt+1
MF1(c1, t) = (1 − α)Qt

MF1(c1, t) 
+ rt. Ultimately, Stage-1 choice probabilities are given by a logistic 
softmax, where the contribution of each value estimate is weighted by its 
own model free temperature parameter: 

P
(
c1,t = c

)
∝exp

(
βMBQMB

t (c)+ βMF0QMF0
t (c)+ βMF1QMF1

t (c)
)
.

At the end of each trial, the value estimates for all unchosen actions 
and unvisited states are multiplicatively re-weighted by a free discount 
parameter γ [0,1]. This conventional parameterization reflects the 
assumption that value estimates decay exponentially at a rate of 1 − γ 
over successive trials (Ito & Doya, 2009; Hunter et al., 2018). The 
temporal decay of value is widely endorsed by normative and empirical 
research on reinforcement learning (Ito & Doya, 2009; Sutton & Barto, 
1998), and is further motivated endogenously by the perseverative na-
ture of choice behavior in this task. Earlier models of behavior in this 
task have operationalized choice perseveration using a “stickiness” 
parameter, which is implemented as a recency bonus or subjective 
“bump” in the value of whichever first stage action was chosen on the 
most recent trial (irrespective of reward) (Daw et al., 2011). Including a 
decay parameter also accounts for the fact that people tend to ‘stay’ 
(repeat) their previous 1st stage choice: as γ approaches 0, the value of 
the unchosen actions decreases relative to the value of the chosen action 
on the next trial regardless of whether or not a reward was received 
(Hunter et al., 2018). In total the model has six free parameters: four 
weights (βs2,βMB,βMF0,βMF1), a learning rate α, and a decay rate γ. The 
six free parameters of the model (βs2,βMB,βMF0,βMF1,α,γ) were estimated 
by maximizing the likelihood of each individual's sequence of choices. 
Numerical optimization was used to find maximum likelihood estimates 
of the free parameters, with 10 random initializations to help avoid local 
optima. 

2.3.3. Graph task 
We first assessed whether choice difficulty predicts accuracy and RTs 

in the relative distance judgment task. We defined choice difficulty as 
the absolute difference between exemplars' distances from the reference 
node, with distance defined as the shortest path length. The greater the 
distance difference between options and the reference, the closer one 
option was to the reference relative to the other, thus making the 
discrimination easier. In addition, we tested whether participants' 
response times also scaled with the total distance of option nodes from 
the reference node (e.g. depth-first search). Each participant performed 
204 trials, and we modeled their accuracy/response times across trials 
using logistic or linear mixed effects models, with relative distance 
difference and total distance as independent variables. As in the two- 
step task regression analysis, we used a maximal random effects struc-
ture (allowed all fixed effects to vary across participants; Barr, Levy, 
Scheepers, & Tily, 2013). 

We also quantified how similar each participant's recovered graph 
was to the true graph using two metrics. First, we looked at the average 
similarity between the adjacency matrix of the ground truth and the 
recovered graph (Fig. 5A). Second, we tested whether we can predict the 
pairwise ground truth distance (the shortest path) with the Euclidean 
distance between any two node placements (Fig. 5B). 

2.3.4. Relationship between the performance on the graph task and the two- 
step task 

To answer the question of whether there is a relationship between 
variability in structure inference and the planning task, we looked at the 
relationship between the model-based indices and six main measures 
from the graph task: 1) overall judgment accuracy, random effect esti-
mates of task difficulty on 2) response times and 3) accuracy, 4) effect of 
total distance on the response time, 5) percentage of correctly identified 
edges, 6) Fisher-transformed true vs estimated distance correlation (i.e. 
the correlation between the number of pixels in participant-generated 
graphs and the number of edges in the ground truth graph; see 
Table S6 for detailed explanation of variables). We added these separate 
metrics from the graph task as covariates in the 1-back stay ~ reward * 
transition logistic regression model, in order to estimate direct associa-
tion between model-based planning and these between-subject factors. 
We report results from independent models, with each z-scored covari-
ate Z entered separately: stay ~ reward * transition type * Z + (1 +
reward*transition type|Participant). In addition, using principal compo-
nent analysis (PCA) we collapsed the six graph measures into a single 
latent factor which captures variability in structure inference perfor-
mance. We then performed the same analysis described above, where we 
entered participants' PCA scores as z-scored covariates in the two-step 
task regression model. To validate consistency between our two ap-
proaches to extracting subject-level model-based planning indices from 
the two step task (the interaction term from the logistic regression, and 
the model-based weighting parameter (βMB) from the computational 
model), we also tested the association between participants' PCA scores 
and βMB by performing a robust linear regression and Spearman 
correlation. 

