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PREFACE

How do we decide? Through the early part of the 20th century, the dominant view of
animal behavior was based on the idea that it is driven by reinforcement of learned
associations between a stimulus and a response: The more often an animal is rewarded
after responding a particular way in the presence of a stimulus, the more likely it is to
make that same response the next time it encounters that stimulus. This idea that all
learned behavior is underpinned by stimuluseresponse (S-R) associations (habits),
acquired by a subtle process of reinforcement, was turned on its head by subsequent
research that showed that animals can also use internal models of their environment to
flexibly guide behavior across different environments.

These observations, and the associated theories of what became known as goal-directed
behavior, not only transformed our understanding of behavior but also formed the basis
for entirely new fields of study within psychology, neuroscience, and computer science.
Even so, exactly how we represent what Edward Tolman called the “causal texture of
our environment”dand, consequently, how we use it to decide between actionsd
remains fundamentally unresolved.

Recent years have seen a renewed convergence of cross-disciplinary efforts to under-
stand goal-directed decisions, unearthing surprising results and providing new frameworks
for understanding what has been found. This volume represents the breadth and depth of
this pursuit, collecting observations and ideas from the anatomical to the algorithmic.

The first section begins with a review by Dickinson and Per�ez of how the axioms
of goal-directed learning, which Dickinson laid out 30 years ago, have guided research
into decision-making over that time, as well how both habitual and goal-directed systems
exist alongside each other and arbitrate decision-making. Liljeholm further develops
these ideas by showing how constructs from computer science, such as instrumental
divergence, can enrich our understanding of goal-directed learning and even answer
why arbitration occurs in the way it does. Solway and Botvinick address an oft-
neglected issue in goal-directed learning, namely how evidence can be integrated over
time to support decision-making. Bhui proposes an innovative approach to thinking
about goal-directed decision-making using the economic theory of case-based reasoning,
in which past experiences can serve as analogies for novel choice problems. Collins de-
scribes how advances in our understanding of hierarchical learning can enrich S-R
models to flexibly represent environmental structure, and so challenge our notions about
the boundaries between S-R and goal-directed learning. Schmidt, Wikenheiser, and
Redish then delve into how rodents navigate structured environments by simulating
among multiple possible trajectories. Kool, Cushman, and Gershman end this

xv



section by returning to the issue of arbitration between decision-making systems, and re-
view computational principles that may help us understand how both competition and
cooperation between systems can occur.

The second section surveys what is known about the neural substrates of decision-
making. Coutureau and Parkes review the crucial involvement of different subregions
of the prefrontal cortex in goal-directed learning, proposing that decision-making is
mediated by corticoecortical as well as corticoesubcortical pathways.West, Moschak,
and Carelli review the role of subcortical regions in flexible decision-making,
highlighting the importance of interactions between the nucleus accumbens core and
shell. Bertram-Gonzalez and Laurent dive deeper into the nucleus accumbens shell
and propose that the shell silently learns the necessary contingencies during Pavlovian
conditioning that enable future action selection. Sharpe and Schoenbaum provide
an important reappraisal of the reward prediction error account of phasic dopamine
signals in the ventral tegmental area and cast it as a more general teaching signal for
nonrewarding events as well. Finally, Schuck, Wilson, and Niv present a novel theory
of the role of the orbitofrontal cortex in mapping the partially observable state represen-
tation necessary for goal-directed learning.

The third section presents the application of decision-making science to understand-
ing child development (Raab and Hartley), social behavior (FeldmanHall and
Chang), disorders of compulsivity (de Wit), as well as drug addiction (Furlong and
Corbit) and psychosis (Morris). For instance, FeldmanHall and Chang introduce a
new model of goal-directed behavior within social environments, describing how
emotional signals are used to monitor the degree to which one’s actions facilitate or
impede their social goals.

The final chapters take a step back to offer a broad perspective on how competing
theories and approaches to studying goal-directed decision-making can be reconciled
and further honed moving forward. Miller, Ludvig, Pezzulo, and Shenhav discuss
existing tensions between psychological and computational classifications that distinguish
habitual and goal-directed behavior and elaborate on recent models that relieve this ten-
sion. Finally, Balleine reexamines what we mean by “reward” and “reinforcement” and
outlines a provocative account of how they might be distinguished according to their
learning rules, neural circuits and bases in motivation.

The merger of ideas and techniques from psychology, computer science, and neuro-
science is bearing fruit at a remarkable pace. Still, much is yet to be discovered. The
entries in this volume reflect this fast-moving state of affairs by serving both as syntheses
of what is known, as well as guides to what is yet unknown. We look forward to seeing
what the future will bring.

Richard W. Morris
Aaron M. Bornstein

Amitai Shenhav
March 2018
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CHAPTER 1

Actions and Habits: Psychological
Issues in Dual-System Theory
Anthony Dickinson1, Omar D. P�erez2
1Department of Psychology, University of Cambridge, Cambridge, United Kingdom; 2Division of the Humanities and Social
Sciences, California Institute of Technology, California, United States

Over a quarter of a century ago, Heyes and Dickinson (1990) offered two behavioral
criteria for the attribution of intentionality to animal action that have subsequently served
to characterize goal-directed behavior (de Wit & Dickinson, 2009). These criteria are
rooted in the folk psychology of action. If asked to explain why a hungry rat is pressing
a lever for food pellets, the folk psychologist tells us that the rat desires access to the food
pellets and believes that pressing the lever will yield access. This account is deceptively sim-
ple in that it has two explicit mental entities, the belief and desire, and an implicit process
for deploying these entities in the control of behavior. In spite of this apparent simplicity,
the beliefedesire account has psychologically important features that motivate our
conception of goal-directed action.

A philosopher of mind may well point out that beliefs and desires are particular types
of mental entities, propositional attitudes, which have two important features. First, the
content of the belief or desire, such as believing that “lever pressing causes access to food
pellets” or desiring that “there is access to food pellets,” is a representation of an event,
state, or relationship with a propositional-like structure. Second, this propositional con-
tent stands in a relationship, or attitude, to the event or state of affairs that is represented.
A belief represents a supposed state of affairs in the world and therefore has a world-to-
representation fit in that it can be either true or false of the world (Searle, 1983). By
contrast, a desire has a representation-to-world fit in that its content represents a state
of affairs that is currently not true but that the agent wishes it to be so. Therefore, a
desire’s fit to the world is one of fulfillments in that the content of the desire can either
be fulfilled or unfulfilled.

The third, and often implicit, component of the beliefedesire account is a process of
practical inference that takes the belief and desire as it arguments to yield an intention to
act. As our aim was to marshal beliefs and desires in a psychological account, rather than
a philosophical analysis of action, we choose to present the content and the practical
inference in a programming language, PROLOG, which was designed, at least in
part, to simulate cognitive processes and is reasonably transparent with respect to

Goal-Directed Decision Making
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content. So a minimal program to generate lever pressing for food pellets might take the
following form:

cause(lever-press,access( food-pellet),g). dbelief
access( food-pellet,d). ddesire
perform(A,g*d):-cause(A,access(O),g),access(O,d). dpractical

inference

This little program is similar to that offered in Heyes and Dickinson (1990) except for
the addition of the parameters g and d, which serve to quantify the believed strength of
the causal relationship between lever pressing and access to the food pellets and the
strength of the desire for this goal, respectively. Therefore, g represents the believed reli-
ability or rate with which lever pressing will cause access to the food pellets. If we ran this
little program to determine which action this impoverished agent intends to perform, it
would return an intention to lever-press in the form perform(lever-press) with the will to
execute the intention determined by the product of g and d. If either of these parameters
is zero, there will be a lack of will to execute the intention. Henceforth, we shall ignore
the quantification of beliefs and desire except where necessary.

This psychological account of action is both causal and rational. It is causal in the sense
that it is the interaction of the content of the belief and desire in the process of practical
inference that determines the content of the intention, and hence the particular goal-
directed action performed. Second, and importantly, the practical inference process yields
a rational action. If the belief cause(lever-press,access( food-pellet)) is true and the intention
perform(A) is executed then, other things being equal, the desire access( food-pellet) must,
of necessity, be fulfilled. The psychological rationality of lever pressing within the present
context may appear obvious, and possibly trivial, but, as we shall discuss below, the issue
of whether representational content can cause responses that are nonrational with respect
to that content is a matter of dispute.

This beliefedesire account led Heyes and Dickinson to offer two behavioral criteria
for determining whether a particular behavior is an intentional or goal-directed action:
the desire (goal) and belief (instrumental) criteria. We shall discuss each in turn.

DESIRE CRITERION

A straightforward prediction of the beliefedesire account is that, if following lever-press
training under the desire for access to food pellets, this desire is reduced, the animal’s pro-
pensity to press the lever should immediately decrease without any further training.
Reducing the desire for access to the food pellets by setting the d parameter in the little
PROLOG program to zero yields an intention to lever-press but without any will to
execute it. When Adams (1980) first attempted to assess the status of lever pressing for
food pellets in Dickinson’s lab by removing his rats’ desire for these pellets, he could
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find no evidence that lever pressing was goal-directed. Having trained the rats to press a
lever for access to the food pellets, he then reduced the desire for these pellets by con-
ditioning a food aversion to the pellets in the absence of an opportunity to lever-press.
When once again given the opportunity to press the lever (in the absence of the food
pellets), the rate of pressing was totally unaffected by whether or not the food pellets
were desired at the time.

We were surprised that our rats were insensitive to outcome devaluation, given that
many years before Tolman and Gleitman (1949) had convincingly demonstrated that
devaluing one of the goal boxes in an E-maze by associating it with electric shocks
induced an immediate reluctance by their rats to take the turn leading to the devalued
goal. Therefore, we suspected that it was the type of action and training that might be
critical in determining whether performance was sensitive to removal of a desire through
goal or outcome devaluation.

Adams (1980) trained his rats to press the lever on a variable interval schedule, which
models a resource that depletes and then regenerates with time, such as nectar, in that the
schedule specifies the average time interval that has to elapse before the next reward be-
comes available for collection. By contrast, foraging in a nondepleting source is modeled
by ratio schedules, which specifies the probability with which each action yields an
outcome. Therefore, there is a more direct causal connection between the action and
the outcome under a ratio contingency in that it does not involve an additional causal
process, outcome regeneration with time. When we switched to training on a variable
ratio schedule, we found that lever pressing for food by hungry rats could be goal-
directed, at least by the desire criterion. Our rats pressed the lever at a reduced rate
following the removal of the desire for the food pellets by aversion conditioning when
tested extinction so that the devalued pellets were not presented (Adams & Dickinson,
1981). Subsequently, we established that the type of training schedule is critical in deter-
mining whether or not an action is goal-directed. Ratio-trained lever pressing for food is
more sensitive to outcome devaluation than interval-trained responding even when
either the probability of an outcome following a lever press or the overall outcome rates
are matched (Dickinson, Nicholas, & Adams, 1983).

On the basis of these early studies, the desire criterion as implemented by the outcome
revaluation test has been widely accepted as a canonical assay for the goal-directed status
of an action not only in rodents but also in monkeys (Rhodes & Murray, 2013), children
(Klossek, Russell, & Dickinson, 2008), and adult humans (Valentin, Dickinson, &
O’Doherty, 2007). Furthermore, these studies established that whether or not an action
meets the desire criterion depends upon the conditions of training. We have already
noted that training on ratio contingency is more likely to establish a goal-directed action
than is the equivalent interval training. Moreover, in his doctoral research, Adams (1982)
discovered that overtraining rats on a ratio schedule can render performance autonomous
of the current value of the outcome in a devaluation test, a finding subsequently
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replicated with humans (Tricomi, Balleine, & O’Doherty, 2009). The status of an instru-
mental action also depends upon whether or not the agent has a choice between this
target action and another action yielding a different outcome during training. The target
action retains its goal-directed status following choice training even though equivalent
single-action training by both rats (Kosaki & Dickinson, 2010) and children (Klossek,
Yu, & Dickinson, 2011) is sufficient to establish autonomy of the current goal value.
Finally, it is not just the training conditions that determine whether instrumental
behavior is goal-directeddsubjecting both rats (Dias-Ferreira et al., 2009) and humans
(Schwabe & Wolf, 2009, 2010) to a stressful experience prior to either training or testing
renders performance insensitive to outcome devaluation.

