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Abstract

The incredible specificity and fidelity of human memory en-
coding is thought to be supported by a process known as pat-
tern separation (Marr, 1971). Behaviorally, pattern separation
has been measured using the Mnemonic Similarity Task (MST;
(Stark, Kirwan, & Stark, 2019)), an object recognition task
with added similar “lure” images, from which a key metric,
the Lure Discrimination Index (LDI) is calculated. Supported
by an extensive literature validating its predictive power, this
measure is gaining increasing use as a diagnostic of cognitive
decline and neurological dysfunction. The exact mechanism
through which this behavioral measure of pattern separation
reflects the underlying neural computations is, however, un-
clear. In particular, choices alone cannot in principle distin-
guish the degree to which a given behavior results from signal-
based discrimination of the object in question (i.e. the puta-
tive separated patterns) versus a more general tendency to in-
hibit or excite responses (e.g. response caution). Here, we
distinguish these potentially co-contributing factors by mod-
eling response times using a sequential sampling framework
that identifies independent contributions to choices made by
signal-noise discrimination and response thresholding. Across
two independent datasets encompassing a lifespan sample (to-
tal N =307, ages 8-89), we find that both factors reliably con-
tribute to response behavior, though the signal-noise discrim-
ination parameters (accumulator drift rates) explain a greater
proportion of variance across all subjects. Further, we present
evidence that both sets of parameters derived from response
time modeling are more stable measures than those derived
from choices alone. Taken together, these findings suggest a
novel, mechanistically interpretable approach to understanding
pattern separation-related behavior in a widely-used diagnostic
measure.
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Introduction

How do individuals encode objects in memory, and how does
the distinctiveness of encoding affect behavioral expressions
of recognition? These functions are thought to be supported
by a process known as pattern separation, whereby simi-
lar sensory or latent input patterns are projected into higher-
dimensional space to create highly distinct patterns that sup-
port later discrimination among fine degrees of difference
(Stark et al., 2019). Traditionally, this process has been at-
tributed to the hippocampus, a critical brain structure for
learning and memory (Long, Lee, & Kuhl, 2016; Marr, 1971;
Stark et al., 2019). Computational models predict that the
more distinct object representations are (i.e. the “better” an
individual is at pattern separating), the better an individual
will be able to discriminate between objects that were seen
previously and those that weren’t. In particular, people who
are better at pattern separating should be less susceptible to

interference when novel objects are similar to the previously
seen objects.

The most widely used behavioral measure of pattern sepa-
ration, known as the Lure Discrimination Index (LDI), stems
from the 3AFC Mnemonic Similarity Task (MST), a modi-
fied object recognition task (Stark et al., 2019). In the typical
version of this experiment, individuals first complete a learn-
ing phase where they study a collection of object pictures.
Then, during the recognition phase, individuals see a series
of objects of one of three types: repeats, or objects they had
seen before during learning; /ures, which vary in degrees of
similarity to the repeats; and foils, which are totally new ob-
jects never seen before in the experiment. Thus responses on
these three trials can be analyzed to quantify how sensitively
an individual discriminates between what they have, and have
not seen before. This measure, the LDI, has been shown to
correlate with standard behavioral and physical measures of
cognitive decline and neurological dysfunction (Stark et al.,
2019).

It is however an open question as to what aspects of recog-
nition memory behavior are measured by the LDI. Specifi-
cally, it is unclear to what degree LDI solely reflects the ac-
tual “separation” of the underlying memory representations
(in Signal Detection Theory terms, the separation between
signal and noise distributions), versus more general response
selection processes (e.g. the threshold for response execu-
tion). To the extent that LDI is indeed a measure consistent
with hippocampal pattern separation, we would predict the
latter: that it would correspond with an increase in signal to
noise ratio (Long et al., 2016).