3. Results 

Participants (N = 77) performed a novel structure inference and 
judgment task with three main phases (Fig. 2). In Phase 1, participants 
were given the opportunity to implicitly learn a graph-like structure 
through experiences with pairs of nodes in that graph. On each of 704 
trials, they viewed a pair of objects (e.g., a bowl and a clipboard) and 
asked to report whether one of the objects was rotated relative to a 
canonical orientation (Fig. 2B). Though they were never informed of 
this, each of these object pairs reflected a randomly drawn pair of 
adjacent nodes from an underlying graph, for which each node was 
represented by a single object (e.g., a clipboard) (Fig. 2A). In Phase 2, 
participants made a series of judgments about the relative distances of 
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three randomly selected nodes in the graph. On each trial, they were 
asked to evaluate which of two objects they thought was “closer” to a 
third reference object (Fig. 2C), requiring them to make implicit in-
ferences about the latent structure of the graph. In Phase 3, participants 
were asked to freely arrange the 12 objects and their connections in 
order to reconstruct their best estimate of the underlying graph 
(Fig. 2D).  

3.1.1. Evidence of structure inference 
In Phase 1, participants performed very well on the rotation detec-

tion task (mean accuracy = 89%, SD = 5%; d’ = 2.65, SD = 0.8; false 
alarm rate = 0.5%), indicating that they sustained attention throughout 
the learning phase. We then examined two sets of measures to assess 
whether participants were able to infer the underlying graph structure 
based on this learning phase. 

First, using our relative distance judgment task (Phase 2), we tested 
how fast and how accurate they were at judging how far two objects are 
from one another within the underlying graph. Despite only having 
experienced disjoint node pairs from this graph and never having been 
made explicitly aware of the graph itself, participants were significantly 
above chance in discerning distances between nodes they had never seen 
paired together (mean accuracy = 67%, SD = 13%; t(76) = 11.49, p =
2.5e-18). Importantly, these distance judgments were also sensitive to 
the overall difficulty of the distance judgment: participants were more 
accurate (Fig. 3; β =0.02 (0.008), t(76) = 3.50, p = .0004) the closer the 
reference was to the target, relative to the foil. In addition, the RTs were 
faster when one of the options was closer to the target relative to the 
other, resulting in higher distance difference, even when controlling for 
the total distance (relative: β = − 0.072, t(76) = − 3.17, p = .002, total: β 
=0.077, t(76) = 4.145, p = 8.89e-05). Therefore, response times 
appeared to reflect the relative time it might have taken participants to 
search for one node relative to the other (from the reference node). This 
is also supported by RTs increasing with the total distance from the 
reference to the two other nodes (reflecting the depth of search). 

These patterns of accuracy and RT as a function of node distance 
suggest that participants were able to implicitly infer the structure of the 
underlying graph. We extended these analyses to further understand 
how participants represent this structure (Fig. 4A). For instance, it is 
possible that participants used a global representation of the distances 
between nodes (e.g., a map-like representation; Behrens et al., 2018), 
which should allow for an efficient search that only depends on the route 
between nodes and targets (‘route-relevant’ information). On the other 

hand, participants could search based on the immediate connections 
between nodes (Chrastil & Warren, 2014), causing them to depend on 
local information that is irrelevant to the route connecting the node to 
the target (‘route-irrelevant’ information). For instance, if participants 
started their search from nodes with a higher number of immediate 
connections, we would expect that their response times would increase 
as they searched irrelevant paths. 