BELIEF CRITERION

Although most of the early outcome revaluation studies failed to find any effect of reval-
uation following interval training, an exception is an irrelevant incentive study. Krieckhaus
andWolf (1968) trained thirsty rats to lever-press for either a sodium or potassium solution
or for water before revaluing the sodium relative to the other solutions by inducing a
sodium appetite. When tested in extinction, the rats trained with sodium solution (the
outcome relevant to the current sodium appetite) pressed more in the extinction test
than those trained with either the potassium solution or water, thereby demonstrating
that lever pressing met the desire criterion for goal-directedness. However, Dickinson
was concerned about the apparent discrepancy between this finding and Adams’s (1980;
see above) failure to observe an outcome devaluation effect using aversion conditioning
following interval training, as Kreickhaus and Wolf trained their rats on an interval
schedule.

At issue is whether the induction of a desire for sodium impacted upon lever pressing
through a belief that this action yields access to a sodium solution. Unless there are
plausible grounds for ascribing such a belief to their rats, this revaluation effect does
not warrant a beliefedesire account. This issue can be addressed by varying whether
or not lever pressing causes access to the sodium solution, while equating exposure to
the sodium. A beliefedesire account requires that rats trained with sodium contingent
upon lever pressing should respond more under the sodium appetite than those trained
with noncontingent sodium. To examine this issue, thirsty rats lever-pressed for either a
sodium solution or water using the ratio schedule previously employed by Adams and
Dickinson (1981) to demonstrate the goal-directed status of rodent lever pressing
(Dickinson & Nicholas, 1983). Under this schedule, one group of thirsty rats, Group
Na(w), pressed for the sodium solution (Na) on a ratio schedule while water (W) was
presented noncontingently, whereas for a second group, Group W(na), these contin-
gencies were reversed so that these rats pressed for water while receiving the sodium
solution noncontingently. This training enabled us to assess whether the outcome
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revaluation effect observed by Krieckhaus and Wolf (1968) under a sodium appetite met
the belief criterion, which requires that the outcome revaluation effect is mediated by the
instrumental contingency. Only Group Na(w), for which the lever pressing produced the
sodium solution, could have acquired the belief cause(lever-press,access(sodium-solution)),
and therefore this group should have responded more than Group W(na) under the
sodium appetite if lever pressing was goal-directed.

Importantly, performance during the outcome revaluation test under the sodium
appetite was unaffected by whether lever pressing had been trained with water or sodium
solution as the outcome. This null result contrasts with the fact we replicated the basic
outcome revaluation effect under the sodium appetite. In a second pair of groups, Groups
K(w) and W(k), we replaced the sodium solution with a potassium solution and found
that both these groups pressed less under the sodium appetite than Groups Na(w) and
W(na). What this result shows is that the revaluation effect depended upon experiencing
sodium in the training context but, importantly, not upon learning that lever pressing
yields sodium or, in other words, learning about the causal relationship between action
and outcome. Consequently, this irrelevant incentive effect does not meet the belief cri-
terion, which requires that the outcome revaluation effect is mediated by the instru-
mental contingency. To the extent that a goal-directed action is conceived of as an
action that supports a beliefedesire explanation, the revaluation of the sodium outcome
did not identify the instrumental action as goal-directed.

The importance of deploying the desire criterion in concert with the belief criterion is
also illustrated by a more recent study by Jonkman, Kosaki, Everitt, and Dickinson
(2010). We extensively trained rats to lever-press for food pellets on an interval schedule,
a training regime expected to render performance autonomous of the current value of the
pellets. However, devaluing the pellets by aversion conditioning yielded a substantial
outcome devaluation effect in a subsequent extinction test but, once again, this effect
was mediated, at least in part, by an association between the context, rather than lever
pressing, and the pellets. Extinguishing the contextepellets association between the
devaluation treatment and the extinction test markedly reduced the outcome devaluation
effect. So again we must have concerns about whether this devaluation effect meets the
belief criterion because the outcome devaluation effect depended upon the association
between the context and outcome rather than upon knowledge about the instrumental
contingency between the lever pressing and the food pellets.

Some have argued that the belief criterion is too stringent in that it excludes behavior
that we might want to characterize as goal-directed in terms of its manifest functional
properties. For example, Carruthers has argued that the belief criterion is not necessary
for the attribution of beliefedesire psychology to an animal. He asks of a bird flying to-
ward a food source “why should we not say that the animal behaves as it does because it
wants something and believes that the desired thing can be found at a certain represented
location on the (mental) map” (Carruthers, 2004) p. 211; see also (Allen & Bekov, 1995;
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Heyes & Dickinson, 1995) and leave the causation of the behavior implicit, for example,
in the activation of a “flying-in-that-direction schemata.” In essence, what Carruthers is
arguing is that we should allow a representational psychology in which a belief with a
content that makes no reference to an action should be capable of causing that action
as a response to entertaining the belief.

The problem with filling the explanatory gap between a belief and action with some
implicit causation is the absence of any account of how the content of the belief deter-
mines the action selected. When applied to the Dickinson and Nicholas (1983) study in
which rats that received noncontingent sodium, Group W(na), pressed the lever more
under a sodium appetite than the animals that received noncontingent potassium, Group
W(k), by appealing to some implicit causal process that deployed Group W(na)’s belief
that sodium was available in the training context to generate lever pressing. This is indeed
a deeply mysterious implicit process as throughout training lever pressing had produced
water but never sodium solutiondin any reasonable sense of the term, the sodium solu-
tion could not have functioned as a psychological goal of this action.

This example illustrates a cardinal feature of an intentional account of behavior, such
as that offered by beliefedesire psychology. An intentional account must specify not only
the content of the beliefs and desires but also the process that deploys this content to
generate the behavior. Moreover, if the content of these propositional attitudes is to
have a causal role, the process must respect the fact that those beliefs and desires have
representational content and therefore truth and fulfillment values, respectively. As a
consequence, the process deploying these intentional states must not only cause the
action but also be rational with respect to the representational content of these states.
As we pointed out in our introduction to beliefedesire psychology, this is the case for
practical inference in that if the belief is true and action performed, of necessity the desire
must be fulfilled. This rationality criterion is clearly not met by the process that caused
lever pressing in Group W(na) in the Dickinson and Nicholas (1983) study.

There is little point arguing in general about the appropriate characterization of
behavior as “goal-directed.” From a functional or biological point view, an invigoration
of the predominant behavior in an environment associated with sodium while under a so-
dium appetite may well enhance the likelihood of encountering salt and in this sense be
goal-directed. But from a psychological perspective, a failure to mark out behavior medi-
ated by a belief about its causal effects just serves to conflate goal-directed control with
other importantly distinct processes. One such process is the source of instrumental
behavior that is unaffected by outcome revaluation following interval or extended training.

HABITS

Folk psychology recognizes another form of instrumental behavior, habits, which are
elicited directly by the stimulus context without thought for their consequences. In case

6 Goal-Directed Decision Making



of habits, we explain our behavior, not by an appeal to beliefs and desires, but rather to
the fact that the response is one that we have regularly performed in this situation in the
past. Within academic psychology, habits have been traditionally explained by the
stimulus-response/reinforcement mechanisms envisaged by Thorndike’s law of effect
(Thorndike, 1911) whereby, for example, the outcome of a lever press, a food pellet,
just serves to strengthen or reinforce an association between the stimulus context and
the lever press response without encoding any information about the outcome itself.
Others have argued that simple stimulus-response contiguity is sufficient for habit learning
(Guthrie, 1959). In both cases, however, the loss of desire for the food pellets in a reval-
uation test cannot impact directly on lever pressing, which is simply elicited when the
agent is replaced in the training context after the devaluation treatment.

This conception of a habit emphasizes the fact that its performance is autonomous of
the current value of the outcome that reinforced the habit in the first place. However, it is
often assumed that the canonical feature of a habit is that its performance makes minimal
demands on general cognitive resources, a view that prioritizes automaticity over autonomy.
This priority has recently been challenged by Economides, Kurth-Nelson, L€ubbert,
Guitart-Masip, and Dolan (2015) who argue that automaticity may not differentiate
goal-directed behavior from habitual behavior, at least after more extensive training.
Rather than using the standard outcome revaluation test as the assay of goal-directed sta-
tus, they employed a decision task developed by Daw, Gershman, Seymour, Dayan, and
Dolan (2011). In this task each of the two choice options leads to one outcome with a
high probability and the other outcome with the complementary, low probability.
The critical feature of the task is that high probability outcome for one choice is also
the low probability outcome for the other option with the relative value of the two out-
comes changing slowly throughout each session of training. Consequently, having
received a low probability outcome with the relatively higher value, the optimal strategy
is to switch choice options because the other option is more likely to yield this currently
high-valued outcome. The implementation of this strategy appears to require knowledge
of the choiceeoutcome contingencies of the two options, and the goal-directed status of
this strategy has been validated against the standard outcome revaluation test (Friedel
et al., 2014; Gillan, Otto, Phelps, & Daw, 2015).

What Economides et al. (2015) reported is that goal-directed performance on this de-
cision task becomes unaffected by the addition of an independent cognitive load leading
them to conclude that goal-directed performance can be automatic, thereby endorsing
autonomy of the current outcome value, rather than automaticity, as the cardinal feature
of habitual behavior. It is possible, however, for optimal choices in this decision task to
become habitual if the low probability but high-valued outcome in the context of one
choice option can act as a stimulus associated habitually with the choice of the other op-
tion on the next trial. This switch is more likely to have been reinforced by the receipt of
the higher value outcome than is repeating the same choice. Whatever the merits of this
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habitual account, the result highlights the fact that automaticity cannot be taken as a pri-
mary feature distinguishing habitual from goal-directed control so that behavioral auton-
omy remains the canonical marker of the habitual.

The motivation of habits
The fact that the current incentive value of a reinforcer does not exert direct control over
habitual responding through its role as the instrumental outcome does not mean that this
value has no impact on this form of responding. Recall that both the Krieckhaus and
Wolf (1968) and Jonkman et al. (2010) demonstrated an outcome revaluation effect
that, on further analysis, failed to meet the belief criterion and turned out to be mediated
by the contexteoutcome association. Such Pavlovian associations endow a stimulus, be it
a complex stimulus such as context or a simple discrete stimulus, with the capacity to
exert a general motivational influence over habitual responding.

By using the Pavlovianeinstrumental transfer (PIT) paradigm, Dawson and Dickin-
son demonstrated the generality of this form of motivation (Dickinson & Dawson, 1987).
They trained hungry rats on three types of trial. In one type, a lever was inserted, and
pressing it was reinforced on an interval schedule with food pellets. In the other trial
types, the lever remained retracted, and one of two stimuli was presented. Food pellets
were freely presented during one stimulus and sugar water during the other. The exper-
iment then concluded with a transfer test in which, for the first time, the lever was
inserted during trials in which one of the stimuli was present, although pressing was never
reinforced during the test. This test allowed us to assess the influence of the Pavlovian
stimuli on instrumental responding without the response having been trained in the pres-
ence of the stimuli. Moreover, to vary the motivational relevance of these stimuli, half of
the rats were tested hungry as in training and half thirsty. Both the stimuli associated with
the pellets and sugar water were relevant to the hunger state, whereas only the sugare
water stimulus was relevant under thirst.

