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Abstract

In patch leaving problems, foragers must decide between en-
gaging with a currently available, but depleting, patch of re-
sources or foregoing it to search for another, potentially bet-
ter patch. Overharvesting, or staying in the patch longer than
what is optimally prescribed, is widely observed in these prob-
lems. Most previous explanations for this phenomenon focus
on how foragers’ mis-estimations of the environment could
produce overharvesting. They suggest that if the forager cor-
rectly learned the environment’s quality, then they would be-
have according to Marginal Value Theorem (MVT). However,
this proposal rests on the assumption that the forager has full
knowledge of the environment’s structure. Rarely does this
occur in the real world. Instead, foragers must learn the struc-
ture of their environment. Here, we model foragers as pairing
an optimal decision rule with an optimal learning procedure
that allows for the possibility of heterogeneously-structured
(i.e. multimodal) reward distributions. We then show that this
model can appear to produce overharvesting, as measured by
the common optimality criterion, when applied to the usual
tasks, which employ homogeneous reward distributions. This
model accounts for behavior in a previous serial stay/leave
task, and generates novel predictions regarding sequential ef-
fects that agree with participant behavior. Taken together, these
results are consistent with overharvesting reflecting optimal-
ity with respect to a different set of conditions than MVT and
suggests that MVT’s definition of optimality may need to be
adjusted to account for behavior in more naturalistic contexts.
Keywords: foraging; structure learning; reinforcement learn-
ing; decision-making;

Introduction
Marginal Value Theorem (MVT; Charnov, 1976) provides
the optimal decision rule for maximizing reward in patch-
foraging tasks: leave the current patch of resources when the
estimated reward rate drops below the average reward rate of
the global environment. The rule sets aside the question of
how the environment is learned - it is assumed that the for-
ager has full knowledge of the environment: overall quality
and any structure (states) to the distribution of rewards.

Foragers, including rodents, primates, and humans, how-
ever, demonstrate a consistent bias towards staying too long
in the current patch, or “overharvesting” it. Several expla-
nations have been proposed. Some accounts accept that the
forager has full knowledge of the environment and attribute
overharvesting to different biases and goals irrespective of
the environment. These include sunk costs (Wikenheiser
et al, 2013), impatient time preferences (Kane et al, 2019),
and maximizing marginal utility over reward (Constantino &
Daw, 2015). However, rarely is a forager fully certain of their

environment. Given this broken assumption, previous work
has focused on adapting MVT to include learning of the en-
vironment’s quality (e.g. average richness) and explored er-
rors in this learning as a potential mechanism of overharvest-
ing. For instance, biased updating of beliefs can explain over-
harvesting in non-stationary environments (Garrett & Daw,
2020). Uncertainty over environment quality from insuffi-
cient experience can also explain patterns of over and under
harvesting (Kilpatrick, Davidson, & El Hady, 2021). How-
ever, this work suggests that with sufficient experience devi-
ations from MVT optimality should diminish.

In previously proposed mechanisms of overharvesting, less
focus has been placed on how the environment’s structure (i.e.
distribution of rewards) is learned relative to how its quality
has been learned. Most prior work assumes that the forager
knows the different patch types within the environment (e.g.
richer or poorer). However, in naturalistic settings, foragers
are not given this information, they must infer it from expe-
rience alone. Here, we question this assumption and propose
that the structure learning process can itself explain the ap-
pearance of overharvesting. We developed a computational
model of how foragers might learn the structure of the envi-
ronment’s reward distribution (the number of modes). First,
we show in simulation that the model can generate overhar-
vesting in a single patch-type environment. Then, we ex-
amine if the model can explain behavior in a previous serial
stay/leave decision task. Finally, we test a novel prediction
of the model — that harvesting behavior depends on the or-
der of shifts in volatility — and show that human behavior
agrees with the model’s predictions. Taken together, these re-
sults demonstrate a novel mechanism for overharvesting and,
more broadly, brings into question whether MVT is the right
optimum to compare behavior to as its assumptions fail to
meet the conditions of natural environments.

Methods
Model
Structure learning model We apply rational models of cat-
egorization (Anderson, 1991; Sanborn, Griffiths, & Navarro,
2006) to capture how foragers learn the latent structure of the
environment. The model (adapted from Harhen, Hartley, &
Bornstein, 2021) allows for the possibility that patches be-
long to different categories varying in richness. The num-



ber of patch categories is not pre-specified and is instead in-
ferred from experience. The forager begins with assumptions
of how their observations were generated. They assume that:
1. Rewards exponentially deplete with each harvest; 2. Each
patch belongs to a category; 3. Each category is characterized
by a unique distribution over depletion rates; 4. A new patch
is more likely to belong to a popular category (i.e. many cate-
gory members); 5. There is some probability that a new patch
will belong to a new, previously unobserved category.