To test these two possibilities, we regressed participants' judgment 
RT on to the shortest path between the target and each of the queried 
nodes (as an index of route-relevant search), as well as on the number of 
immediate connections (degrees) of each of the queried nodes (as an 
index of route-irrelevant search). We found that judgment RTs were not 
influenced by the distance between the target and both the chosen node 
(β = 0.008, p = .33) and only marginally by the unchosen node (β =
0.01, p = .055) (Fig. 4B). By contrast, RTs were significantly slower 
when the queried nodes had more immediate connections (chosen node: 
β = 0.05, p = 5.44e-08; unchosen node: β = 0.15 p = 7.78e-07). We 
further found that a model with both degree and distance information 
predicted response times better than one with only distance information 
(ΔAIC = 122). These results support an interpretation whereby partic-
ipants performed an extensive search of the graph, influenced by (route- 
irrelevant) local information around the queried nodes' immediate 
connections. 

After the judgment phase, we tested whether participants were also 
able to explicitly reconstruct this graph. On average, participants 
generated graphs that matched the true graph along two key metrics. 
First, these graphs successfully captured when two nodes were con-
nected (i.e., formed an edge in the graph; Fig. 5A, Mean Edge Accuracy 
= 84%, SD = 4%). Their overall accuracy at identifying these edges was 
substantially higher than would be expected by chance (e.g., if partici-
pants had configured the nodes at random; Fig. S1). 

Performance along this adjacency metric shows that participants 
were able to correctly identify the edges of the underlying graph, and 
therefore that they generally knew which nodes were connected to 
which other nodes. We also generated a second metric that examined the 
degree to which participants were able to also capture the relative dis-
tances between nodes in the graph (e.g., whether two connected nodes 
are close or far apart within the graph). In other words, when recreating 
the graph, to what degree was the Euclidean distance between objects 
placed on the screen (measured in pixels) representative of the true 
distance between the nodes in the underlying graph (measured in terms 
of the number of intervening edges/the shortest path). We found a sig-
nificant correlation between these distance matrices (Fig. 5B, β = 0.45, t 
(76) = 12.4, p = 1.3e-19, Mean(SD) Spearman r = 0.40(0.25)). This 
relationship between estimated and true graph distance held even when 
controlling for the constructed adjacency matrix (β = 0.22, t(76) = 8.36, 
p = 1.2e-11, Table S2), suggesting that this distance metric captured 
structure inference ability over and above participants' adjacency 
reports. 

Our novel paradigm thus provides evidence that people are able to 
infer the structure of a graph based on experiences with disjoint edges 
from the graph, with neither explicit instruction of the graph's existence 
nor a task goal that encourages them to learn this structure. We 
demonstrate this across six different measures: four from the relative 
distance judgment task (overall judgment accuracy, judgment accuracy 
by relative distance, response time by total distance, and response time 
by relative distance; see Table S6 for detailed description of each vari-
able), and two measures from the graph reconstruction task (adjacency 
accuracy (the proportion of correctly identified edges) and the correla-
tion between estimated distances (Euclidean, based on the number of 
pixels) and actual (shortest path) graph distances; also explained in 
detail in Table S6). These six measures were highly correlated with one 
another across individuals (Fig. S2), suggesting that they reflect a 
common underlying dimension of individual differences in structure 
inference ability. Indeed, a principal component analysis (PCA) 
demonstrated that a single component could capture 72% of the 

Fig. 3. Participants are faster (black) and more accurate (red) at selecting the 
closer node when it was much closer than the alternative. Relative distance is 
discretized for display purposes. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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variance across these measures, and was the only substantive compo-
nent that emerged in this analysis (all other eigenvalues <0.85; Fig. 6B). 
To examine the relationship between individual differences in structure 
inference ability and model-based planning, we therefore focused our 
analyses on variability in scores on this singular structure inference PC. 