The amount of transfer respected the motivational relevance of the stimuli. For an-
imals tested under the training state of hunger, if anything, the pellet stimulus elicited
most lever presses. By contrast, thirsty rats pressed more in the presence of the sugare
water stimulus than during the pellet stimulus. The theoretical significance of this transfer
effect lies with its generality in that it was the stimulus associated with the sugar water that
had the greatest impact on performance under thirst even though lever pressing had been
trained with the pellets. Therefore, although this motivational influence is sensitive to the
relevance of the Pavlovian reinforcers to the animal’s current motivational state, the
transfer is not mediated by a goal-directed component of the instrumental behavior
and so, by default, must have operated through habitual responding. This conclusion
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is bolstered by the fact that training regimes that render performance impervious to
outcome devaluation, such as extensive training (Holland, 2004) and interval as opposed
to ratio training (Wiltgen et al., 2012), also render performance more sensitive to the
motivational influence of Pavlovian stimuli.

The motivational influence manifest in the general PIT effect also resolves an
outstanding issue arising from our discussion of the belief criterion. In that discussion,
we noted a number if instances in which the training context potentiates instrumental
performance through its association with a motivationally relevant reinforcer. The gen-
eral PIT effect provides a ready explanation of this potentiation by assuming that the
Pavlovian context / reinforcer association is acquired concurrently with the instru-
mental learning and thereby exerts a motivational influence on the habitual component
throughout training.

In summary, the residual responding observed following outcome devaluation is best
characterized as habitual in that it is not a product of a desire for the outcome. Even so,
habitual behavior can be sensitive to the motivational relevance of the outcome and re-
sponds appropriately to shifts in motivational state, such as that between hunger and
thirst. However, this sensitivity reflects the association of the outcome with the training
context rather than with the instrumental action.

Outcome expectations and habits
In a classic PIT study, Lovibond (1983) reported different transfer profiles when thirsty
rabbits were responding for a sucrose solution on interval and ratio schedules. Following
interval training, the enhanced instrumental responding was confined to the Pavlovian
stimulus and was positively related to the response rate immediately prior to its onset.
This profile points to the motivational influence just discussed, which in classical Hullian
fashion interacts in a multiplicative fashion with habit strength as registered by the pres-
timulus responding (Hull, 1952). In contrast, the Pavlovian stimulus was effective in
restarting ratio responding at times when the rabbit had stopped performing during
the prestimulus period, a reinstatement that then outlasted the stimulus itself. However,
the Pavlovian stimulus had less impact on ratio performance if the rabbit was already reli-
ably responding prior to its onset, an effect recently replicated with humans (Colagiuri &
Lovibond, 2015). On the assumption that the ratio responding was goal-directed, this
profile suggests that the Pavlovian stimulus served to prime rather than motivate instru-
mental action.

In contrast to the motivation of habits manifested in general PIT, another form of
transfer, (outcome-)specific PIT, illustrates how this priming operates. During Pavlovian
training, two stimuli (Ss) are associated with different outcomes (Os), such as food pellet
and a sugar solution, which are also used to reinforce two different responses (Rs) during
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separate instrumental training. Although the stimuli and responses have never been
trained together, each stimulus preferentially enhances the response trained with the
same outcome during a transfer test. Classically, specific PIT is interpreted in terms of
an associative, rather than motivational process. The Pavlovian training sets up S /O
associations, whereas the instrumental training results in O/ R associations. Amalgam-
ating these two associations at test enables the stimulus to select the response with the
common outcome through an S /O/ R chain. Put more colloquially, the stimulus
elicits an expectation of the outcome, which in turn activates its response.

Although this associative analysis is generally accepted, how the outcome expectation
comes to control its response remains an issue. In a standard specific PIT study, the two
instrumental responses are trained separately and sometimes in different stimulus con-
texts. As a consequence, the contextual stimuli should come to activate a “representa-
tion” or expectation of the instrumental outcome through Pavlovian learning, so that
the instrumental response is reinforced in the presence of this activated outcome repre-
sentation. The activated outcome representation can therefore function as stimulus
capable of eliciting the instrumental response through a habitual S-R/reinforcement
mechanism, a function that should then transfer to an outcome representation activated
by the Pavlovian stimulus (Trapold & Overmier, 1972). Therefore, just as in the case of
general PIT, habitual responding can appear to be goal-directed in the sense that it is
mediated by a representation of the outcome.

This reinforcement account of specific PIT was challenged by a complex and sophis-
ticated analysis by Rescorla and Colwill. By assessing the relative control exerted by an
activated representation of a reward when it functioned as a stimulus for a response or
the outcome of that response, they found that the outcome function always exerted
greater control (Rescorla, 1992; Rescorla & Colwill, 1989). However, perhaps the
simplest way of addressing this issue is by training the two instrumental responses concur-
rently in the same stimulus context. We shall illustrate this point with a study by Watson,
Wiers, Hommel, and De Wit (2014).

Human participants were trained to press one of two keys (Rc) for a chocolate
outcome (Oc) and the other (Rp) for a popcorn outcome (Op) before receiving
Pavlovian pairings of one abstract stimulus (Sc) with chocolate and another (Sp) with
popcorn. During the transfer test, the participants preferentially performed the response
trained with the same outcome as the stimulus indicating that they had acquired
Sc/ Oc/ Rc and Sp /Op / Rp associative chains. The crucial feature of the
instrumental training in this study was that both the response options were available
concurrently in a common stimulus context without any information about which
would be the next available outcome. Moreover, the outcomes became available in a
random order. Given this training, each outcome representation should have been
equally associated with both responses, thereby vitiating the S-R/reinforcement account
of the selective transfer observed by Watson et al.
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Ideomotor theory offers an alternative explanation of the genesis of O/ R associ-
ations. This theory has its origins in the 19th century accounts for voluntary action (Stock
& Stock, 2004) and, although largely neglected during the 20th century, the last decade
has seen a renaissance of interest (Shin, Proctor, & Capaldi, 2010). When applied to
instrumental behavior, ideomotor theory also argues that responding is a product of an
S/ O/ R chain but differs from S-R/reinforcement account in the source of the
O/ R link. The central idea is that the O/ R association is generated by the pairings
of the response and the outcome brought about by the instrumental contingency so that
the direction of the association is backward with respect to the causal (and temporal)
sequence of the response and outcome. As a result, according to this account, the stimulus
context retrieves a memory of the outcome available in this context in the past through
Pavlovian learning, which in turn activates the response that produced the outcome
through ideomotor learning, thereby generating the S / O/ R chain. Because the
origin of the O/ R associations lies in experience with the instrumental ReO contin-
gencies, the ideomotor account provides an explanation of the selective transfer observed
by Watson et al. (2014).

Although there are good reasons for believing in the reality of the ideomotor learning
(de Wit & Dickinson, 2016; Shin et al., 2010), it fulfills neither the desire nor the belief
criteria for goal-directed behavior in spite of the fact that responses are selected by a rep-
resentation of their outcomes. With respect to the belief criterion, the issue is theoretical.
Whereas a lever press/ food pellet association could represent the belief cause(lever-
press,access( food-pellet)), given that the mechanism for deploying the association respects
the fact that it is a representation (see below), it surely is perverse to argue that a backward
food pellet / lever press association represents the fact the lever press causes access to
food pellets in that the direction of the association is the opposite of the direction of
causation.

The problem for the desire criterion is empirical. As specific PIT is an assay of the
S /O / R chain, this form of transfer should be sensitive to motivational variables
if it is to fulfill the desire criterion. However, in contrast to general PIT, this form of
transfer is often impervious to the motivation status of the outcome. For example,
the magnitude of the specific PIT was unaffected by devaluing one of the food out-
comes by prefeeding in both human participants (Watson et al., 2014) and rodents.
Moreover, in the latter case, the insensitivity of specific PIT to outcome revaluation
contrasted with a reduction in the general form in the same experiment (Corbit, Janak,
& Balleine, 2007), thereby confirming an earlier report by Rescorla (1994) that specific
PIT is unaffected by devaluation of the outcome by aversion conditioning in rats. The
resistance of specific PIT to outcome devaluation by aversion conditioning is also
observed in humans, at least as assessed by the difference in responding to the Pavlovian
stimuli associated with the same and different outcomes of biological relevance (Eder &
Dignath, 2016). In summary, specific PIT fails to meet the desire criterion in that the
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effect is insensitive to outcome value, at least when the outcomes are of biological
relevance.1

Although interactions between Pavlovian and instrumental learning may well endow
behavior with a veneer of goal-directedness, they do so by engaging forms of habit
learning rather than a beliefedesire psychology that we argue characterizes goal-
directed behavior, at least at the psychological level. General PIT reflects the fact that
the concurrent activation of a reward representation exerts a motivational influence
over ongoing habitual behavior. By contrast, an activated representation of the sensory
properties of an outcome generates specific PIT by priming or eliciting the habitual
component of instrumental behavior.

DUAL-SYSTEM THEORIES OF INSTRUMENTAL LEARNING

The claim that Pavlovian conditioning can motivate or control instrumental performance
is referred to as two-process theory (Rescorla & Solomon, 1967; Trapold & Overmier,
1972). As we have discussed, however, instrumental behavior itself involves two systems,
the goal-directed and the habitual, which we shall refer to as the dual-system theory of
instrumental behavior to distinguish it from the classic two-process account of
Pavlovianeinstrumental interactions. Dual-system theories, while endorsing a version
of the stimulus-response account of habit learning, differ in their conception of goal-
directed learning. Ever since Tolman (1959) recast the beliefedesire account of folk psy-
chology into the jargon of academic psychology, cognitive and social psychologists have
offered a plethora of expectancy-value theories of goal-directed action. However, these
theories do not offer an integrated account of both goal-directed and habitual responding
and therefore lie outside the scope of this chapter.

Over the last decade or so, research on human goal-directed and habitual
behavior has become increasingly couched in terms of computational reinforcement
theory, which has its origins in machine learning and offers a normative account of
both goal-directed and habitual behavior (Dolan & Dayan, 2013; Sutton & Barto,
1998). According to dual-system reinforcement theory (Daw, Niv, & Dayan, 2005),
goal-directed behavior is controlled by model-based computations in which the agent
uses state prediction errors to learn a model of the state transitions produced by the
instrumental contingencies. This model therefore functions like the instrumental belief
of folk psychology. Model-based control contrasts with a less computationally

1 An exception to this generalization may well be transfer procedures that involve purely symbolic out-
comes that we suspect engages inferential processes that lie outside the scope of the basic beliefedesire
psychology, which is the focus of this review. For example, Allman et al. reported that transfer is sensitive
to changes in the values of fictitious currencies in a stock market task (Allman, DeLeon, Cataldo,
Holland, & Johnson, 2010).
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demanding model-free control, which uses reward prediction errors to learn habit-like
responses.

Although the reinforcement theory assumes that both systems learn concurrently, an
additional computational process is required to determine whether the model-based or
the model-free system controls the behavioral output. Daw et al. (2005) originally sug-
gested that the arbitration between the two systems or controllers is based on the uncer-
tainty of the utilities predicted by each system. The selected controller is the one that
yields the most certain prediction as assessed by the state and reward prediction errors
generated by the two systems. Moreover, they demonstrated by simulation that this arbi-
tration, when biased against the model-based system as a result of its inherent computa-
tional cost, can predict, at least at a qualitative level, both the development of behavioral
autonomy with extensive training (Adams, 1982) and the maintained sensitivity to
outcome devaluation following extensive choice training between two actions yielding
different outcomes (e.g., Klossek et al., 2011; Kosaki & Dickinson, 2010). Since this
initial research, elaborations of this arbitration have been proposed and investigated
within the context of human decision tasks (see Chapter 7).