Foragers combine these prior beliefs with observed data
(depletion rates) to generate new beliefs. The forager then
compares the expected reward from harvesting the current
patch, vstay, to a reference point, vleave. Vstay is estimated as
the last received reward multiplied by the expected depletion
rate. Having categorized the patch, the forager can better pre-
dict the upcoming depletion rate.

MVT’s reference point averages overall all previous
patches as it assumes homogeneous reward distribution. Our
model allows for the possibility that the environment is het-
erogeneous (e.g. has multiple patch types or multiple modes),
so the reward rate of one patch may not be predictive of all
other patches’ reward rate. Consequently, our model’s ref-
erence point uses patch experiences integrated over a much
shorter time-scale. The reference point for the current patch
depends only on the reward rate of the last encountered patch
of a different type/category.
Generative model. At trial t, ct−1 reflects the assignment of
all patches up until the current trial. Each new patch can be
assigned to an existing category or a new category. The prior
probability of it belonging to an existing category, k, is pro-
portional to the number of patches already assigned to that
category, Nk, at trial t. The prior probability of it belonging to
a new category is proportional to the parameter α which re-
flects how densely distributed patches are across categories.

P(ct = k|ct−1) =

{
Nk

t−1+α
if k is an old cluster

α

t−1+α
if k is a new cluster

(1)

Each category is associated with its own normal distribu-
tion over depletion rates, parameterized by µc and σ2

c . When
a patch is assigned to an existing category, depletion rates ob-
served in that patch update the category-specific distribution.
Inference model. Given a set of observed depletion rates up
to trial t, Dt , the forager’s posterior beliefs over patch assign-
ments to categories, ct , are described by:

P(ct |Dt) =
P(Dt |ct)P(ct)

p(Dt)
(2)

Exact computation of the posterior is computationally in-
tractable, so we use particle filtering as an approximate in-
ference algorithm (Gershman, Niv, & Blei, 2010; Sanborn,
Griffiths, & Navarro, 2006). The posterior is represented with
a set of m particles. Each particle represents a possible as-
signment of patches to categories. Some particles will have
the same category assignments. The posterior probability of a

category assignment is proportional to the number of particles
within the set which contain that assignment. To approximate
the posterior distribution, we can average over the particles:

P(ct |Dt)≈
1
M

M

∑
m=1

δ(ct − c(m)
t ) (3)

where δ(·) is 1 when its input is 0, and 0 otherwise.
We can then approximate the prior distribution over cate-

gory assignments for t+1 trials with

P(ct+1|Dt) = ∑
ct

P(ct+1|ct)P(ct |Dt)

≈ ∑
ct

P(ct+1|ct)
1
M

M

∑
m=1

δ(ct − c(m)
t )

=
1
M

M

∑
m=1

P(ct+1|c
(m)
t+1) (4)

We can then approximate the posterior for trial t +1 with:

P(ct+1|Dt+1) ∝ ∑
ct

P(dt+1|ct+1,Dt)P(ct+1|Dt)

≈ 1
M

M

∑
m=1

P(dt+1|ct+1,Dt)P(ct+1|c
(m)
t+1) (5)

M samples are drawn from this distribution to create a new
particle set. 50 particles were used for all simulations. An in-
termediate number of particles allows for fairly accurate pre-
diction while being psychologically plausible and capable of
capturing the variability and order sensitivity people display
(Sanborn, Griffiths, & Navarro, 2006).

Prediction To predict how much the harvest will deplete
next, possible depletion rates are sampled from the forager’s
inferred generative model of the environment, and these sam-
ples are averaged over. Depletion rates are sampled in the
following way: first, a category is drawn with probability pro-
portional to its posterior probability, and then, a depletion rate
is drawn from the category-specific normal distribution over
depletion rates. In our simulations, we used 1000 samples.

Single Patch Type Learning model Patches are assumed
to all belong to the same category. This is equivalent to setting
alpha to 0. This should generate behavior similar to what
MVT would produce, with the additional ability to account
for the variance of observed rewards.