3.1.2. Better structure inference ability is associated with greater use of 
model-based planning 

To measure individual differences in model-based planning, partic-
ipants also performed a well-characterized assay of model-based plan-
ning, the two-step task (Fig. 1, Daw et al., 2011; Gillan et al., 2015; 
Decker et al., 2016; Doll, Duncan, Simon, Shohamy, & Daw, 2015; Otto 

et al., 2013). In this task, participants make decisions at two stages that 
are connected by a probabilistic transition. To reach the best possible 
outcome on a given trial, participants must consider this underlying 
transition structure (e.g., engage in model-based planning). Previous 
studies show that choices in this task reflect a mixture of model-free and 
model-based forms of decision-making, indexing the degree to which 
participants choose actions based only on recent reward (model-free) or 
based additionally on a consideration of task structure (e.g., transition 
probabilities; model-based). We replicate this average pattern of 
behavior in our own data (model-free index: β = 0.64, t(76) = 14.38, p =
3e-05, model-based index: β =0.42, t(76) = 9.17, p = 1.5e-20; Fig. 1C, 
Table S1). 

Fig. 4. Participants incorporate irrelevant information into their graph search. A) If participants are using a global representation for search, they should be mostly 
sensitive to route-relevant information about the node-target shortest path (blue path). If participants are using local information for their search, they should be 
more sensitive to the number of route-irrelevant connections to the queried nodes (red paths). B) Regression coefficients show that the number of first degree 
connections is a stronger prediction of response time than the node-target distance, consistent with local search. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 5. A) The proportion of drawn edges forming pairwise node connections in the graph. Lighter colour indicates a higher proportion of connections. The squares 
outlined in orange correspond to the ground truth connections in the graph. Lighter colour of fields outlined in orange indicates that the participants were more likely 
to draw edges between the nodes which are actually connected in the graph. B) Correlation between the ground truth distances (shortest paths in the graph), and 
pixel-based distances of recovered graphs. 
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As in previous research, we also found that participants varied in 
their use of model-based planning on this task (e.g., as estimated by their 
model-based indices from the logistic regression). We predicted that 
these individual differences in model-based planning would be associ-
ated with individual differences in our index of structure inference 
ability, which we tested by examining whether there was a significant 
interaction between our structure inference PC and the model-based 
planning index in predicting first-stage choices (following previous 

work; Gillan et al., 2016). Consistent with our prediction, we found that 
participants who demonstrated better structure inference were also 
more likely to engage in model-based planning (β = 0.17, t(76) = 3.97, 
p = .00008, Fig. 6C, Table S5). This correlation held when using an 
alternate estimate of model-based planning, based on an RL model of the 
two-step task (Fig. 6C, R2= 0.13, Spearman r = 0.33, p = .003; Table S4). 

Follow-up analyses confirmed that structure inference ability was 
specifically associated with model-based planning and not other aspects 

Fig. 6. Plot A shows the PC loadings on all 6 graph-task measures (red = relative distance judgment task measures; blue = graph reconstruction measures). First 
component loads on all 6 measures, whereas the second component is selective for graph reconstruction measures. Eigenvalue of the first component is 4.33, and the 
second component is 0.85. Plot B shows the percentage of variance captured by different components. The first component (structure inference ability PC) captures 
the majority of variance (72%). Plot C shows that latent factor capturing structure inference ability (PCA score) is positively correlated with model-based planning 
(model-based weights βMB) across individuals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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of two-step task performance. We controlled for individual differences in 
model-free strategy use and stay bias (perseveration), neither of which 
were associated with our structural inference index (model-free strategy 
use: β = − 0.04, t(76) = − 0.17, p = .86; perseveration: β = − 0.11, t(76) 
= − 0.80, p = .42, Table S3). We also tested whether the relationship 
between structure inference and model-based planning was mediated by 
individual differences in model-based learning. That is, while the struc-
ture of the two-step task is relatively simple (each of two nodes tran-
sitioning to two other nodes), and participants are made aware of the 
potential links between these nodes in advance (though not of the actual 
transition likelihoods), it could be that people who are generally worse 
at inferring graph structure are less likely to engage in model-based 
planning because they failed to learn the transition structure of the 
two-step task. Previous work has measured such individual differences 
in two-step task transition learning using a separate behavioral index: 
response times for Stage 2 decisions (following the transition from Stage 
1). Overall, participants have been shown to respond slower in Stage 2 if 
they just experienced a rare transition rather than a common one 
(Decker et al., 2016), a finding that we replicate in our own data (β =
− 0.01, t(76) = 3.54, p = .006). However, this effect depends on having 
learned which transitions are rare and common, and therefore individ-
ual differences in the strength of this effect have been used to index 
individual differences in transition learning. Unlike model-based plan-
ning, this implicit index of model-based learning (post-rare transition 
slowing) was not significantly associated with structure inference ability 
(β =0.06, t(76) = 0.11, p = .57, Table S3). Moreover, controlling for 
model-based learning, the relationship between structure inference and 
model-based planning remained significant (β = 0.49, t(76) = 2.19, p =
.03, Table S3). 

