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Abstract

Decision making under uncertainty necessitates complex computations which are traded-off with the need for efficiency.
This is particularly relevant in the context of experiments where individuals make a sequence of choices and previous
computations may be leveraged to support efficiency. However, it is an open question as to whether humans do indeed
reference the recent past, especially in complex environments where it is task-incongruent to do so (e.g. non-sequential
experiments). In behavioral economic experiments with randomized or unstructured choice sets, trial-level sequential
dependencies are generally assumed to be present only in motor or perceptual operations. Here, we explicitly model
trial-property-driven sequential effects in response time data in two data sets: intertemporal choice and risky and am-
biguous choice. We find evidence for widespread sequential effects. These effects are modulated by decision difficulty
and trial-level uncertainty in both tasks. Our results add to the growing literature demonstrating trial-level sequential
dependencies in higher-order cognition.
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1 Introduction and Background

When making decisions under uncertainty and with limited time, humans and animals must balance efficiency with
completeness. We have previously shown that humans exhibit ’spillover’ between adjacent trials in non-sequential deci-
sion tasks[1]. Here, we examine whether this effect is modulated by the relative properties of the decision computations
required on successive trials. Such effects could be the result of rational computational approaches – for instance if people
are showing sequential effects in nonsequential environments, it could be because they are trying to infer the underlying
Markov Decision Process (MDP) [4, 14]. While this idea has been studied extensively in lower-order decision making, it
is a major open question whether individuals reference recent history in higher-order non-sequential decision tasks [2].
This is conceptually distinct from notions of motor or perceptual perseveration, which may themselves also be present
during complex choice [1].

We therefore consider economic decision making in two non-sequential tasks: intertemporal choice (ITC) – decision
making under temporal uncertainty – and risky and ambiguous choice (RAC) – choice under immediate known (risk)
or unknown (ambiguous) uncertainty. A common method of measuring these constructs in behavioral economics is
through experiments: typically, individuals make a sequence of choices in a randomized choice set and are explicitly
instructed to treat each decision independently [8, 11]. The data is then analyzed as if each choice was indeed made
independently and not in sequence. Our previous work suggests that this may be a flawed assumption [1].

First we consider the cognitive processes involved in making decisions about immediate or temporal uncertainty. Popu-
lar theories of intertemporal choice suggest that decisions are in part informed by the deliberative simulation of potential
future outcomes [12]. These sorts of computations and simulations are expensive and time-consuming, so when succes-
sive decisions are made under time pressure and involve similar future dates and values it may be inefficient to construct
preferences anew on each trial [3]. We may further expect such re-using of computations or, more broadly, reference to
the past, as recent work suggests that neurons that code for value do so relatively (i.e. what has changed now com-
pared to what was seen before) [16]. Thus, taken together, individuals may act as though there are structured temporal
dependencies during decisions made in a sequence – even if those decisions are not explicitly related to each other.

The mechanisms that generate, or propagate these sequential effects are an open question even in perceptual and visual
working memory, where such task in-congruent sequential behavior has been studied extensively [5, 9]. Candidate
mechanisms include serial biases in attention [5] and efficient coding influences on working memory representations [9].

However, it remains unknown whether such ’spillover’ effects apply to choice behavior more broadly and, if so, whether
they are mediated by a general inclination to optimize speed/accuracy tradeoff in behavior, or by local uncertainty
about task demands. To address this question, we leverage our previously introduced methodology to test and account
for trial properties-driven sequential effects in such environments [1]. In our previous analysis, we observed that some
sequential effects were driven by decision difficulty: they were present when the current trial was more difficult than
the preceding. In particular, we found that a subset of subjects were sensitive to relative changes in Expected Value (i.e.
when the previous trial had a large difference in Expected Value - “easy” - and the current trial had a small difference
in Expected Value - “hard”). However, decision difficulty in ITC tasks, for example, is potentially conflated with the
inherent uncertainty in receipt of future reward outcomes [7]. Here, we further extend our previous framework by re-
parameterizing the stimulus space (all potential trial properties) in a simpler fashion and present a re-analysis of the
intertemporal choice data in [1]. Then, we apply this approach to a newly collected risky and ambiguous choice task to
test directly whether relative changes in decision difficulty or uncertainty more generally drive sequential effects. Across
these datasets, we find evidence in favor of sequential effects, and in the RAC task, specifically that these effects are being
driven by a tradeoff against choice difficulty, rather than by a need to resolve contextual uncertainty.