Sequential sampling models of response time provide an
excellent method to assess these separable influences on
recognition memory. This family of models, specifically the
Linear Ballistic Accumulator which we use in this paper, ro-
bustly distinguishes separable contributions to behavior of
both signal-noise separation (as drift rate) and response ex-
ecution (as threshold/boundary or starting point) (Brown &
Heathcote, 2008).

Here, we model response times to examine the relation-
ship between LDI and components of the recognition mem-
ory process. We find evidence for both processes contribut-
ing to measured LDI, examine their relative contributions to
choices, and assess their ability to predict behavior out-of-
sample. Our results support the suggestion that LDI can be
decomposed to isolate a stable, separable signal-based mea-
sure of memory discrimination. This measure may further



improve the reliability and precision with which clinical prac-
titioners can assess a key transdiagnostic process underlying
a wide array of disorders and neurological conditions.

Methods
Data and Experiments

We model two data sets of individuals that completed the
Mnemonic Similarity Task (MST). In this task, participants
initially completed an “encoding” phase where they catego-
rized unique objects as either belonging indoors or outdoors.
They were also told that they would be subsequently tested
on their memory of these objects.

Then, participants made a sequence of recognition choices
during the “test” phase where they identified each object as
either a repeat (seen before during the encoding phase), lure
(similar to an object seen during encoding), or foil (a brand
new object). Participants saw % repeated objects, % lures,
and % foils. There was no feedback after each choice (i.e.
participants were not informed if their choice was accurate
or not) and subjects had up to 10s to make a choice. The
presentation order was fully randomized.

Experiment 1 We model n = 223 adult subjects (ages
18 — 89, median = 41, 141 female). Subjects saw 128 trials
during the encoding phase and made 192 recognition judge-
ments during the test phase. The data was collected in two
modalities: online via Amazon mTurk (n = 173) and in per-
son (n =72).

Experiment 2 We model n = 84 subjects (ages 8 — 25, me-
dian = 15, 53 female). Subjects saw 64 trials during the en-
coding phase and made 96 recognition judgements during the
test phase. The data was all collected online via Amazon
mTurk. All participant ages in Experiment 2 were verified
using photographs of government-issued identification cards.

Choice Behavior Measures

To quantify memory discriminability, we compute the Lure
Discrimination Index (LDI) as in (Stark et al., 2019).

LDI = P( Lure Response | Lure Trial )
— P( Lure Response | Foil Trial )

ey

The LDI provides a sensitive measure of how reliably an indi-
vidual distinguishes object photographs that were seen during
the encoding phase from similar ‘lures’ presented during the
test phase. This measure is typically interpreted as robust in
that the more distinctly an individual encodes a previously
seen object, the less they will be subject to interference from
both similar lures and unrelated foils. We further compute an
individual’s Recognition Score (RS), which quantifies how
well someone remembers previously seen objects:

RS = P( Repeat Response | Repeat Trial ) ?)
— P( Repeat Response | Foil Trial )

Response Time Modeling

We model response times (RT) using a Linear Ballistic Ac-
cumulator model (LBA) (Brown & Heathcote, 2008). Like
other sequential sampling models of RTs, the key parameters
of the LBA include: starting point: the initial bias an individ-
ual may possess, drift rate: the rate of evidence of accumula-
tion, boundary: the amount of evidence needed in order for a
choice to be made, and non-decision time: the time taken for
processes that do not impact the direction of evidence accu-
mulation (e.g. perception). The LBA is a powerful sequential
sampling model that differs from other sequential sampling
models in the following critical ways: a) it can fit n responses
(nAFC), b) it assumes that evidence in favor of each alterna-
tive is accrued independently, and c) that evidence accumula-
tion itself is linear and noiseless. The LBA does remarkably
well in fitting response times and recovers standard patterns
in RT data (Brown & Heathcote, 2008).
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Figure 1: Linear Ballistic Accumulator illustration with mod-
eling assumptions. As the MST is a 3AFC, we allow for three
different accumulators for each possible response. We as-
sume that the boundary, upper boundary of the starting point,
standard deviation of the drift rates, and the non-decision time
(not illustrated) are the same across accumulators. However,
we allow the drift rate means to vary across accumulators,
and constrain the means to sum to 1.