The most problematic finding for computational reinforcement theory arises from our
original contrast between the effects of ratio and interval training. Recall that training on
an interval contingency is more likely to engender habitual control than ratio training
even when the probability of the outcome on the interval schedule is the same as or
higher than that on the ratio schedule (Dickinson et al., 1983). The prediction error
learning algorithms of reinforcement theory are sensitive to the probability of outcomes
but not to temporal variations in the likelihood that a response will produce an outcome.
Therefore, as the arbitration is based on the state and reinforcement prediction errors
generated by the model-based and model-free processes, respectively, there is no reason
why interval training should yield more uncertain predictions than matched ratio training.

Rate correlational theory
Prior to our discovery that ratio-trained behavior is more likely to be goal-directed than
interval-based responding, Baum suggested that the elevated response rate maintained by
ratio contingencies could be explained by a correlational-based law of effect (Baum,
1973). Whereas response strength is increased by temporally contiguous pairings of
response and reward according to Thorndike’s (1911) law of effect, Baum argued that
responding is determined by the correlation between the rate of responding and the
rate of the reward or outcome as assessed across a series of time samples. By remembering
the number of responses and outcomes that fell within each sample, the correlation be-
tween the response and outcome rates can be computed across the time samples. This
correlational law of effect readily explains the impact of the primary variables of instru-
mental conditioning, responseeoutcome contiguity, and contingency. As the temporal
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interval between a response and the contingent reward lengthens, the likelihood that the
response and its reward fall in different time samples increases, thereby reducing the expe-
rienced correlation. Similarly, degrading the contingency by delivering rewards indepen-
dently of responding will also reduce the experienced correlation between response and
reward rates.

Ratio and interval training
With respect to the ratioeinterval contrast, a critical feature of the interval contingency is
that the maximum rate of reward is set by the scheduled average interreward interval, so
that variations in responding have little impact on the reward rate once the response rate
is sufficient to collect the rewards almost as soon as they become available. As a conse-
quence, the correlation for an interval contingency is likely to be low. By contrast, given
that the response rate varies sufficiently on a ratio schedule, there will always be a positive
correlation between response and reward rates with the strength of the correlation being
determined by the probability of reward. Therefore, the response rateeoutcome rate
correlation should be higher for the ratio than for the interval contingency even when
the reward probability or the reward rate is matched across the two contingencies.

Given this property of the rate correlation, Dickinson (1985) suggested that the goal-
directed component of a dual-system theory is determined by the currently experienced
rate correlation. Specifically, within the framework of beliefedesire psychology, the
claim is that the g parameter of the instrumental belief, which represents the believed
strength of the causal relationship between action and outcome, is determined by the
experienced rate correlation. Direct evidence for this claim comes from the fact that
the rate correlation generated across 10-s samples during training on ratio and interval
contingencies has been positively related to human performance (P�erez et al., 2016)
and judgments of the causal effectiveness of an action (Tanaka, Balleine, & O’Doherty,
2008). Dickinson (1985) also suggested that the habit learning follows Thorndike’s law of
effect in which increments in S-R strength are produced by contiguous reinforcement of
the response. Finally, in contrast to computational reinforcement theory, Dickinson,
Balleine, Watt, Gonzalez, and Boakes (1995) assumed that the outputs of the goal-
directed and habit systems simply summate to determine the current response rate.

The rationale for this simple summation assumption is illustrated by the lever-press
rates displayed in Fig. 1.1. The ratio and interval data come from the outcome devalu-
ation test of Dickinson et al. (1983). In this experiment, rats received limited lever-
press training for food pellets before aversion conditioning to devalue the pellets. As
we have already noted, a devaluation effect was observed following ratio but not interval
training. For present purposes, however, the important point is that devaluation of the
ratio reward reduced responding to the level produced by the interval groups. Because
the rate correlation should be close to zero for the interval groups, this level of responding
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represents the habit strength produced by the number and probability of the reinforcing
outcome experienced during training. As the ratio and interval groups received the same
number and probability of reinforcement, we should expect the habit strength to have
been similar in the two training conditions. In accord with this analysis, having removed
the goal-directed component by devaluation, the residual habitual ratio responding was
similar to the level of interval responding. Therefore, the valued ratio performance
appears to be the sum of the goal-directed and habitual components.

Fig. 1.2 illustrates simulations of the rate correlational dual-system theory (see
Appendix for details) for training on a random interval schedule (top panel) and on ratio
schedule under which the probability of the outcome was yoked to the probability gener-
ated by performance on the interval schedule (bottom panel). From the outset of training,
the probability of a response generated by the goal-directed learning (pg) is greater for
ratio than for interval training with the interval pg rapidly dropping to near zero with
further training. As a result, the overall probability of responding (p) converges more
rapidly with the probability generated by the habit learning (ph) under interval training
than under ratio training, thereby explaining why Dickinson et al. (1983) could observe
an outcome devaluation effect following limited ratio training but not following equiv-
alent interval training when the probabilities of the outcome per response were matched.

Extended training
The bottom panel of Fig. 1.2 shows that the goal-directed pg also declines with extended
ratio training with the result that the overall summed p converges on the habit ph, thereby
explaining why overtraining often produces behavioral autonomy following further ratio

Figure 1.1 Mean lever presses per minute during an extinction test following either the devaluation
of the outcome by aversion conditioning (Devalued) or following no devaluation (Valued). The rates
following ratio and interval training are taken from Experiment 1 of Dickinson et al. (1983), whereas
the rates following choice and single-response training are taken from the choice and NCT1 groups,
respectively, of Experiment 2 of Kosaki and Dickinson (2010).
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training (e.g., Adams, 1982). Of course, there always remains an actual positive ratio con-
tingency but, as there is little variation in responding across the time samples when the
response probability p is high due to the acquisition of habit strength ph, the agent no
longer experiences a rate correlation. Thus, stereotyped responding generates behavioral
autonomy according to this theory.

Figure 1.2 Mean probability of responding per time unit (p) on a random interval (top panel) and
yoked ratio schedule (bottom panel) derived from 30 simulations of the rate correlation
dual-system theory. Whereas outcomes became available on average once every 10 time units on
the interval schedule, the average probability of an outcome for a response for each simulation on
the ratio schedule was matched to that generated by a master simulation of the interval schedule
for each session. Also displayed are the probabilities of a response per unit time generated by the
goal-directed (pg) and the habit learning (ph). During pretraining (not shown), outcomes were deliv-
ered on a ratio 1 schedule for the first session and a random ratio 5 schedule for the next two sessions.
All sessions terminated after the delivery of the 30 outcomes. See Appendix for details of the simu-
lated theory.

16 Goal-Directed Decision Making



Choice training
Finally, the remaining data in Fig. 1.1 show performance during the devaluation test of an
experiment by Kosaki and Dickinson (2010), which illustrates that rats remain sensitive to
outcome devaluation following choice training even though the equivalent single-
response training yields behavioral autonomy. The important feature of these data is
the fact that the summation effect is again observed in that outcome devaluation
following choice training reduces responding to the level observed following single-
response training. The reason for persistent goal-directed responding is because the
choice prevents the development of stereotyped rates of responding. When the animal
responds at one of the two choice options, there will be a reduction in number of the
other response and its outcome in the current time samples relative to those samples in
which this latter response is chosen. Therefore, even when responding is at asymptote
with strong and equal habit strengths for each response option, there will still be a vari-
ation in the number of each of the two responses and their outcomes across the time sam-
ples. These variations ensure that the agent continues to experience a positive rate
correlation for each response option so that goal-directed control should persist. When
we always have to make a decision about which action to take, then behavior never be-
comes purely habitual.

Avoidance
The empirical and theoretical development of dual-system theory has focused almost
exclusively on rewarded behavior to the neglect of instrumental avoidance. Not only
can instrumental action be deployed to gain resources but also to avoid an aversive event
or state, which is referred to as a negative reinforcer in the jargon of behavioral psychol-
ogy because the reinforcement operates through a negative contingency with the action.
Baum (1973) discussed avoidance within the context of his correlational law of effect in
that an agent experiences a negative correlation between the action and the reinforcer
under an avoidance contingency. If experience of a negative rate correlation generates
a belief that the action prevents the reinforcer and if the agent desires that it should
not occur, then folk psychology provides a straightforward account of avoidance.
More formally, recall that within our PROLOG description of practical inference, the
product of g and d determines the will to execute the intention inferred from the respec-
tive belief and desire. If we assume that access(O,d) represents the content of a desire to
avoid O when d has a negative value, the will to execute the intention will be positive
when pg also has a negative value under an avoidance contingency.

Whether or not avoidance behavior meets the desire criterion for goal-directedness,
at least as assessed by the reinforcer revaluation paradigm, has received scant attention.
Recently, however, A. Fernando, G. Urcelay, A. Mar, A. Dickinson, and T. Robbins
(2014) trained rats to press a lever to avoid a foot-shock before revaluing the shock by
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presenting it noncontingently under the influence of an analgesic dose of morphine. A
subsequent test of lever pressing in the absence of the shock revealed that the revaluation
treatment had reduced avoidance responding, thereby demonstrating that avoidance met
the desire criterion with respect to foot-shock.

Furthermore, there is evidence that the habit system also contributes to avoidance. In
the procedure employed by Fernando et al., each lever press not only canceled the next
scheduled shocks but also turned on an auditory feedback stimulus to facilitate the acqui-
sition of avoidance. A second set of studies confirmed that this stimulus augmented avoid-
ance (A. B. P. Fernando, G. P. Urcelay, A. C. Mar, A. Dickinson, & T. W. Robbins,
2014), and it is usually assumed that such explicit feedback stimuli play the same role as
intrinsic action-generated feedback stimuli but in a more salient form. Although the pro-
cess by which a feedback stimulus becomes a conditioned reinforcer is beyond the scope of
this chapter, it is usually assumed that its reinforcing function derives from its role as a safety
signal predicting the absence of the aversive reinforcer. More pertinent, however, is the
fact that such a stimulus provides a potential source of positive reinforcement for an avoid-
ance habit being not only contingent but also contiguous with the avoidance response.

Direct evidence that the feedback stimulus served to reinforce an avoidance habit
comes from the insensitivity of performance to revaluation of this stimulus. Fernando
et al. used the same revaluation procedure, as they had employed successfully for the
foot-shock by giving noncontingent presentations of the feedback stimulus under
morphine. Although this revaluation treatment enhanced the ability of the feedback
stimulus to reinforce the avoidance, it had no detectable effect in an extinction test
immediately following the revaluation. Therefore, the feedback stimulus appears to act
as a positive reinforcer of the avoidance habit, so that in the case of intrinsic feedback
stimuli habitual responding becomes self-reinforcing.

Taken together, these studies suggest that instrumental avoidance is also under dual-
system control in which responding is goal-directed with respect to avoidance of the pri-
mary negative reinforcer, the shock, at the same time as being habitual with respect to
response feedback stimuli. It should be noted, however, that the goal-directed status
of avoidance has only been evaluated against the desire criterion, and whether or not
the effects of revaluing the primary reinforcer (foot-shock) is mediated by knowledge
of the instrumental avoidance contingency, as required by the belief criterion, remains
to be determined.

System integration
In summary, rate correlational theory, when assimilated into a dual-system framework,
provides a principled account of goal-directed and habitual control. However, there
are outstanding issues. Our version of dual-system theory assumes that the outputs of
the goal-directed and habitual systems summate in generating behavior but fail to offer
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commensurate psychologies for the two systems that would allow for such summation.
We appeal to an intentional psychology involving the process of practical inference to
explain goal-directed action, whereas habitual responding is attributed to a mechanistic
psychology in which the process of excitation (and inhibition) operates through associa-
tive connections. Dickinson (2012) has suggested that this disjunction might be resolved
by an associative account of practical inference within the processing architecture of an
associativeecybernetic model. This model has its origins in Thorndike’s ideational theory
of instrumental action (Thorndike, 1931), which Sutton and Barto (1981) subsequently
simulated 50 years later. Thorndike considered a hungry animal at the choice point in
T-maze in which it has learned that a right turn leads to food and a left turn to shock.
The animal resolves this choice by imagining turning right, which in turn leads to the
associative activation of a food representation. The positive evaluation of the food
then feeds back to augment the activation of the right turn sufficiently to produce this
response. In contrast, contemplation of a left turn activates a shock representation with
its evaluative feedback inhibiting this response.