2 Methods

2.1 Experiments and Data

Figure 1: An example ambiguous
trial from the RAC task, where the
subject has 3 seconds from stimulus
onset to make a choice between a
certain reward of $8 and a chance to
win $8.7 by playing the lottery.

Intertemporal Choice (ITC). We model n = 482 adult subjects who made a se-
quence of 102 binary choices between a same-day monetary reward (SS: “smaller
sooner”, range: $1 − $85) and a larger delayed reward (LL: “larger later”, range:
$10−$95; delay range: 4−180 days). All data were collected previously (for details,
see [8]). The experiment was fully randomized, with no experimentally-designed
trial-level dependencies. All stimuli were displayed numerically and counterbal-
anced so that the SS and LL options occurred equally often on either side of the
computer screen. Subjects had 6s after stimulus onset to make a choice.

Risky and Ambiguous Choice (RAC). We model n = 98 adult subjects who made
a sequence of 196 binary choices between a certain reward (range: $3 − $9.5) and
a lottery (range: $5 − $24), in 4 blocks (Figure 1). The amount a subject could win by choosing the lottery was almost
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always larger than the certain reward, except during 16 catch trials. All data were collected on Amazon Mechanical Turk.
Lotteries were either risky (1/7) where the full probability distribution was presented graphically (win probabilities: 25%,
50%, 75%) or ambiguous (6/7) where partial information was presented (ambiguity levels: 15%, 40%, 60%, 85%). While
we did not design any trial-level dependencies, we ensured that 50% of successive trials increased in ambiguity, and
50% decreased. A risk trial followed by an ambiguous trial is considered as an increase in ambiguity, as risky trials are
unambiguous with respect to the probability of reward. Likewise, an ambiguous trial followed by a risk trial would be
considered a decrease in ambiguity. Further, we controlled for median risk/ambiguity levels, lottery reward, and fixed
reward across blocks. As with ITC, the stimulus options occurred equally often on either side of the computer screen.
Subjects had 3s after stimulus onset to make a choice.

No outcomes were realized over the course of either experiment (i.e no feedback after each choice other than a confir-
mation of the subject’s selection). However, the experiments were incentive compatible and a single trial was selected
at random, realized, and paid out at the end of the experiment as a bonus. For the RAC experiment, participants on
Amazon MTurk were paid 10% of their winnings to be consistent with pay rates on the platform.

We exclude any responses that were made in less than 300ms. We also exclude any missed trials and the trial immediately
after them from the following analyses.

2.2 Model

2.2.1 Baseline Models

We implement a hierarchical Bayesian drift diffusion model (DDM) to model response times using the Wiener module
[15] in JAGS [13]. That is, for subject i and trial j, we model observed response time as Wiener first passage time (wfpt)
distributed:

RTij ∼ wfpt(αi, τi, βi, δij)

Here, αi represents the subject-level threshold or boundary separation, τi is the subject-level non-decision time (processes
unrelated to the value-based decision process), βi is the subject-level bias (βi < 0.5 : bias towards immediate option in ITC
and towards the fixed option in RAC), and δij is the subject-and-trial-level drift rate (the rate of evidence accumulation).
We model all these parameters as hierarchical Normals in order to better capture individual differences [10]. For αi, τi,
and βi, we use the same prior and hyperprior specifications for both tasks, referencing [15] for mean hyperpriors and
using ’noninformative’ priors for the standard deviation:

µα ∼ Uniform(0.001, 3) µτ ∼ Uniform(0, 0.6) µβ ∼ Uniform(0.01, 0.99) σα, στ , σβ ∼ Uniform(0.001, 4)

We take a cognitive psychometrics approach to modeling the drift rate by allowing it to be driven by (combinations of)
trial properties. We keep the broad functional relationship between trial properties as dictated by behavioral economic
models of choice behavior (e.g. allowing an inverse relationship between the drift rate and delay for ITC). We also
normalize all stimulus properties such that they fall between 0 and 1. Then, for subject i and trial j:

δITC,ij = β0,i + β1,i · (valueLL,ij − valueSS,ij) + β2,i · delay−1
ij (1)

δRAC,ij = β0,i + β1,i · (Expected ValueLottery,ij − Expected ValueFixed,ij
) + β2,i ·Aij (2)

In Equation 2, the Expected Value of a choice option is given by EV = p · v, where p is the probability of reward and v
is the monetary value. For a risky trial, p is the percentage chance of winning reward. For an ambiguous trial, p = 0.5
as in [11]. A represents the degree of ambiguity of a given lottery. On ambiguous trials, this is the fraction of the lottery
that is occluded by the grey bar as seen in Figure 1. On risky trials, A = 0. Finally, we allow all drift rate decomposition
parameters (β0, β1, β2) to be hierarchical Standard Normals.