Making a choice
To make a decision, the forager compares the value of stay-
ing with the value of leaving. The value of staying, vstay, is
the reward received from the last harvest multiplied by the
predicted depletion rate. The value of leaving, vleave, is cal-
culated as the average reward rate in the last visited patch of a
different category multiplied by the time that would be spent
harvesting it. This serves as a more dynamic, shorter time
scale reference point than MVT’s.



Experiment 1: Simulating the structure learning
model in single patch type environments
We propose that overharvesting may emerge from infer-
ring more structure in the environment than what is actually
present. In particular, inferring that the environment has mul-
tiple patch types when it is, in fact, a single highly variable
patch type. Simulated agents visited patches to harvest for
resources. They decided between harvesting the current ex-
ponentially depleting patch or spending more time to travel
to a new, unharvested patch (harvest time = 3.5, travel time
= 15.5 sec). Depletion rates were drawn from a Beta dis-
tribution parameterized by a = 1.5 and b = 1.5 . The mean
depletion rate was 0.5 with a SD of 0.25.

Experiment 2: Reanalysis of Constantino & Daw
(2015)
We fit our model to data from Constantino & Daw (2015).
Participants harvested trees for apples. After each harvest,
they could decide between harvesting again or traveling to a
new tree and incurring a time delay. The number of apples
gained per harvest depleted exponentially. Participants for-
aged in four different environments that varied in their mean
depletion rate and travel time delay. These two features con-
trolled the overall richness of the environment (i.e. higher
depletion rate → richer, shorter travel time → richer). Criti-
cally, in this experiment, participants were told when (though
not how) the environment changed.

Experiment 3: Novel task
Participants We recruited 82 participants from Amazon
Mechanical Turk (ages 23 - 63, Mean= 38, SD=10). Partici-
pation was restricted to workers who had completed at least
100 prior studies with at least 99% approval rate. Participants
were paid $6 as a base payment and a bonus contingent on
performance ($0-$4). We excluded 7 participants for failing
at least one catch trial or having average patch residence time
2 standard deviations above or below the group mean.

Procedure We adapted from Harhen et al (2021) a novel
variant of the Constantino & Daw (2015). The task was
framed as a space mining game where participants were told
to collect as many space gems as possible. On each trial, par-
ticipants had to decide if they wanted to continue digging for
gems on the current planet or travel to a new planet. If they
stayed and harvested, they watched a short animation of an
astronaut digging and then the reward would be displayed. If
they chose to travel to a new planet, they watched an anima-
tion of a flying rocket ship and then an image of a trial-unique
alien was displayed for 5 seconds. Participants had 2 seconds
to make their choice. If they did not make a decision, they had
to wait another 2 seconds before making another choice. To
ensure participants’ reaction times did not affect their reward
rate, the reaction time (RT) was subtracted from the ensuing
dig or travel animation display time.

Participants completed 6 blocks lasting 5 minutes each.
Blocks varied in the spread of depletion rates experienced.

Depletion rates in highly volatile blocks were sampled from
a Beta distribution with parameters a = 1 and b = 1. The mean
depletion rate was 0.5 with a SD of 0.29. Depletion rates in
the least volatile blocks were sampled from a Beta distribu-
tion with a = 20 and b = 20 (Mean = 0.5, SD = 0.078). In the
medium volatility block, depletion rates were sampled from
a Beta distribution parameterized by a = 4 and b = 4 (Mean
= 0.5, SD = 0.17). Participants were told when a new block
began, but were not told if and how it changed. Participants
were placed in one of two conditions that differed in the order
of blocks encountered. In the high early volatility condition
the first two blocks were the most volatile, and the third and
fourth blocks were the least volatile. In the other condition
(low early volatility), the order of the blocks first four blocks
were reversed. In both conditions, the last two blocks were of
medium volatility. By matching the last two blocks on volatil-
ity, we were able to directly compare behavior between the
conditions.

Model fitting procedure
The MVT learning model’s free parameters were beta (soft-
max temperature), c (stay/leave bias), alpha (learning rate),
and ρ0 (initial global reward rate). For both the tasks, the free
parameters for the structure learning model were the prior
over cluster dispersion (alpha), and prior over environment
richness. For the Constantino & Daw (2015) task, partici-
pant data was characterized by the mean patch residence time
(PRT) in each of the blocks. For the novel variant of the
task, participant data was characterized by the mean patch
residence time (PRT) relative to MVT optimal in each of the
blocks. We compared this to the same measures predicted
by the model. The loss for a parameter set was calculated as
the sum of squared error between the participant’s data and
the model’s simulated data averaged across 10 simulations.
500 sets of parameters were sampled from a Sobol Sequence,
and the set of parameters that produced the lowest sum of
squared error was chosen. Generating candidate parameter
sets from a Sobol Sequence rather than a grid, can provide
superior fits, particularly, when there are more than two pa-
rameters (Bergstra & Bengio, 2012).