Within this framework, Dickinson (2012) suggested that the initial activation of the
response representation constitutes a latent intention that, in turn, retrieves the belief
about the causal consequences of action in the form of the association between the
response and outcome representations. The desire for the outcome is then implemented
by an activated association between the outcome representation and a motivational
mechanism with the feedback process completing the practical inference to generate
an executable intention. Dickinson and Balleine (1993) integrated this associativee
cybernetic system with an S-R/reinforcement process for habits to generate a fully mech-
anistic dual-system psychology. However, our purpose here is not to describe and eval-
uate the associativeecybernetic model, which has been extensively presented in the
literature (Balleine & Ostlund, 2007; de Wit & Dickinson, 2009; Dickinson, 1994)
but rather to use this model to illustrate the necessity for an integration of the intentional
and mechanistic psychologies in the control of behavior.

LOOKING TO THE FUTURE

Goal-directedness is a profligate concept in psychology, having been ascribed to behavior
ranging from target-directed responses, such as preparatory grasping of objects, through
instrumental action that yields access to currently valued resources, to future planning,
such as food caching and subscribing to a pension plan. This chapter focuses on the
second, instrumental sense of the term that, when integrated into a dual-system theory,
has become a focus of research during the last decade or so. Although Dickinson (1985)
argued for the rate correlational account of goal-directed learning within the framework
of dual-system control over 30 years ago, more than half of the citations to this paper
have occurred within the last 5 years.
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Although most recent research has focused on the neurobiology rather than psychol-
ogy of dual-system control (Balleine & O’Doherty, 2010; Dolan & Dayan, 2013), the
belief and desire criteria, derived from the practical inference account of folk psychology,
still provide empirical benchmarks for identifying an important class of adaptive behavior
that is goal-directed in terms of the underlying psychological processes rather than just at
the functional or descriptive level. Whether the beliefs and desires that underpin these
criteria should be regarded metaphorically, at least in the case of animals, remains a
contentious issue. Dickinson addressed this issue by arguing that the acquisition of human
beliefs or judgments about the causal status of an action are governed by the same learning
processes as animal instrumental conditioning (Dickinson & Shanks, 1995), a finding
compatible with the claim that goal-directed instrumental learning yields
propositional-like representations in both humans and other animals. Correspondingly,
in their hedonic interface theory Dickinson and Balleine (2009) argued that goal values
are learned and represented abstractly and therefore could also operate through a desire
with propositional-like content.

There has always been an inferential asymmetry in the assignment of control based on
the outcome revaluation paradigm. Whereas sensitivity to revaluation indicates goal-
directed control, it is the failure to detect a revaluation effect that marks habitual respond-
ing. It is therefore reassuring for dual-system theories that the two forms of control have
been doubly dissociated by manipulations of corticostriatal systems (Balleine & O’Doh-
erty, 2010). Goal-directed and habitual control have also been dissociated motivationally
with the latter being more sensitive to the general motivating effects of the stimulus
context brought about by Pavlovian conditioning. Indeed, this form of motivation
may endow habits with a veneer of goal-directedness in that they can be sensitive to
outcome revaluation, thereby meeting the desire criterion. This veneer is deepened by
the fact that a sensory representation of the outcome can also act as a stimulus capable
of priming or eliciting the response through an S/ O/ R chain generated by
S-R/reinforcement and/or ideomotor learning. However, both the motivational and
stimulus effects fail the belief criterion in that they do not operate through a causal
representation of the instrumental actioneoutcome contingency.

An influential theoretical advance in the last decade or so is the distinction between
model-based and model-free control within the framework of computational reinforce-
ment theory. However, the state prediction error learning rules of the model-based
account fail to capture important aspects of goal-directed control. The propensity of in-
terval contingencies to establish habitual control is problematic for reinforcement theory
and suggests a form of goal-directed learning based upon the rate correlation. Moreover,
the interaction between goal-directed and habitual control often appears to be cooper-
ative rather than competitive.

Finally, although the desire criterion has generally been accepted as an assay of goal-
directed status, there are problematic cases. Consider food caching. If caching is regarded
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as the instrumental action and recovery of the food as the outcome, the value of the food
at the time of action can be dissociated from its value at the time of the outcome. The
desire criterion specifies that it is the value of the outcome at the time of caching that
should control this action if it is goal-directed, whereas from a functional perspective,
it is the value of the food at the time of recovery, when it is needed, that should be crit-
ical. Dickinson with Clayton et al. examined this issue using jays, which are omnivorous
cachers (Cheke & Clayton, 2012; Correia, Dickinson, & Clayton, 2007). The idea
behind these experiments was to manipulate the relative values of two foods at caching
and at recovery to determine which value controls the caching. For example, in one
experiment the jays cached two different types of food, pine seeds and dog kibble, in
the morning followed in the afternoon by the opportunity to recover their caches. To
manipulate the relative values of these two foods, some of the jays were prefed the
pine seeds prior to caching in the morning to reduce their value relative to the dog kib-
bles through specific satiety. In accord with the desire criterion, these jays cached less
seeds than kibble. However, in the afternoon, these jays were prefed the kibbles prior
to recovery, so that the seeds were now the more valuable food. At issue was the caching
preference next morning when the birds were again prefed the seeds. If motivational
control reflects the current desires, as the desire criterion requires, the jays should again
have cached more of the kibble having just been prefed seeds. By contrast, the biological
function of caching predicts that caching should reflect the relative values of the foods at
recovery, and therefore a switch in caching preference from the kibble to the seeds is pre-
dicted on this second caching episode. In accord with this prediction, the jays cached
relatively more seeds than kibbles in spite of having just been prefed the seeds. Thus,
the jays preferentially cached the food items that were valuable at the time of recovery
rather than those that were valuable when they were actually engaged in caching. It is
not that the relative desires of jays had switched on the second caching episode because
they continued to eat more of the nonprefed food, kibble in this case, at the same time as
preferentially caching the prefed food, the seeds.

It is, of course, the case that food caching is a specialized biological adaptation,
although this experiment shows that the choice of which food to cache is instrumental
in the sense that it is sensitive to the outcomes at the time of recovery. Moreover, caching
appears similar to many forms of our own future planning, such as stocking up the larder
for next week’s meals. It may well be that such future planning engages psychological
processes that differ from those mediating goal-directed action as defined by the desire
criterion. For example, it has been suggested that future planning involves episodic mem-
ory and it is well-established that the recovery searches by the jays are controlled by an
episodic-like memory for the caching episode (Clayton & Dickinson, 1998). The inte-
gration or differentiation of goal-directed behavior and future planning remains an
important research issues in the study of purposive behavior.
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APPENDIX: SIMULATION OF RATE CORRELATION DUAL-SYSTEM
THEORY

The simulation of the goal-directed learning assumes that the agent segments time into a
series of time samples, each 20 time units in length where a unit is the time required to
execute a single response. The number of responses and outcomes in each new sample is
registered in a working memory with a capacity of 20 successive samples so that as the
memory cycles each new sample replaces the oldest one. The probability of a response
per time unit generated by goal-directed learning after the kth memory cycle [pg(k)] is
equal to the Pearson’s correlation coefficient [r(k)] between the number of responses
and outcomes in each sample calculated across the samples in the current memory cycle
weighted with the correlation obtained in the previous cycle [r(k � 1)], so that pg(k) ¼
qr(k) þ [1 � q]r(k � 1), where 0 < q < 1.

The probability of a response in each time unit (t) generated by the habit learning
[ph(t)] is determined by a reinforcement learning algorithm that is sensitive to the con-
tiguity between responses and outcomes. If a response was reinforced, the change in
the probability of responding (Dph) generated by the habit learning was given by
Dph ¼ a[1 � ph(t)], where a is the learning rate for reinforced responses (0 < a < 1),
the asymptotic value of ph is 1, and ph(t) is the current value of ph. Conversely, if a
response was performed but not reinforced, the probability changed according to
Dph ¼ �b[ ph(t)], where b is a learning rate for nonreinforced responses (0 < b < 1).
Therefore, the value of the probability generated by habit learning in each cycle is given
by the final value accrued by ph during the cycle. The values chosen for the parameters
were q ¼ 0.5, a ¼ 0.01 and b ¼ a/100.

Finally, the model assumes that the outputs of the two systems summate so that the
probability of a response in each cycle k is given by p(k) ¼ pg(k) þ ph(k) � pg(k)$ph(k),
where ph(k) is the value of ph accumulated throughout the simulation.
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CHAPTER 2

Instrumental Divergence and
Goal-Directed Choice
Mimi Liljeholm
Cognitive Sciences, University of California, Irvine, Irvine, CA, United States

INTRODUCTION

An essential aspect of flexible choice is that alternative actions yield distinct consequences:
If all available actions have identical, or highly similar, outcome distributions, such that
selecting one action over another does not significantly alter the probability of any given
outcome state, an agent’s ability to exert control over its environment is considerably
impaired. Conversely, when alternative actions produce distinct outcome states,
discrimination and selection between actions allow an agent to flexibly obtain the
currently most desired outcome. Since subjective outcome utilities are constantly
changing, such flexible control is essential for reward maximization and, thus, may
have intrinsic value, serving to motivate and reinforce specific decisions, as well as to
generally justify the processing cost of goal-directed computations. In this chapter, I
discuss work investigating the role of instrumental divergencedthe degree to which actions
differ with respect to their outcome probability distributionsdin goal-directed choice.

Formal theories of goal-directed decisions postulate that the agent generates a
“cognitive map” of stochastic relationships between actions and states such that, for
each action in a given state, a probability distribution is specified over possible outcome
states. These transition probabilities are then combined with current estimates of
outcome utilities in order to generate action valuesdthe basis of goal-directed choice
(Daw, Niv, & Dayan, 2005; Doya, Samejima, Katagiri, & Kawato, 2002). Although
computationally expensive (Keramati, Dezfouli, & Piray, 2011; Otto, Raio, Chiang,
Phelps, & Daw, 2013; Otto, Skatova, Madlon-Kay, & Daw, 2014), the “on-the-fly”
binding of outcome probabilities with utilities offers adaptive advantage over more
automatic action selection, which uses cached values based on reinforcement history
(Sutton & Barto, 1998). There are, however, situations in which the processing cost of
goal-directed computations does not yield the return of flexible control.

As an illustration, consider the scenario in Fig. 2.1A, which shows two available
actions, A1 and A2, with bars representing the transition probabilities of each action
into three potential outcome states, O1, O2, and O3. Here, the goal-directed approach
prescribes that the agent retrieves each transition probability, estimates the current utility
of each outcome, computes the product of each utility and associated probability, sums
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across the resulting value distribution for each action, and, finally, compares the two
action values. Of course, given equivalent costs, actions that have identical outcome dis-
tributions, as in Fig. 2.1A, will inevitably have the same value, eliminating the need for
costly goal-directed computations. However, critically, this lack of instrumental diver-
gence also eliminates the power of choice: Selecting A1 over A2, or vice versa, does
not alter the probability of any given outcome state.