2.2.2 Sequential Effects

We build stimulus-driven sequential effects into each of the β terms on the drift rate decomposition and on the bias.
Specifically, as we only consider influence of recent history that is transient (1-trial-back), we incorporate relative changes
in stimulus values between the previous and current trial. For the ITC task, we consider successive trials that increase
or decrease in (objective) value difference, delay difference, and value x delay difference. For the RAC task, we similarly
consider value differences, ambiguity difference, and value x ambiguity difference. We use Indicator Variables to sub-
set sequences of trials that follow any of the above specified patterns, resulting in a 8-fold tiling of stimulus space for
both experiments. We then augment our baseline models by allowing these stimulus properties to exert linear additive
influences on the parameters of interest. For example, if we consider trials that increase in value from trial j− 1 to trial j:

β′
0,ij = β0,i + γi · 1([Va,j − Vb,j ] > [Va,j−1 − Vb,j−1]) (3)
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We allow all sequential effect parameters to be hierarchical Standard Normals. We simultaneously assess the influence
of relative stimulus properties on all drift rate decomposition and bias parameters. Thus, in Equation 3, β0,i becomes
the sequential-effect-adjusted drift rate regression intercept for individual i and the indicator variable is 1 if there is
an increase in value difference from trial j − 1 to trial j. To answer our core question of interest, we test whether the
sequential effect parameters (e.g. γi) is non-zero using the Savage-Dickey ratio to approximate the Bayes Factor (BF). We
interpret any BF > 3 as evidence in favor of sequential effects.

3 Results

3.1 Drift Rate Decompositions

ITC Mean(CI) RAC Mean(CI)
β0 −0.66(−1.26,−0.06) β0 −0.72(−2.99, 0.37)
β1 3.45(1.19, 5.70) β1 0.84(−0.87, 6.14)
β2 2.34(−2.15, 6.84) β2 −0.02(−0.72, 0.67)

α 2.47(1.70, 3.24) α 1.87(0.97, 2.47)
τ 0.76(0.36, 1.16) τ 0.40(0.19, 1.14)

bias 0.51(0.39, 0.63) bias 0.50(0.38, 0.59)

Figure 2: Aggregate posterior means (95% Credible Inter-
vals) for Drift Rate decompositions and other DDM param-
eters. Note that these values represent the spread across in-
dividuals.

We fit a variety of different drift rate decompositions and
present DIC differences in two model comparisons be-
tween the decompositions presented in the Methods sec-
tion (Equations 1 and 2) that may be of particular interest
to the reader. For ITC, we report that our drift rate decom-
position that allows an inverse relationship between delay
and value, as generally given in economic models of tem-
poral discounting, outperforms the decomposition that
where both value and delay have directly proportional
relationships with drift rate (DIC

ITC,Inverse = 116886,
DIC

ITC,Direct = 11875). In RAC task, we report that the drift rate that only includes the Expected Value differ-
ence weight (β1) performs more poorly than the drift rate that incorporates all trial properties DIC

RAC,All = 21824,
DIC

RAC,EV Only = 22134).

We find that for the ITC task, subjects tend to accumulate evidence more quickly when the value difference increases
(β1), all else held constant. Similarly, subjects tend to accumulate evidence more quickly when the delay decreases (β2),
all held constant. Both make sense, as larger value differences might push individuals towards selecting the LL option,
and delayed rewards offered in the far future may not be worth the wait.

As in the ITC task, subjects appear to be sensitive to all trial properties in the RAC task. All else held constant, the
average subject’s drift rate increases as the Expected Value difference between choice options increase (β1). Subjects are
also sensitive to the degree of ambiguity, with drift rate decreasing with increasing ambiguity (β2) (all else held constant).
However, we highlight the credible interval ranges and note that there are considerable individual differences.

3.2 Sequential Effects
ITC Proportion RAC Proportion

value ↑ 1 value ↑ 0.80
value ↓ 0.998 value ↓ 0.93
delay ↑ 1 amb ↑ 0.05
delay ↓ 1 amb ↓ 0.01
v. ↑ d. ↑ 1 v. ↑ a. ↑ 0
v. ↑ d. ↓ 1 v ↑ a. ↓ 0.18
v. ↓ d. ↑ 1 v. ↓ a. ↑ 0
v. ↓ d. ↓ 0.84 v. ↓ a. ↓ 0.57

Figure 3: Proportion of subjects that demonstrated sequen-
tial effects (BF > 3) on any one of the drift rate decompo-
sition parameters or bias. Each row represents specific suc-
cessive trial properties (e.g. value ↑ subsets successive tri-
als that increased in value difference as noted in Equation
3). The top four rows can be thought of as “main effects” of
specific trial properties and the bottom four “interactions.”