For completeness, we also tested whether the relationship between 
model-based planning and structure inference ability was specific to a 
subset of our structure inference metrics, but did not find that this was 
the case. Model-based planning was separately correlated with each of 
our structure inference metrics (all |β| > 0.12, all p < .007; Table S5). 

3.1.3. The relationship between MB-planning and structure inference ability 
is not accounted for by a single domain-general factor 

While our results support a relationship between model-based 
planning and structure inference ability, they leave open the question 
of how direct this link is. For instance, the relationship between these 
variables could partially reflect their shared variance with individual 
differences in domain-general cognitive functions related to motivation, 
attention, and/or reasoning ability. Indeed, previous work has shown 
that MB reasoning correlates with some measures of general intelligence 
(Maran, Ravet-Brown, Angerer, Furtner, & Huber, 2020) and working 
memory capacity (Otto et al., 2013). To account for the influence of any 
such third variables, we compiled all available task performance mea-
sures and tested whether variability along these would be explained by a 
single dominant factor that linked our measures of interest (e.g., struc-
ture inference ability) with measures that reflect more general motiva-
tional and attentional processes (e.g., performance on our simple 
rotation discrimination task). 

A PCA across 10 task variables (Fig. S4) revealed that variability in 
performance on our attention check was in fact related to individual 
differences in other task variables that may have indexed motivation (e. 
g., degree of perseveration and reward sensitivity on the two-step task). 
However, this motivation-related factor was distinct from a factor that 
carried variance shared across all of our structure inference variables (e. 
g., judgment performance and edge estimation accuracy; Fig. S4B,C). 
This two-factor model suggests that our structure inference index mea-
sures a specific set of cognitive processes that are separable from ones 
that potentially relate to reward sensitivity and motivation. Importantly, 
our key ‘structure inference’ factor correlated with our MB measure even 
when partialling out this ‘motivation’ factor (partial r(75) = 0.29, p =
.0096). This suggests that the relationship between MB and structure 
inference ability reflects processes over and above those that influenced 

general attentiveness across our tasks. 

4. Discussion 

4.1. Structure inference – general discussion 

Acquiring structured representations is one of the most prominent 
examples of the robustness of human learning. People are able to learn 
the representations of their environments over the course of several 
trials, and leverage these representations in the service of problem 
solving. For instance, representations are thought to enable transfer of 
behavioral strategies between environments with similar structure. It is 
these benefits that distinguish humans from artificial agents, which 
currently fail to exhibit the flexibility commonly afforded by structure 
representations (Sutton et al., 1999). 