Model comparison
To compare models, we used cross validation. We held out
one test block and then fit the model using the PRTs for the
remaining blocks. The model error was then measured by
taking the absolute difference between the model prediction
for the held-out block and the participant’s measure for that
block. We repeated this procedure for every possible combi-
nation of fit blocks and test block and then averaged over the
errors to compute the cross validation score.

Results
Experiment 1: Simulating the structure learning
model in single patch type environments
We first simulated variants of the model which differed in
whether they allowed for the possibility of multiple patch



Figure 1: Task Designs. A. Participants sequentially decide whether to dig or travel to a new planet. B. Novel task volatility
structure The experiment is broken up into six blocks. Blocks differ in the distribution from which depletion rates are sampled.
Some have high variance, others have low variance, and some fall in between. The two conditions, high early volatility and low
early volatility, differ only in the order of blocks.

Figure 2: Results from Experiment 1 Overharvesting and
under harvesting behavior depends on both the prior over en-
vironment complexity, alpha, and the prior over environment
richness. Error bars are 95% CI.

types in highly variable a single patch environment. When
allowing for multiple patch types to be inferred (alpha > 0),
simulated agents did so. Consistent with our prediction, ratio-
nal behavior that began with this mismatch between environ-
ment type and assumptions resulted in overharvesting when
the environment was initially believed to be poor (Figure 2).
However, when the true environment structure was assumed
(single patch type, alpha = 0), behavior was MVT-optimal.
Underharvesting behavior emerged from an initial belief that
the environment was rich regardless of assumptions about the
environment’s structure.

Experiment 2: Reanalysis of Constantino & Daw
(2015)
Constantino & Daw found that Marginal Value Theorem
(MVT) with an error-driven learning rule better explained

participants’ data than a temporal-difference learning model.
The MVT learning model had four free parameters: learn-
ing rate (α), softmax temperature (β), initial global reward
rate (ρ0), and stay-leave bias (c). C captured an individual’s
bias to stay in the current patch. We reasoned that this bias
parameter would be instrumental in capturing behavior that
deviated from MVT optimality. To test this hypothesis, we fit
the data with the MVT model with and without c. We found
that c was indeed critical to capturing participant’s overhar-
vesting behavior (Figure 3, t(24) = -6.04, p < 0.0001). Given
the importance of this parameter, how does this bias emerge?

When comparing both the MVT and the structure learn-
ing model with a stay/leave bias, neither was superior to the
other (t(24) = -1.23, p = 0.23). However, when comparing
the MVT and structure learning model without the stay/leave
bias, the structure learning model was superior (Figure 3, Ta-
ble 1, t(24) = 3.63, p = 0.001). Taken together, these results
suggest that the (nonstandard) stay/leave bias added to the
MVT model in Constantino & Daw (2015) — added to place
it on par with the temporal-difference learning model used as
an alternative hypothesis in that study — was a primary fac-
tor in the fit quality of that model, perhaps due to the fact that
the long blocks in that experiment allowed learning to reach a
steady state. Here, we show that the optimal structure learn-
ing procedure can account for much if not all of the variance
that this parameter adds, while rooting the behavior in a prin-
cipled, rational learning approach.

Experiment 3: Novel Task
We next tested whether human behavior reflected a novel pre-
diction of the structure learning model, namely sensitivity to
the order in which patch volatility is experienced (Figure 1b).



Figure 3: Results from Experiment 2. Each bar reflects
the difference in cross-validation scores between the MVT
learning model without c, the stay-leave bias parameter, and
the structure learning model, also without a c, for an individ-
ual participant. Positive values indicate the structure learning
model provides a better fit to the participant’s data. Overall,
22 out of 25 participants were better fit by the structure learn-
ing model than by MVT.

Model predictions & participant behavior Our model
predicts that the order of volatility shifts in the environ-
ment will affect how patch categories are inferred and con-
sequently, stay/leave decisions. When prior beliefs about en-
vironment structure and/or richness do not align with experi-
ence in the environment, the model infers more patches than
there really are, leading to overharvesting. The pattern of ex-
perience in an initially predictable environment discourages
inferring multiple patch types such that there is less of an in-
fluence of a prior bias towards complexity on foraging behav-
ior.