We use the R package rtdists (Singmann et al., 2018) to
implement the LBA. We adhere to the assumptions of the
most simple LBA in that we allow each individual to have the
same upper boundary of starting point distribution (A, hence-
forth referred to simply as starting point or start point), evi-
dence boundary (b, with b > A), and non-decision time (f).
However, we allow for the drift rates to vary by accumulator
(3 accumulators for 3 response types) and apply the scaling
constraint that all drift rates must sum to 1 (i.e. T3 v; = 1).
We allow for drift rates to vary between trial types because
we expect the online process of evidence accumulation to be
differentially affected by the degree of similarity a given ob-
ject has to previously seen objects during the encoding phase.
Following standard practice (Ratcliff, 1981), we also allow
for drift rates to vary by trial. On each trial, drift rates are
drawn from a Normal distribution which has a common stan-
dard deviation (sv) across all three accumulators, and a mean



specific to the trial type. We use Maximum Likelihood Esti-
mation (MLE) to fit all parameters to individual subjects.

Results

In Experiment I, we excluded a total of 20 subjects (13 for
below chance accuracy, 7 for LDI scores below zero) result-
ing in a total of 255 subjects with valid data. In Experiment
2, we excluded a total of 10 subjects (5 for below chance ac-
curacy, 5 for LDI scores below zero) resulting in a total of 74
subjects with valid data.

Choice Behavior

In Experiment 1, individuals chose the correct response 71%
of the time. They were most often correct on Repeat trials
(40% of correct responses) and Foil trials (38%), followed by
Lure trials (22%). In Experiment 2, individuals also chose the
correct response 71% of the time. They were most often cor-
rect on Repeat trials (39% of correct responses) and Foil trials
(38%), followed by Lure trials (23%). LDIs were compara-
ble across experiments (mediang; g2 = 0.37(.3), Figure 2).
Recognition scores were similarly comparable (mediang; =
0.78(.16), mediang; = 0.78(.19)).
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Figure 2: Lure Discrimination Indices for both experiments
median(IQR) = 0.37(0.3).

Response Time Modeling

In Experiment 1, median (IQR) RTs (seconds) for each re-
sponse type were as follows: Repeat = 1.14(0.42), Lure
= 1.29(0.47), and Foil = 1.16(0.46). In Experiment 2, me-
dian (IQR) RTs for each response type were as follows: Re-
peat =1.07(0.43), Lure = 1.29(0.43), and Foil = 1.12(0.45).

Our LBA parameter inferences are presented in Table 1.

Both experiments show the highest median drift rate on the
Repeat accumulator, followed by the Foil accumulator, and
lastly the Lure accumulator. Both experiments show that sub-
jects have the same median response caution, which is often
defined as the difference between the boundary and starting
point (b — A, median = 0.28).

Parameter Exp. 1 Exp. 2

Starting Point (A) 0.42(0.21) 0.45(0.28)
Boundary (b) 0.70(0.21)  0.73(0.27)
Non Decision Time (f)) ~ 0.45(0.22)  0.39(0.20)
Drift: vRepeat 0.39(0.12)  0.39(0.13)
Drift: vi ure 0.26(0.15)  0.27(0.13)
Drift: vgoi 0.36(0.06) 0.34(0.06)
Drift: Standard Deviation  0.24(0.32)  0.24(0.27)

Table 1: Maximum Likelihood Estimates (median(IQR)) for
LBA parameters for both experiments. We fit a total of 6
parameters and the seventh, drift rate for the Foil accumulator
IS VR =1-— VRepear — VLure-

We next confirmed qualitatively that our model had good
descriptive adequacy. To do this, we overlaid predicted RT
quantiles on observed RT quantiles. We present an example
of subject fits across ages and correct/incorrect responses in
Figure 3, noting that most subjects were qualitatively well fit
by the data.
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Figure 3: Example plots where observed quantiles are over-
laid with predicted quantiles for subjects old and young, cor-
rect and incorrect. Purple markers are observed RT quantiles
for repeat trials, red for lures, and green for foils. Black lines
are predictions from LBA. The horizontal vertical line repre-
sents the true proportion of repeat, lure, and foil trials (%).