Despite the evident benefits of structure representations, relatively 
little is known about how people infer/learn these structures in the first 
place. There is evidence that people are able to parse temporal streams 
of evidence into clusters, and use these temporal associations to infer 
relationships across states (Schapiro et al., 2012, 2016), with this sta-
tistical learning predicting tendencies for model-based planning (Potter, 
Bryce, & Hartley, 2017). The premise of such learning is that individuals 
are exposed to the full sequence of states in temporal order, and that 
such exposure enables individuals to extract statistical properties that 
support structure inference. However, it is also known that animals can 
make judgments regarding states without ever experiencing transition 
between these states (Bunsey & Eichenbaum, 1996; Davis, 1992; Honey 
& Hall, 1989), and that this is also related to model-based planning 
(Doll, Shohamy, & Daw, 2015). This previous research suggests that in 
addition to developing structure representations based on statistical 
properties of temporal sequences, individuals can also integrate across 
separate experiences. Therefore, it is essential to probe structure infer-
ence using complex tasks that require participants to carry out infer-
ential processes based on disjoint information in order to piece together 
an overall structure. Our task fills this gap by 1) exposing participants to 
multi-step, branched associations and 2) examining their speed and 
accuracy at making surprise judgments about relative distances in this 
structure. In our experiment, participants made judgments about routes 
through a graph they had never directly observed, rather than judging 
which two items are better (as in tasks measuring transitivity) or 
whether two items are similar (as in tasks measuring equivalence). An 
important question for future research is whether these judgments are 
supported by computations performed solely during the exposure phase 
(“encoding”), solely during the test phase (“retrieval”), or some mixture 
of the two. Furthermore, our design allows us to extract specific patterns 
of behavior that serve as markers of underlying search/inference pro-
cesses, for instance by examining how decision times scale with node 
distance. These properties enable our task to uncover aspects of the 
inference process that would be difficult to ascertain with existing 
methods for studying structure inference. 

4.2. Does structure inference constrain goal-directed behavior? 

In addition to solving simple navigation problems, people can use 
underlying structures to perform goal-directed planning, which is crit-
ical for adaptive human behavior and long-term achievement across life 
domains. Successful goal-directed planning entails both (1) inferring the 
structure of one's environment (structure inference) and (2) deploying 
that structure to maximize reward (model-based decision-making), yet 
relatively little is known about how one's ability to do one of these re-
lates to their ability to do the other. Combining six performance mea-
sures across our novel set of tasks, we characterized a dimension of 
structure inference ability, and showed that individual differences in 
this estimate of structure inference correlate with individual differences 
in a well-characterized index of model-based planning (based on per-
formance on the two-step task). We show that this association between 
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structure inference and two-step task performance is specific to model- 
based planning rather than generalizing to other performance metrics, 
including perseveration, model-free decision-making, and a proxy for 
one's ability to learn transitions in that task. These results demonstrate 
that memory and decision-making share core cognitive substrates, with 
these connections across literatures potentially informing algorithmic 
models of knowledge-driven planning and decision-making. Given this 
initial validation, our tasks hold promise for further bridging these lines 
of research to examine goal-directed navigation towards a reward 
(discussed below). 

Our work bridges previous research on structure learning and model- 
based planning, and addresses an important gap in these earlier studies. 
In particular, previous research on model-based planning has only been 
able to examine how people learn about and navigate internal models 
with limited nodes/connections (e.g., a single transition in the two-step 
task; Daw et al., 2011) and/or with transitions that are experienced 
sequentially in time (Bornstein & Daw, 2013; Doll, Duncan, et al., 2015). 
Using our novel task, we were able to examine how this inference pro-
cess occurred for a relatively more complex graph structure that par-
ticipants learned based on disjoint experiences with individual node 
pairs. In doing so, we were able to establish that individuals are able to 
perform structure inference under such conditions and to exploit indi-
vidual differences in their inferential abilities on these tasks to link the 
underlying cognitive processes to variability in model-based planning 
within simpler environments. 