Now consider the scenario in Fig. 2.1B, in which the probability distribution of A2
has been reversed across the three outcomes, yielding high instrumental divergence.
Note that if the utilities of O1 and O3 are the same, then according to conventional
accounts of economic choice, from reinforcement learning (RL) theory to rational
choice theory and prospect theory, all actions depicted in Fig. 2.1 have the same expected
utility. Consequently, there should be no preference for the scenario depicted in Fig. 2.1B
over that in Fig. 2.1A. And yet, if one considers the dynamic nature of subjective
outcome utilities, the two scenarios clearly differ. To appreciate the significance of this
difference, imagine that O1 and O3 represent food and water, respectively, and that at
the point of choosing between the two scenarios, you are as hungry as you are thirsty.
However, having committed, for example, to Fig. 2.1B, you might find that after a large
meal without a drop to drink, your desire for O3 is suddenly greater than that for O1. A
few hours later, having thoroughly quenched your thirst, you may again prefer O1.
Unlike the scenario illustrated in Fig. 2.1A, the instrumental contingencies in
Fig. 2.1B allow you to produce the currently desired outcome as preferences change,
by switching between actions. Thus, even when expected utilities are presently the
same, the possibility that outcome utilities may subsequently change renders the flexible
control afforded by high instrumental divergence essential for long-term reward
maximization. As such, high instrumental divergence may have intrinsic utility, eliciting
a significant preference for the environment in Fig. 2.1B over that in Fig. 2.1A.

Theories of instrumental behavior distinguish between the goal-directed decisions
described above, which are motivated by the probability and current utility of their
consequences, and habitual actions, which are rigidly and automatically elicited by the
stimulus environment based on their reinforcement history (Balleine & Dickinson,
1998). Although considerable evidence has substantiated this theoretical distinction,

(A) (B)

Figure 2.1 Probability distributions over three potential outcomes (O1, O2, and O3) for two available
actions (A1 and A2) across which instrumental divergence is zero (1A) or high (1B).
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and in spite of its far-reaching implications, ranging from the structuring of economic
policies to the treatment of compulsive pathology, very little is still known about what
factors induce the use of one instrumental strategy over the other. As noted, when instru-
mental divergence is zero, the greater processing cost of goal-directed computations does
not yield the return of flexible control, suggesting that a less resource-intensive, habitual,
action selection strategy might be optimal. One possibility, therefore, is that a lack of
instrumental divergence (i.e., a failure to map alternative actions to distinct outcome
states) results in a degradation of goal-directed performance, eliciting a greater reliance
on habitual control.

In this chapter, I will review behavioral and neural support for the role of instrumental
divergence in goal-directed decision-making. I will begin by formalizing instrumental
divergence as the information-theoretic distance between outcome distributions
associated with available action alternatives, relating this novel decision variable to, and
dissociating it from, a range of motivational and cognitive factors. I will then review
recent work addressing the intrinsic utility of instrumental divergence, including its
relevance to psychopathology, and, finally, discuss the potential role of instrumental
divergence in the arbitration between goal-directed and habitual decision strategies.

AN INFORMATION-THEORETIC FORMALIZATION OF INSTRUMENTAL
DIVERGENCE

Conceptually, instrumental divergence is simply the difference between outcome
distributions associated with alternative actions. This concept can be formalized as the
JenseneShannon ( JS) divergence of instrumental outcome probability distributions.
Let P1 and P2 be the respective outcome probability distributions for two available
actions, O be the set of possible outcomes, and P(o) be the probability of a particular
outcome, o. The instrumental ( JS) divergence is

ID ¼ 1
2

X
o˛O

log

�
P1ðoÞ
P*ðoÞ

�
P1ðoÞ þ 1

2

X
o˛O

log

�
P2ðoÞ
P*ðoÞ

�
P2ðoÞ; (2.1)

where

P* ¼ 1
2
ðP1 þ P2Þ:

Note that instrumental divergence is defined here with respect to the sensory rather
than motivational features of outcome states. Since subjective outcome utilities may
change from one moment to the next (e.g., due to sensory satiety), a measure of
divergence based on outcome utilities would be inherently unstable. Thus, a definition
in terms of nonvalenced sensory features is critical for the broad, organizing, role of
instrumental divergence posited here, which includes guiding the organism toward
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high-agency environments and signaling the need to switch to a habitual decision
strategy. Note also that instrumental divergence is defined on distributions associated
with available action alternatives: If P1 and P2 were outcome distributions associated
with different cues, or with any other events not subject to the agents volition, their
divergence, although relevant to the predictability of the outcome, would not be
instrumental and, consequently, would have no implications for flexible instrumental
control.

While JS divergence is only one of many distance measures, it has several advantages,
including its symmetry and generality: It applies to nominal and numerical, discrete and
continuous random variables, and it intuitively generalizes to any arbitrary finite number
of probability distributions (Lin, 1991), allowing for comparisons of multiple action
alternatives. JS divergence is also intimately related to Shannon entropy, a decision
variable frequently shown to influence economic choice (Abler, Herrnberger, Gr€on,
& Spitzer, 2009; Erev & Barron, 2005; Holt & Laury, 2005), that is greatest when the
distribution over outcomes is uniform. Given a set of available actions, A, where p(oja)
and p(o,a) are, respectively, the conditional and joint probabilities of outcome o, the
Shannon entropy is

H ¼ �
X
a˛A

X
o˛O

pðo; aÞlog pðojaÞ: (2.2)

In spite of the close relationship between the two measures ( JS divergence is simply
the symmetrized relative entropy), they have dramatically different implications: While
Shannon entropy reflects uncertainty about the state of the outcome variable given
performance of a particular action, or given a set of available actions as in Eq. (2.2), JS
divergence, as applied here, reflects the degree to which discrimination and selection
between available actions increases the controllability of the outcome. As discussed in
the next section, these closely related information-theoretic variables elicit neural activity
in distinct brain regions.

NEURAL CORRELATES OF INSTRUMENTAL DIVERGENCE

A large literature has identified neural signals scaling with trial-by-trial estimates of
goal-directed action values (i.e., the expected utility of available response options)
(Gl€ascher, Hampton, & O’doherty, 2008; Rangel & Hare, 2010; Wunderlich, Dayan,
& Dolan, 2012; Wunderlich, Rangel, & O’Doherty, 2009). While instrumental
divergence is not a measure of the value of performing a particular action (since it
is defined with respect to sensory rather than motivational outcome features), it
may improve the efficacy of such estimates by identifying instances in which a
goal-directed decision strategy yields flexible control over outcomes. This marker of
flexible control can then be used to guide the organism toward high-agency
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environments, to signal that a transition to habitual performance might be advantageous,
or to restrict searches of the stateeaction space. Given these important characteristics, one
might expect a neural signature of instrumental divergence to be present during human
goal-directed performance, dissociable from the well-established neural correlates of
action values. In this section, I will review prominent formal accounts of goal-directed
action values, highlighting their relevance to, and recently demonstrated neural
dissociation from, instrumental divergence.

Formal accounts of goal-directed action values: Early accounts of goal-directed performance
formalized the strength of the actionereward relationship as the difference between two
conditional probabilities; the probability of gaining a target reward (r), given that a spe-
cific action (a) is performed and the probability of gaining the reward in the absence of
that action (wa) (Hammond, 1980):

DP ¼ pðrjaÞ � pðrjwaÞ: (2.3)

Sensitivity to this “instrumental contingency” is a defining property of goal-directed
actions that has been reliably demonstrated in humans (Chatlosh, Neunaber, &
Wasserman, 1985; Liljeholm, Tricomi, O’Doherty, & Balleine, 2011; Shanks &
Dickinson, 1991) as well as rodents (Balleine & Dickinson, 1998; Hammond, 1980).
Instrumental divergence can be characterized as a generalization of the instrumental
contingency rule, extending the contrast over multiple actions and sensory-specific
outcomes. The representational change achieved by this simple extension is profound;
while the instrumental contingency is a signed measure of the relative advantage of
performing a particular action, instrumental divergence is a symmetric measure of the
degree to which discrimination and selection between actions alters the probabilities of
potential outcome states (i.e., the degree of flexible instrumental control).

A more recent formal framework that represents the full sensory-specific outcome
distributions of alternative actions is model-based RL (e.g., Daw et al., 2005). Specif-
ically, for each action available in the current state, and for all possible outcome states,
model-based RL maintains separate representations of the probability of transitioning
into a possible subsequent state, given that a particular action is performed in the current
state, T(s,a,s0), and the reward associated with that subsequent state, R(s0). Transition
probabilities and rewards are dynamically combined, at each choice point, to yield action
values:

Qðs; aÞ ¼
X
s0
Tðs; a; s0Þ*

�
rðs0Þ þ gmax

a0
Qðs0; a0Þ

�
; (2.4)

where Q(s0,a0) is the, recursively defined, value of an action performed in the subsequent
state and g is a discount parameter. The transition probabilities may be presumed to be
known, or may be incrementally acquired based on trial-by-trial feedback, using a state
prediction error:

Tðs; a; s0Þ ¼ Tðs; a; s0Þ þ hð1� Tðs; a; s0ÞÞ; (2.5)
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where h is the learning rate. Note that, although sensory-specific transition probabilities
are explicitly estimated and represented, they are used solely in the service of generating
action values, through their combination with outcome utilities. In contrast, the
argument set forth in this chapter is that sensory-specific transition probabilities are
also used to estimate instrumental divergence, which is in turn used to guide the
deployment of goal-directed processes.

Neural correlates of motivational and information-theoretic variables: As a first step in
evaluating the representation of instrumental divergence in goal-directed processes,
Liljeholm,Wang, Zhang, and O’Doherty (2013) used fMRI to investigate a neural signal
scaling with instrumental divergence, and the dissociability of such a signal from the ef-
fects of other motivational and information-theoretic variables. On each trial in their
choice task, participants selected between two available actions, given a set of food treats
potentially produced by those actions (see Fig. 2.2A). The probability distributions over
food treats, including a “no treat” outcome, for four distinct action alternatives were
trained to criterion prior to the choice task, and this procedure was repeated in each
of three consecutive blocks, using different probabilities and food treats in each block,
to ensure sufficient variance. The subject-specific utilities of food treats were assessed us-
ing evaluative pleasantness ratings and a standard, incentive compatible, Beckere
DeGrooteMarschak auction (Becker, DeGroot, & Marschak, 1964).

Liljeholm et al. (2013) modeled the BOLD response during the choice period of each
trial as a function of the instrumental divergence between the actions available on the trial
and the values of those actions derived using model-based RL. Consistent with previous
work (Gl€ascher et al., 2008; Wunderlich et al., 2012, 2009), they found that the value of
the chosen action scaled with activity in the ventromedial prefrontal cortex: In contrast,
instrumental divergence correlated with activity in the right supramarginal gyrus of the
inferior parietal lobule (IPL)da region previously implicated in the planning, execution,
and observation of goal-directed actions (Fincham, Carter, Van Veen, Stenger, &
Anderson, 2002; Liljeholm, Molloy, & O’Doherty, 2012; Liljeholm et al., 2011).
Importantly, the effect of instrumental divergence in the IPL was also dissociable from
other information-theoretic and motivational variables, such as the entropy of outcome
distributions for chosen actions, which scaled with activity in the dorsolateral prefrontal
cortex (DLPFC), and the summed utility of potential food treats, which elicited activity
in the insula and ventral striatum (see Fig. 2.2B). A Bayesian model selection analysis
ruled out additional competing variables, such as the difference between reward proba-
bilities associated with available action alternatives (i.e., the absolute value of DP) and the
overall probability of reward on each trial, as sources of the IPL activity. It should be
noted that a BOLD signal scaling with instrumental divergence says very little about
how a distributed neural code of instrumental divergence may be implementeddan
important question for future work. Nonetheless, the identification of a neural signal
scaling with instrumental divergence during instrumental choice performance supports
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Figure 2.2 (A) Illustration of a trial in the choice task, with the choice screen showing two available ac-
tions and the food treats potentially produced by those actions. (B) Parametric modulation, during the
choice screen period of each trial, of activity in the IPL by instrumental divergence (top left), of ventro-
medial prefrontal cortex activity by the value of the chosen action (top right), of DLPFC activity by the
outcome entropy for the chosen action (bottom left), and of anterior insula and ventral striatum by the
summed utility of potential outcomes (bottom right). (Task and results from Liljeholm et al. (2013).)
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the notion that this variable may play an important role in decision-making. In subse-
quent sections, I discuss more direct, behavioral evidence for an influence of instrumental
divergence on goal-directed choice.