Relating LBA to MST

As our key question of interest focuses on relating LBA pa-
rameters (components of an individual’s memory retrieval
and recognition processes — in particular drift rates and
boundary) to how distinctly people encode memories, we as-
sessed whether there were any correlations between the LBA
parameters and behavioral scores (LDI and RS). We report
the non-parametric Kendall’s T rank correlation coefficient in
the following analyses and adjust for multiple comparisons
using the Bonferroni-Holm correction.



We found significant correlations between drift rates and
LDI as shown in Figure 4. In particular, we found a negative
correlation between the drift rate for the Repeat Accumulator
and LDI in Experiment I (Tkendan = —0.276,p < 0.01) and
Experiment 2 (Tkendan = —0.20, p < 0.05) trials. This neg-
ative correlation is to be expected as the LDI is calculated
to be sensitive to how well a person is able to discriminate
between novel items, the complementary process to recog-
nizing old items. We further found a positive correlation be-
tween the Lure Accumulator drift rate and LDI in Experiment
1 (Tkendal = 0.15, p < 0.01). Finally, the correlations between
drift rates for the Foil Accumulator and LDIs in Experiment 1
or Experiment 2 were not significant after adjusting for mul-
tiple comparisons.

We also observed a significant negative correlation
between response caution (b — A) and LDI (Tgendanl =

—0.14, p < 0.05) in Experiment I only.
Correlation Strengths To compare correlation strengths,

we used bootstrapping to resample the data and calculate
Kendall’s ts and the differences between each pair of Ts (e.g.
T4 —Tp). We then examined whether the bootstrapped 95%
confidence interval distributions of the differences between
each pair of correlations included zero. If they did not in-
clude zero, we interpreted this as evidence as a rejection of
the null (no difference).

Critically, we found that in Experiment 1, all three
of the bootstrapped distributions of correlation differences
between LDI and boundary, and LDI and the three ac-
cumulator drift rates did not include zero: boundary-
Repeat (0.0973,0.282), boundary-Lure (—0.492,—0.218),
boundary-Foil (—0.412,—0.1479), Figure 5. We note that
the CIs go in opposite directions for the Repeat vs Lure
and Foil accumulators because of the negative correlation be-
tween LDI and Repeat accumulator drift rates. These results
also held when we compared correlation strengths between
response caution and the three accumulator drift rates: re-
sponse caution-Repeat (0.054,0.265), response caution-Lure
(—0.456,—0.137), response caution-Foil (—0.397,—0.139).
In Experiment 2, however, all of the CIs contained
zero:  boundary-Repeat (—0.139,0.298), boundary-Lure
(—.451,0.052), boundary-Foil (—0.350,0.105). Again, the
same held for response caution: response caution-Repeat
(—0.142,0.272), response caution-Lure (—0.312,0.101), re-
sponse caution-Foil (—0.345,0.125).