While the two-step task is popular both for studying basic mecha-
nisms and indexing individual differences in model-based planning, it 
has recently been the subject of two forms of criticism: (1) that the 
behavior commonly referred to as model-based does not necessarily 
reflect planning, and (2) that the model-free behavior might still reflect 
the use of a model, but an incorrect one (Akam, Costa, & Dayan, 2015; 
Feher da Silva & Hare, 2020; Konovalov & Krajbich, 2016). These 
concerns raise a note of caution in concluding that structure inference 
(as measured by our new task) is linked to one's ability to plan (as pu-
tatively measured by the two-step task). Still, both our task and the two- 
step task share the assumption that knowing associations between states 
is useful for planning, and the two-step task can provide an index of the 
extent to which people are integrating state information with rewards to 
make choices (imperfectly so, as noted by the critiques above). By 
demonstrating that our task, which holds a more complex network of 
associations, relates to model-based behavior as measured in the 2-step 
task, we can augment the argument that an ability to infer latent 
structures contributes to one's ability to plan. Nevertheless, more work is 
needed to further elucidate the exact mechanisms shared between 
planning and structure learning. 

5. Limitations 

5.1. Structure inference task 

An important limitation of our study is that we do not have measures 
of structure inference taken prior to the judgment phase of the task 
(Phase 2). As a result, our measures of structure inference can reflect 
both (a) a participant's ability to infer the graph structure during the 
latent exposure phase (Phase 1) and (b) their ability to infer this graph 
structure in subsequent phases based on their initial exposure (possibly 
via directed search through these learned associations). Therefore, to 
tease apart the learning processes during the initial exposure vs. addi-
tional build-up of the structure during reconstruction, one would need to 
implement assessment of online learning during the initial exposure, 
potentially by implementing occasional probes about the structure. Such 
work would be able to further examine how structure learning develops 
as a function of the number of times a person is exposed to transitions in 
a given location within the graph. 

Furthermore, while our study was able to provide an in-depth ex-
amination of how participants learn about the structure of the 

environment, it did so in the context of a fairly small structure (twelve 
nodes total) with deterministic transitions. This limits our ability to 
estimate how well our participants would be able to learn and traverse 
wider and more complex structures. One feature of many real-world 
structures that facilitates learning is temporal contiguity between 
nodes, something that we explicitly sought to control in order to isolate 
structure inference from sequence learning. 

5.2. Relating structure inference and model-based planning 

We have demonstrated an initial validation of the potential corre-
spondence between structure inference and model-based planning by 
revealing a correlation between our compound measure of structure 
inference and indices of model-based planning. However, our inability 
to clearly dissociate between online learning and memory-based infer-
ence (driven by exposure during later phases) prevents us from testing 
which one of these, if not both, relates to model-based planning. 

We are also unable to completely rule out the possibility that this 
correlation was partly driven by domain-general factors like motivation, 
executive function, working memory, or fluid intelligence, factors that 
have been shown to correlate with model-based performance (Maran 
et al., 2020; Otto et al., 2013). While our PCA analyses provide evidence 
that plausible indices of task engagement load on a separate component 
from putative measures of structure inference and MB, it is important to 
confirm this with more explicit measures of each of these domain- 
general constructs. 

6. Future directions 

6.1. Neural mechanisms of structure inference 

The observation that humans are able to rapidly learn complex graph 
structures without prior awareness raises several questions for further 
investigation. A particularly valuable direction for future research will 
be to investigate the neural mechanisms by which individuals infer the 
structure of our graph: Are these links inferred at encoding, during the 
learning task, or on-demand, at each trial during the judgment task? 
Evidence for both mechanisms was observed in a previous study that 
investigated transitive inferences across pairs of words in humans un-
dergoing intracranial EEG (Reber et al., 2015). The authors reported that 
successful later inferences were predicted by hippocampal activity 
evident in both response-locked ERPs at test and stimulus-locked ERPs 
following encoding, providing support for multiple, hippocampally- 
centered mechanisms in the construction of inferences. This observa-
tion is consistent with a previously proposed distinction between pro-
spective and retrospective integration in support of memory-guided 
decisions (Ballard, Wagner, & McClure, 2019; Shohamy & Daw, 2015), 
and with recent work separately identifying a role for both encoding- 
time (Schapiro et al., 2012, 2016) and retrieval-time (Kӧster et al., 
2018) computations in supporting similar inferential judgments. In both 
cases the judgments tested have been limited to a single step, though a 
more extensive capability was implied. Further work will be necessary to 
identify the relative contribution of each of these mechanisms to our 
task, in particular whether encoding and retrieval mechanisms are 
similarly useful in identifying extensive latent structure. In addition to 
disentangling the relative roles of encoding and retrieval, it will also be 
valuable to disentangle the relative contributions of (and trade-offs be-
tween) episodic and working memory mechanisms to inference at each 
of these stages (Collins, 2018; Collins & Frank, 2012). 