We observed reliable trial-property-driven sequential ef-
fects on almost all sequences, regardless of task. Indeed,
for almost every possible combination of stimulus se-
quences, 100% of subjects showed evidence of sensitivity
to previous stimuli in the ITC task. Consistent with our
hypothesis, effects in the RAC task are more specific to
the combination of trial properties considered – in partic-
ular, most individuals show sequential effects when there
are relative increases and decreases in value.

In Figure 5, we list the posterior group-level means and
standard deviations of the sequential effect parameters
themselves for the RAC task only, omitting ITC results
due to space constraints. We find broad individual vari-
ability in terms of which parameters seem to be most sen-
sitive to sequential trial properties: while one subject may
manifest this sensitivity on the drift rate intercept parameter, another may see the same on multiple parameters.

We show this more concretely in the ribbon plots Figure 4. Indeed, we find variability in the magnitude and directionality
of sequential effects even when considering related sequences (value difference ↓ vs. value difference ↓ and amb. ↓ ).
For subjects that showed non zero sequential effects on successive trials that increased or decreased in value difference
regardless of ambiguity, we recovered these effects only on β1, the Expected Value difference parameter on the drift rate.
This serves as a sanity check of sorts, as reward value is explicitly weighted by β1 through Expected Value. Similarly,
for the handful of subjects that were only sensitive to relative differences in cross-trial ambiguity, we only recovered
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Figure 4: Sorted posterior 95% Credible Intervals of sequential effects on the drift rate Expected Value term (β1) when
successive trials (a) increase in value difference, (b) decrease in value difference, (c) decrease in ambiguity, and (d) de-
crease in both value difference and ambiguity difference. (Equation 2, RAC task).

effects on β2, the weight of ambiguity on the drift rate. For decrease in value difference and decreases in both value and
ambiguity difference, inferred Bayes Factors were near threshold (BFv = 2.97, BFva = 2.9).

4 Conclusion Properties β0 β1 β2 bias
value ↑ H0 −0.38(0.12) H0 H0

value ↓ NEE 0.45(0.11) NEE H0

amb ↑ H0 NEE −0.29(0.07) H0

amb ↓ H0 H0 0.32(0.09) H0

v. ↑ a. ↑ H0 NEE H0 H0

v ↑ a. ↓ H0 NEE 0.59(0.13) H0

v. ↓ a. ↑ H0 NEE NEE H0

v. ↓ a. ↓ NEE 0.5(0.16) H0 H0

Figure 5: Posterior sequential effect group means (γi) for
Risk and Ambiguity Choice Task. All numerical means and
standard deviations presented in a cell (mean (standard devi-
ation)) have a BF > 3 that they are non-zero. If instead there
is a H0 then we find evidence (BF > 3) in favor of the null.
Finally, if a cell contains “NEE” then the data does not con-
tain enough evidence to favor either the null or alternative
hypothesis (NEE: Not enough evidence).

Using a generative model and a simple parameterization
of trial properties, we have demonstrated that individu-
als are influenced by recent history during economic de-
cision making, even when it is task-incongruent to do so.
We do not argue that this influence is a conscious one, but
more specifically that these sorts of sequential influences
are fundamental to human cognition and information pro-
cessing, and thus ought to be explicitly accounted for. We
find near-ubiquitous evidence of sequential effects in the
ITC task. Our results from the RAC task showed more
specific sequential effects and suggest that these effects are
driven by relative differences in difficulty, and not neces-
sarily uncertainty (ambiguity). We further show that in
this task, explicitly incorporating trial properties into re-
sponse time modeling via drift rates is fundamental to re-
covering these sequential effects (Figure 5).

We also note the value of simple parametrizations of trial properties: by explicitly modeling only relative increases or
decreases, we were able to recover substantially more individuals who were sensitive to sequential effects. Thus, we
have found strong evidence of effects that are likely widespread and therefore should be explicitly accounted for in all
measures (Figure 3). Indeed, this could be one reason why task measures do not seem to correlate with each other or
have as good test-retest reliability as other measures like surveys [6].
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