INSTRUMENTAL DIVERGENCE AND THE INTRINSIC UTILITY OF
CONTROL

Imagine that you had to commit, for some duration, to one of the two environments
illustrated in Fig. 2.1A and B, and that, at the time of making your decision, the
subjective utilities of O1 and O3 were identical, yielding identical expected values for
all actions across environments. If outcome utilities were static, the high instrumental
divergence afforded by the probability distributions in Fig. 2.1B would be of little
consequence. In the real world, however, subjective outcome utilities are constantly
changing, due, for example, to sensory-specific satiety or changes in motivational states.
Given this dynamic nature of subjective utilities, the high instrumental divergence in
Fig. 2.1B is essential for long-term reward maximization and, as such, may have intrinsic
utility, serving to motivate and reinforce decisions that guide the agent toward
environments that enable flexible instrumental control. In this section, I review recent
research investigating the intrinsic utility of instrumental divergence, its dissociability
from related constructs, such as outcome diversity and free choice, and its role in
psychopathology.

An experimental test of the utility of flexible instrumental control: A recent study by Mistry
and Liljeholm (2016) investigated the intrinsic utility of flexible instrumental control
using a novel paradigm, illustrated in Fig. 2.3, in which participants choose between
environments with either high or low instrumental divergence. Specifically, participants
assumed the role of a gambler in a casino, playing a set of four slot machines (i.e.,
alternative actions, respectively labeled A1eA4) that yielded three differently colored
tokens, each worth a particular amount of money, with different probabilities. In each
of several gambling rounds, participants were required to first select a “room” in which
only two slot machines were available, and they were restricted to playing on those two
machines on subsequent trials within that round. Critically, the two slot machines
available in a room had either identical probability distributions over token outcomes,
yielding zero divergence (as in Fig. 2.1A), or symmetrically opposite distributions,
yielding relatively high divergence (as in Fig. 2.1B). The measure of interest, thus, was
the decision at the beginning of each block (top of Fig. 2.3), between a high- versus
zero-divergence room.

While the probabilities with which each slot machine yielded each colored token
were fixed throughout the task, and pretrained to criterion prior to gambling, the
monetary values assigned to different token colors changed intermittently and
unpredictably (about every fourth gambling round on average). In addition to mimicking
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changes in the utilities of natural rewards, these changes in monetary values served to vary
expected monetary utilities across gambling rooms, confirming that participants were
sensitive to monetary payoffs, and to pit conventional currency against the utility of flex-
ible control. Thus, while in some rounds, room options differed only in terms of instru-
mental divergence, in other rounds, expected monetary payoffs also differed across
rooms, in either the same or opposite direction of instrumental divergence.

When participants choose between two gambling rooms with identical expected
monetary payoffs but different levels of instrumental divergence, they choose the
high-divergence room about 70% of the time, confirming a strong preference for flexible
instrumental control all else being equal. Of primary interest, however, is how
participants responded when high instrumental divergence was pitted against monetary
gain. Here, alternative formal predictions may be generated using model-based RL
agents that either do or do not consider the utility of flexible control. Specifically, the
term r(s0) in Eq. (2.4) can be defined solely in terms of monetary reward, r(s0) ¼ m(s0),
or in terms of both monetary reward and instrumental divergence, r(s0) ¼ m(s0) þ
w*ID(s0), where w is a free parameter accounting for individual differences in the
perceived utility of flexible control. Using a softmax distribution to translate action values
into action probabilities, and fitting free parameters to choice data by minimizing
negative log likelihood, we can derive a prediction, by each model, regarding the
proportion of choosing the room with a greater expected monetary payoff when

Figure 2.3 Illustration of task used by Mistry and Liljeholm (2016), showing the choice screen at the
onset of a round (top) and the choice (middle) and feedback (bottom) screens on a trial within the
round.
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instrumental divergence differs across rooms in either the same or opposite direction.
Fig. 2.4 shows these predictions, for each model, together with the actual proportion
of choices made by participants.

The conventional RL agent is, of course, likely to select the room with a greater
monetary payoff whether the instrumental divergence of that room is zero or relatively
high. In contrast, the divergence RL agent is significantly more likely to select the room
with greater expected monetary payoff when that room also has relatively high
instrumental divergence than when it has zero divergence. This was also the case with
participants’ choice behavior: The preference for a room with greater expected monetary
payoff was significantly reduced when that room had zero instrumental divergence, and
the alternative room, associated with a lower expected monetary payoff, had relatively
high instrumental divergence. As a result, the divergence RL agent provides a
significantly better fit to behavior than does the conventional model. Note that, when
instrumental divergence differed across rooms in the opposite direction of monetary
reward, the utility of flexible control was directly pitted against that of monetary gain.
The reduction in preference, thus, shows a willingness to incur a monetary loss for access
to high instrumental divergence. A parametric search for the exact trade-off between
instrumental divergence and monetary reward, and investigation of the common neural
value-scale mediating such trade-offs, is an important avenue for future work.

Instrumental divergence, perceptual outcome diversity, and free choice: The idea of “portfolio
diversification”dmixing a wide variety of investments in order to reduce the impact of a
single poorly performing sourcedis fundamental to theories of risk management. Ayal
and Zakay (2009) conducted a series of psychological experiments in which participants
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Figure 2.4 RL predictions and mean choice proportions from Experiment 1 by Mistry and Liljeholm
(2016). Mean proportion of selecting the room with a greater expected monetary payoff when
instrumental divergence differed across rooms in either the same (S) or opposite (O) directions, for
a conventional RL model, an RL model that considers the utility of instrumental divergence, and
behavioral choices. Error bars ¼ SEM. RL, reinforcement learning.
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choose among various “betting pools,” where the perceptual diversity of betting options
varied while the expected monetary gain was held constant. They found a significant
preference for the most perceptually diverse pool and further, that the effort to maximize
perceptual diversity sometimes led participants to prefer alternatives with lower expected
monetary gain (see Schwartenbeck et al., 2015 for similar results). In the study by Mistry
and Liljeholm described earlier, the perceptual diversity of obtainable outcomes was
greater in high-divergence rooms than in zero-divergence rooms. Specifically, in
zero-divergence rooms, there was a high probability of obtaining a blue token, a
relatively low probability of obtaining a red token, and a zero probability of obtaining
a green token (with specific token colors counterbalanced across participants). In contrast,
in high-divergence rooms, participants were able to obtain blue, red, and green tokens by
switching between actions across trials. Consequently, even when the expected monetary
gain of high- and zero-divergence rooms was identical, the perceptual diversity of
obtainable outcomes was greater in high-divergence rooms than in zero-divergence
rooms.

Now, consider a scenario in which a computer algorithm chooses between the
actions in a particular gambling room, selecting each action equally often by alternating
across trials. Given such absence of voluntary choice, the high-divergence room no
longer yields flexible instrumental control. Indeed, in the absence of free choice, neither
the high- nor zero-divergence condition can be considered instrumental. However, such
a computer algorithm would still yield greater perceptual diversity in high-divergence
rooms than in zero-divergence rooms. Consequently, if choices were driven by a desire
to maximize perceptual diversity, rather than instrumental divergence, they should not
differ depending on whether the participant or an alternating computer algorithm
chooses between the actions in a room. In a second study, Mistry and Liljeholm used
an “autoplay” option, in which the computer selected between the two actions available
in a room, to rule out perceptual outcome diversity as the source of a preference for
flexible instrumental control. Specifically, in each block, one room option was always
self-playdparticipants choose freely between actions available in the selected roomdand
the other option was always autoplayda computer algorithm alternated between actions
across trialsdas indicated by labels printed below options on the room-choice screen.
Instrumental divergence was either the same (high or zero) or different across room
options.

The results of the study are shown in Fig. 2.5. When choosing between a
high-divergence and a zero-divergence room (left two bars), participants preferred the
high-divergence room when it was self-play (while the zero-divergence room was
autoplay) but had no preference when the high-divergence room was autoplay (and
the zero-divergence room was self-play). Since the high-divergence room was always
associated with greater perceptual diversity, these results suggest that preferences were
instead driven, as hypothesized, by instrumental divergence. The self-play versus autoplay
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manipulation is also related to a well-established preference for free choice over forced
choice demonstrated across species, from pigeons to primates, including humans (Catania
& Sagvolden, 1980; Leotti & Delgado, 2011, 2014; Suzuki, 1999). In Mistry and
Liljeholm’s second study, when instrumental divergence was held constant across
self-play and autoplay options, participants choose the self-play over autoplay room
significantly more often when both rooms had high instrumental divergence than
when both rooms had zero instrumental divergence (right two bars in Fig. 2.5),
suggesting that the value of choice depends less on whether a decision is voluntarily
made and more on the extent to which decisions have a meaningful impact on future
states.

Instrumental divergence and psychopathology: An aberrant experience of instrumental con-
trol, or “sense of agency” (SOA), is a common characteristic of various psychiatric disorders
(Haggard, Martin, Taylor-Clarke, Jeannerod, & Franck, 2003; Keeton, Perry-Jenkins, &
Sayer, 2008; Maeda et al., 2012; Martin & Penn, 2002; Peterson & Seligman, 1984;
Seligman, Abramson, Semmel, & Von Baeyer, 1979; Voss et al., 2010; Werner, Trapp,
W€ustenberg, & Voss, 2014): Schizophrenic individuals, in particular, differ from healthy
controls in their self versus external attributions of events, as well as in the degree of inten-
tional bindingda perceived compression of the time interval between an action and its
consequence (Haggard et al., 2003; Maeda et al., 2012; Martin & Penn, 2002; Voss
et al., 2010; Werner et al., 2014). While operational definitions of agency and volition
differ across such findings, they share some fundamental limitations: First, they often
conflate the estimation or representation of an actioneoutcome contingency with the

ti

Figure 2.5 Mean choice proportions from Experiment 2 reported by Mistry and Liljeholm (2016).
Mean proportions of high-divergence choices over zero-divergence choices (left) for blocks in which
the high-divergence option was autoplay (Auto) versus blocks in which the high-divergence option
was self-play (Self), and mean proportions of self-play choices over autoplay choices (right) for blocks
in which both options had high divergence (High-div.) versus blocks in which both options had zero
divergence (Zero-div.). Dashed lines indicate chance performance. Error bars ¼ SEM.
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subjective experience of volitional control (e.g., by manipulating outcome entropy or con-
tiguity). Second, they tend to focus exclusively on cognitive or perceptual judgments, thus
failing to address motivational aspects of SOA. In contrast, instrumental divergence pro-
vides a novel measure of agency that varies independently of outcome contiguity and pre-
dictability, and without eliminating volition, thus disambiguating the contribution of basic
instrumental processes, such as simple contingency learning, to the apparent dysregulation
of agency in schizophrenia. Moreover, unlike previous assessments of SOA, our task assess-
ing a preference for high instrumental divergence can dissociate motivational aspects of
flexible instrumental control from purely cognitive representations, at both behavioral
and neural levels.