We also found that the correlations between the drift rate
accumulators and LDIs were significantly different in Exper-
iment 1. Specifically, the LDI-Repeat accumulator thresholds
were stronger than the LDI-Lure accumulator drift (-0.680,
-0.326) and the LDI-Foil accumulator drift (-0.565,-0.309).
We further found that the correlation between LDI-Lure accu-
mulator drift was stronger than the LDI-Foil accumulator drift
(0.026,0.357). In Experiment 2, we only found that the LDI-
Repeat accumulator drift correlation was significantly greater
than the LDI-Foil accumulator drift (-0.381,-0.043).
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Figure 4: Correlations between Accumulator drift rates and
the LDI across both experiments. We find statistically signif-
icant correlations between the drift rate of the Repeat accu-
mulator and LDI in both experiments (tg; = —0.276, gy =
—0.26). We further find a significant correlation between the
drift rate of the Lure accumulator and LDI in Experiment 1
(tg1 =0.15)

Stability of Measures

Given the correlation between LDI and drift rates in both ex-
periments, we wanted to compare the stability of these mea-
sures. Specifically, we wanted to see if the drift rate may in
fact be a more stable behavioral measure than LDI. To eval-
uate the stability of the fit parameters and behavioral mea-
sures, we performed a split-halves analysis. Specifically, for
each subject, we separately estimated LBA parameters, LDI,
and RS on randomly selected halves of trials 1000 times (i.e.
2000 halves total). We then computed difference scores of all
parameter estimates for each split half analysis, per subject.
Finally, we normalized the difference scores to be between 0
and 1, which we report in Table 2.

To quantify differences between MSE across LBA and be-
havioral parameters (i.e. stability in measurements), we use
paired t-tests and again correct for multiple comparisons us-
ing the Bonferroni-Holm correction. For Experiment 1, we
found that all LBA parameters except the drift rate for the
Foil accumulator had lower split half difference scores than
the behavioral standard LDI (p < 0.01). A smaller subset of
these parameters (starting point, boundary, Repeat and Lure
accumulator drift rates) were also more stable than the Recog-
nition Score (p < 0.01). Finally, we find that the Lure accu-
mulator drift rate is more stable than the start point and the
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Figure 5: Boostrapped correlation differences between
boundary and LDI, and drift rate and LDI for the three differ-
ent accumulators in Experiment 1. All three 95% Cls do not
include zero: boundary-Repeat (0.0973,0.282), boundary-
Lure (—0.492,—0.218), boundary-Foil (—0.412,—0.1479).

Parameter
Starting Point (A) ( ) ( )
Boundary (b) (0.10) (0.10)
Non Decision Time (#) 0.51(0.10)  0.50(0.10)
Drift: VRepeat 0.49(0.10) 0.47(0.10)
Drift: vy 0.38(0.08) 0.50(0.10)
(0.12) (0.13)
(0.09) (0.10)
(0.13) (0.15)
(0.12) (0.12)

Exp.1
0.49(0.10
0.48(0.10

Exp. 2
0.47(0.09
0.49(0.10

Drift: vgop 0.54(0.12) 0.52(0.13
Drift: Standard Deviation ~ 0.49(0.09) 0.50(0.10
Lure Discrimination Index  0.53(0.13) 0.49(0.15
Recognition Score 0.50(0.12)  0.52(0.12

Table 2: Normalized differences (median(IQR)) in split half
analyses for all parameters estimated by the LBA model and
(below the line) for standard behavioral measures derived
from the MST.

boundary (p < 0.01), suggesting that the experiment is indeed
capturing a specific behavioral marker of pattern separation,
not just a general shift in response caution (Figures 6, 7).

In Experiment 2, which used a shorter version of the task
and included children as young as 8 years old, we found
somewhat converse results. Only the start point and re-
peat accumulator drift rates were more stable than the LDI
(p < 0.01), whereas all LBA parameters except the Foil ac-
cumulator drift rate were more stable than the Recognition
Score (p < 0.01). Further, we find the converse result to Exp.
1 where the start point and boundary are actually more stable
than the Lure accumulator drift rate (p < 0.01, Figure 7). We
speculate two possible explanations for these seemingly dis-
cordant findings on parameter stability across datasets. For
one, the differences could be due to age differences across
the two datasets. Specifically, it may be that younger sub-
jects in the sample are still actively developing the neurobio-
logical mechanisms that support episodic memory (Ghetti &

Experiment 1: 18 - 81 years Experiment 2: 8 - 25 years
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Figure 6: Split half difference scores for starting point,
boundary and the Lure accumulator drift rate across both ex-
periments.