Across the population, participants in both conditions over-
harvested roughly equally (t(73)=0.21 p = 0.83). We next ex-
amined the fit parameters to identify heterogeneity the popu-
lation. Most participants were better fit with alpha as a free
parameter (Figure 4a, t (74) = 2.90, p = 0.004). Participants
in both conditions had a similar range of fit alpha parame-
ters (Figure 4b, t(73) = -0.73, p = 0.47). However, match-
ing the simulation results in Experiment 1, the inferred prior
over environment richness differed between conditions. Par-
ticipants in the high early volatility condition had lower prior
estimates of environment richness or quality (Figure 4c, t(73)
= -3.30, p = 0.001). Participants were split into high and low
parameter groups (alpha and prior over environment richness)
based the median value of the parameter. We looked for dif-
ferences in overharvesting/underharvesting behavior between
these groups. There were no differences in behavior between
the high and low alpha group in either condition (Figure 4d,
high early volatility - t(36) = 0.32, p = 0.75; low early volatil-
ity - t(34) = 0.54, p = 0.59). However, when splitting by prior
over environment richness, those in the low group overhar-
vested more than those in the high group in both conditions

(Figure 4e, high early volatility - t(35) = -3.82, p < 0.001;
low early volatility - t(35) = -4.105, p < 0.001).

Discussion
We asked if the process of learning the environment’s struc-
ture could explain overharvesting behavior in certain con-
texts. To address this question, we developed a computa-
tional model of how foragers could learn environment struc-
ture and leverage it during decision making. First, in sim-
ulation, we showed that allowing the possibility of inferring
multiple patch types results in overharvesting in highly vari-
able single patch type environments. Next, we showed that
our structure learning model could capture behavior in a pre-
viously collected stay/leave task. In this prior work, a model
with error-driven learning of environment quality and a MVT
decision rule was found to replicate participant’s behavior.
However, its success in fitting the data critically depended
on a stay-leave bias parameter to account for overharvesting.
Our model, on the other hand, provided a superior fit to par-
ticipants’ overharvesting relative to the MVT model without
a stay-leave bias parameter. A possibility is that some of the
variance explained by the stay-leave bias parameter emerged
from the learning process formalized in our model. Finally,
we tested a novel prediction of the structure learning model.
Namely, that participant responses should be sensitive to the
order of shifts in volatility. Participant behavior was consis-
tent with this prediction, providing further evidence in favor
of the model.

Taken together, these results suggest that seemingly sub-
optimal behavior like overharvesting can be explained with
statistically optimal learning of environment structure and
a prior expectation of heterogeneous environments. This is
consistent with previous work demonstrating that people will
infer structure or observe non-existent patterns even when
there is no incentive to do so (Yu & Cohen, 2009) and even
when it’s disadvantageous (Collins & Frank, 2013; Gaiss-
maier & Schooler, 2008). This prior bias towards structure
possibly emerges from it being frequently incentivized in the
real world.

Potentially, MVT’s definition of optimality may need to be
expanded. In particular, foraging has been suggested to pro-
vide a decision context that we were evolutionarily adapted to
and consequently, likely to yield normative behavior. How-
ever, MVT assumes an environment that does not concord
with naturalistic environments which tend to be heteroge-
neous, non-stationary, and exhibit multiple scales of spatio-
temporal regularities. Prior work demonstrates that foragers
do consider this multi-scale information in adapting their
search strategies in naturalistic settings (Fagan et al., 2013).
Future work could explore extending the model to include
multiple scales of reference points — one integrating over a
longer time scale like MVT and another integrating over a
shorter time scale as presented here. The present work and
potential future work could suggest optimality in foraging
may need to be redefined to incorporate dealing with the mul-



Figure 4: Results from Experiment 3. A. Each bar reflects the difference in cross-validation scores between the structure
learning model with alpha fixed at 0 and the same model when alpha is a free parameter. Positive values indicate the structure
learning model with free alpha provides a better fit to the participant’s data. Overall, 49 out of 75 participants were better fit by
the structure learning model with free alpha than the alpha fixed at 0 model. B-C.Participants’ fit parameters for the structure
learning model. D-E. Participants’ overharvesting/underharvesting behavior separated by a median split on fit parameters from
the structure learning model. Error bars are 95% CI.

tiple scales of uncertainty that natural environments present
foragers with.
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