6.2. Utilizing latent structures for transfer learning 

A critical factor in the ability to infer latent structure might be the 
effective use of hypotheses about the structure of the task. Specifically, 
humans and other animals are capable of transfer learning, or applying a 
schema learned in one instance of a task to another. Because our novel 
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graph task relies on structures that can be clustered into families of 
resemblance and permuted to varying degrees, it is well-suited for 
modifications that would allow it to measure the extent of the ability to 
transfer across multiple instances. An important open question is to what 
degree these inferences are supported by general conceptual represen-
tations e.g. in PFC (Kumaran, Melo, & Duzel, 2012), structured basis 
representations in MTL cortex (Behrens et al., 2018; Constantinescu, 
O'Reilly, & Behrens, 2016; Schapiro et al., 2016), or pre-generated as-
sociations cached in hippocampus proper (Collin et al., 2015). Because 
our task permits finely manipulating the relative information present in 
each kind of representation, it may be suitable for distinguishing 
involvement of each of these neural substrates. However, while it has 
potential, the task in its current form does not permit testing for transfer 
learning, and future work with modifications to the task will be required 
to address this question. 

6.3. Further investigations of structure inference-MB planning relationship 

Having provided initial evidence of the potential relationship be-
tween structure inference and model-based planning, future in-
vestigations could extend the task to incorporate planning for rewards 
directly, for instance by having participants learn about state-reward 
associations after (or in parallel with) learning the structure of state- 
state associations (Bornstein & Daw, 2013; Wimmer, Daw, & Shoh-
amy, 2012). Examining how participants navigate this structure can 
provide important insight into how the structure of an internal model, 
and the relative distance between nodes in that model, modulates the 
utility of future rewards (Bornstein & Daw, 2013; Kurth-Nelson, Barnes, 
Sejdinovic, Dolan, & Dayan, 2015; Wimmer & Shohamy, 2012) and the 
mental effort required to obtain those rewards (Kool & Botvinick, 2018; 
Shenhav et al., 2017). A similar design can also provide critical links to 
an expansive body of work on goal-directed navigation through space 
(Tolman, 1948; Tolman and Tolman & Honzik, 1930; Tolman, Ritchie, & 
Kalish, 1946), including factors that influence individual differences in 
one's success in such navigation tasks (Maguire et al., 2000). In addition 
to highlighting common and divergent mechanisms across these do-
mains, such research can also point towards potential training regimens 
that can be used to improve goal-directed planning, building on recent 
work in this area (Lieder, Chen, Krueger, & Griffiths, 2019). Collectively, 
these tasks can be used to compare and contrast neural mechanisms that 
underpin learning, navigation, and planning over latent structures 
across spatial and non-spatial domains. 

6.4. Mechanistic underpinnings of model-based planning impairments 

Our work also provides important methodological and mechanistic 
insight for research on goal-directed decision-making across the life-
span, and between healthy and clinical populations. For instance, prior 
work has demonstrated that model-based planning gets worse with 
advanced aging (Eppinger, Walter, Heekeren, & Li, 2013) and nega-
tively scales with behaviors indicating compulsive symptoms (Gillan 
et al., 2016). However, it remains unclear to what extent such impair-
ments arise from deficits in inference (e.g., an inability to acquire and/or 
retain an internal model of the associative structure of one's environ-
ment) and/or deficits in the ability/motivation to search that model to 
determine the best course of action (e.g., due to working memory de-
mands and attendant mental effort costs). A better understanding of the 
mechanisms at the intersection of these processes will provide critical 
insight into the nature of goal-directed planning, and the factors that 
determine one's ability to achieve those goals. 
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