Bunge, 2012). Another, not mutually exclusive, explanation
could be due to the reduced number of trials in the second
dataset, which could explain a greater emphasis on response
caution among some of the participants as they adapt to the
task demands. Further work will be needed to examine the
generalizability of these findings in other datasets.
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Figure 7: Mean group differences in parameter stability com-
paring: left, grey — Start Point and Lure accumulator drift
rate and right, magenta — Boundary and Lure accumulator
drift rates across both experiments. A positive value indi-
cates that the Lure drift rate parameters are more stable than
the response caution parameters (Start Point, Boundary), and
vice versa.

Discussion

We present one of the first model based analysis of response
times in the Mnemonic Similarity Task (MST). We use a sim-
ple sequential sampling model, the Linear Ballistic Accumu-
lator (LBA), where evidence is accumulated independently
for all three possible responses.

Our approach decomposed responses for this task into sep-



arable components of response execution and signal detec-
tion, allowing us to assess the individual stability of these
processes, across subjects. We hypothesized that either or
both the response caution (starting point, A, boundary, b, or
boundary minus starting point, b — A) or drift rate, v;, to lure
or foil trials would be key variables of interest for behavioral
discrimination performance. Specifically, if the LDI is indeed
a measure of pattern separation, we would expect higher drift
rates on Lure and/or Foil accumulators, suggesting a boosted
signal. At the same time, to the extent LDI reflects individ-
ual variability in response caution, boundary, or starting point
bias, then this would be reflected in these terms.

We found that, although both parameters were significantly
correlated with LDI, the drift rates were both a stronger pre-
dictor of the standard behavioral measure, and in Exp 1, also
a more stable within-subject measurement for the Lure ac-
cumulator. The latter point is of considerable interest given
the extensive evidence that MST is a useful individual dif-
ference marker, predicting neurological dysfunction and cog-
nitive performance in a wide variety of clinical and labora-
tory measures (Stark et al., 2019). Further, we were able
to recover significant individual differences using parameters
derived from our sequential sampling model. In particular,
we found differences in the stability of the key parameters
of scientific interest (response caution: starting point, bound-
ary and signal to noise: accumulator drift rates) as a function
of data set - children and younger adults in the shorter Exp.
2 had more stable parameter estimates for response caution
parameters, whereas the young and older adults in Exp. I,
which had more trials, had more stable parameter estimates
related to signal to noise discrimination.

The finding that LDI is strongly influenced by evidence
strength supports the suggestion that MST measures the de-
gree of pattern separation underlying these responses. Fur-
ther, our findings may enhance the application of MST in
several ways. First, the finding that drift rates are a more
stable within-subject measure suggests that it could be used
to more finely predict the same sorts of outcomes currently
predicted by LDI. Future work should examine the correspon-
dence of this drift rate to cognitive and neurological outcomes
of interest. Second, the use of sequential sampling models
can allow researchers to extract trial-by-trial timeseries re-
flecting putative underlying computations that drive behav-
ior, which should support analysis of more precisely defined
functional neuroimaging measures (Long et al., 2016). Fi-
nally, the robust statistical frameworks often used to fit these
sorts of models may allow further refinement of the approach,
producing even more stable trait-level estimates by, e.g., in-
corporating informative priors and models of contaminant be-
havior, and integrating trial-wise neural measures to simulta-
neously test mechanistic hypotheses and improve model fit to
behavior (Turner, Palestro, Miletié, & Forstmann, 2019).

In sum, we have provided initial evidence that joint mod-
eling of choices and response times can improve inference
of trait-level properties underlying a widely used clinical and

laboratory assessment tool. Future work will examine the ro-
bustness of this new metric in the many settings in which the
MST has been applied.
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