In a recent, unpublished, study, to begin to address the nature of aberrant SOA in
schizophrenia, particularly with respect to its role in motivated behavior, we used the
OxfordeLiverpool Inventory of Feelings and Experiences (O-LIFE) (Mason, Claridge,
& Jackson, 1995) to relate individual differences in schizotypy to performance on the
task used in the second study by Mistry and Liljeholm, discussed in the previous section.
The O-LIFE questionnaire measures four dimensions of schizotypydunusual experi-
ences, cognitive disorganization, introvertive anhedonia, and impulsive nonconformity.
We found that scores on the dimensions of unusual experiences and introvertive anhe-
donia, phenomenologically related, respectively, to positive and negative symptoms of
schizophrenia, predicted a preference for high instrumental divergence. Specifically, as
illustrated in Fig. 2.6, scores on both of these dimensions were significantly, negatively,
correlated with the proportion of high-divergence choices over zero-divergence choices
when the high-divergence option was self-play and with the proportion of self-play over
autoplay choices when both options had high divergence. In contrast, there was no
significant correlation between any schizotypy dimension and the proportion of choices
for options that did not involve high instrumental divergence - i.e., rooms with high
divergence but auto-play, or with zero divergence and self-play; indeed, neither of
these latter choice proportions deviated significantly from chance, suggesting a
complete lack of preference for either perceptual diversity or self-play in the absence
of instrumental divergence. Moreover, no schizotypy dimension predicted preferences
for greater monetary pay-offs, specifically implicating the utility of agency as a target
for modulation in schiotypy.

The finding that schizotypal traits in healthy individuals modulate a preference for
high instrumental divergence suggests that effects of instrumental divergence might
also be significantly altered in clinical populations, potentially accounting for aspects of
behavioral pathology in schizophrenia. Notably, the supramarginal gyrus of the IPL,
implicated in neural computations of instrumental divergence by Liljeholm et al.
(2013), has been frequently shown to differ volumetrically across schizophrenic and
neurotypical individuals (Buchanan et al., 2004; Goldstein et al., 1999; Peng et al.,
1994; Pol et al., 2001; Zhou et al., 2007), highlighting a possible anatomical basis
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for any differences in cognitive or motivational representations of instrumental
divergence. Future research will be aimed at assessing whether individuals diagnosed
with schizophrenia differ from healthy controls in their behavioral preference for high
instrumental divergence and in underlying neural value computations.

INSTRUMENTAL DIVERGENCE AS A BOUNDARY CONDITION ON
GOAL-DIRECTEDNESS

Unlike goal-directed decisions, habitual performance is insensitive to the current utility
of action outcomes: an inflexibility that has been argued to result from a model-free RL
process, in which instrumental responses come to be rigidly elicited by the stimulus
environment based on their reinforcement history (Daw et al., 2005). Specifically, for
a given action performed in a particular state, the model-free action value is updated as

Qðs; aÞ)Qðs; aÞ þ a½ðrðs0Þ þ gQðs0; a0ÞÞ �Qðs; aÞ�; (2.6)
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Figure 2.6 Results from a preliminary study (n ¼ 60) assessing the relationship between schizotypal
traits and a preference for high instrumental divergence. Top: Mean choice proportions for the same
conditions as those listed in Fig. 2.5. Error bars ¼ SEM. Dashed line indicates chance performance.
* ¼ P < .05, ** ¼ P < .005, *** ¼ P < .0001. Bottom: Residual plots of choice proportions and
schizotypy scores (points scored out of total possible), adjusted for the number of training blocks
to criterion on actioneoutcome probabilities, and for the order of OxfordeLiverpool Inventory of
Feelings and Experience administration (i.e., before or after the gambling task).
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where a is the learning rate and remaining terms are defined as for Eq. (2.4). Critically,
the value of an action is updated following its execution in a particular state, only to be
stored and not retrieved until the agent reenters that state. Consequently, model-free
action selection reflects only past reinforcement, without regard for the current utility
of future states. The flexibility of goal-directed decisions, while computationally
expensive (Keramati et al., 2011; Otto et al., 2013, 2014), offers a clear adaptive
advantage over such cached retrieval. However, as noted, when instrumental
divergence is very low, the greater processing cost of goal-directed computations does
not yield the return of flexible instrumental control, suggesting that a less resource-
intensive, habitual, strategy might be optimal. One possibility, therefore, is that
instrumental divergence serves as a boundary condition on the deployment of goal-
directed behavior, increasing reliance on “fast and frugal” habits in environments that
inherently impede flexibility.

In this section, I review evidence from the rodent literature suggesting that reliance
on a goal-directed versus habitual strategy might depend on the degree of instrumental
divergence. I then discuss a recent human neuroimaging study assessing the role of
instrumental divergence in biasing behavior toward goal-directed versus habitual control,
and sketch a formal description of such arbitration.

Instrumental divergence and behaviorereward correlations: In a series of seminal paper,
Dickinson et al. demonstrated that goal-directed sensitivity to current outcome values
depends on both the extent and nature of instrumental training: First, extensive but
not moderate training produced insensitivity to outcome devaluation (Adams, 1982).
Second, and more intriguingly, even moderate training resulted in devaluation insensitive
performance if animals were trained on an interval schedule, in which reward delivery
depends on the time elapsed since the last reward, but not if they were trained on a ratio
schedule, in which the delivery of reward depends on the number of responses since the
last reward (Dickinson, Nicholas, & Adams, 1983). Another clue to what factors may
influence goal-directed and habitual arbitration came with a couple of demonstrations
by Colwill and Rescorla (1990), showing that, contrary to the reports by Dickinson
et al., animals remained sensitive to outcome devaluation in spite of being extensively
trained on an interval schedule. A critical difference in methods was that, while
Dickinson et al. used a single lever yielding a single outcome, Colwill and Rescorla
trained animals on two different instrumental responses, each yielding a distinct
sensory-specific reward. Holland (2004) directly contrasted these two procedures,
demonstrating that, indeed, performance remains sensitive to outcome devaluation in
spite of extensive training on an interval schedule when different instrumental responses
yield distinct sensory-specific outcomes but not when alternative responses yield the same
outcome.

Dickinson (1985) suggested that the critical factor arbitrating between goal-directed
and habitual performance might be the correlation between variations in response
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performance and variations in obtained outcomes. Dickinson noted that animals tended
to show relatively large variations in performance across early training sessions but
exhibited a consistently high rate of responding with extended training. He concluded
that, rather than the extent of training per se, it was the reduced variation in perfor-
mance during late training stages, and the resulting reduction in the behaviorereward
correlation, that was responsible for devaluation insensitive performance. This frame-
work also predicts the differences between ratio and interval schedules: On an interval
schedule, no amount of responding will yield reward until a particular interval has
passed; once the interval has passed, a single reward is delivered given a response,
whether that response was preceded by 1, 10, or 100 responses. In other words, varia-
tions in response rates have virtually no impact on the reward rate. In contrast, on a ratio
schedule, the number of obtained rewards increases linearly with the number of re-
sponses. As with responseereward correlations, instrumental divergence, defined
over the quantitative variables of response and reward rate, increases across interval
and ratio schedules. Moreover, instrumental divergence is greater whenever qualita-
tively different instrumental responses yield distinct sensory-specific outcomes, as in
the studies by Colwill and Rescorla (1990) and Holland (2004). Thus, the notion
that instrumental divergence arbitrates between goal-directed and habitual performance
is an extension of Dickinson’s “behaviorereward correlation” theory to the case of
multiple actions and sensory-specific outcomes.

A study assessing the role of instrumental divergence in strategy arbitration: In a recent
neuroimaging study, Liljeholm, Dunne, & O’doherty (2015) employed a task aimed at
encouraging goal-directed versus habitual responding using environments with high
versus zero instrumental divergence. Specifically, in this task (illustrated in Fig. 2.7A),
participants had to maintain the balance of a virtual system of fluid-filled beakers, using
four distinct actions across four abstract cues, in order to avoid incurring a rapidly
cumulating monetary loss. As long as all beakers had sufficient fluid, system balance
was maintained and yielded continuous monetary reward. However, on each trial,
one of the beakers would be emptied causing “system imbalance” and monetary loss until
the participant refilled the beaker by performing a particular instrumental action. The
emptying of a beaker was accompanied by the onset of one of four abstract cues. In a
high-divergence condition, each action deterministically and uniquely regulated a
particular beaker, so that there was no overlap between the sensory-specific outcome
probability distributions of the four actions. Conversely, in the zero-divergence
condition, each abstract cue signaled that a particular action would be effective in
regulating any beaker that needed to have its fluid refilled at the moment, regardless
of the identity of that beaker: Consequently, across trials, while each action was paired
with a specific antecedent cue, it was decorrelated from the refilling of any particular
beaker, generating a complete overlap of sensory-specific outcome probability
distributions associated with alternative actions.
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Following acquisition of the system-balancing task, one of the beakers was
“devalued”: Specifically, participants were instructed, as well as given the opportunity
to passively observe across several trials, that one of the beakers was no longer relevant
for system balance, which would be maintained, and continue to yield points, even
when the liquid in this beaker dropped below threshold. Having correctly identified
the devalued beaker, participants were allowed to again regulate the beaker system in
a final test phase. Defining any response aimed at refilling the now devalued beaker as
habitual (i.e., as devaluation insensitive), Liljeholm et al. found significantly greater
habitual test performance in the zero-divergence than in the high-divergence condition.
At the neural level, during the initial acquisition phase, activity in the supramarginal gyrus
of the IPL, the region found by Liljeholm et al. (2013) to encode instrumental
divergence, increased across blocks of acquisition in the high-divergence, but not the

System check: Balanced + 0.5

System check: Not Balanced - 0.5

System check: Balanced + 0.5
System regulation: - 0.1

(A)

(B) (C)

Figure 2.7 (A) Illustration of a trial in the beaker regulation task. (B) Increases in IPL activity across
acquisition blocks in the high-divergence condition but not the zero-divergence condition. (C)
Correlation between differences in IPL activity (x-axis) and differences in devaluation insensitivity
(y-axis) across high- and zero-divergence conditions. IPL, inferior parietal lobule. (Task and results
from Liljeholm et al. (2015).)
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zero-divergence, condition (see Fig. 2.7B). Moreover, in the test phase, differences in IPL
activity across high- and zero-divergence conditions predicted behavioral differences in
habitual performance (Fig. 2.7C). It should be noted that the task employed by
Liljeholm et al. (2015) was quite complex, with several factors (e.g., the strong
stimulus control in the zero-divergence condition or the threat of cumulative loss) poten-
tially contributing to neural and behavioral effects. Nonetheless, the results provide
compelling initial evidence for a role of instrumental divergence in the arbitration
between decision strategies, while also corroborating previous work implicating the
IPL in a neural representation of instrumental divergence.

Formalizing arbitration by instrumental divergence: While a fully specified computational
account of arbitration between goal-directed and habitual control by instrumental
divergence is beyond the scope of this chapter, a preliminary sketch might characterize
the probability of deploying a goal-directed versus habitual strategy as a logistic function
of instrumental divergence, ID, such that

PðQMBðs; aÞÞ ¼ 1

1þ exp�AðID�BÞ

and

PðQMFðs; aÞÞ ¼ 1� PðQMBðs; aÞÞ

(2.7)

where P(QMB(s,a)) and P(QMF(s,a)) are probabilities of using model-based and model-free
action values respectively, B is a free parameter indicating the value of instrumental
divergence at which the two control strategies are equally likely, and A specifies the
strength of the bias toward a particular control strategy as instrumental divergence
deviates from the indifference point set by B. Reasonable constraints on B would be
the lower, 0, and upper, log(n), bounds of instrumental divergence, where n is the
number of actions (i.e., outcome distributions) being considered. This simple rule
predicts an increased reliance on goal-directed, over habitual, behavioral control with
increasing levels of instrumental divergence.

OPEN QUESTIONS AND CONCLUDING REMARKS

In this chapter, I have reviewed some empirical evidence for the role of instrumental
divergenceda formal index of flexible instrumental controldin goal-directed choice.
In particular, I have addressed the utility of instrumental divergence, operationally
defined as a preference for high-divergence environments, and the use of instrumental
divergence as a boundary condition on the deployment of goal-directedness. At the
neural level, I have discussed two studies implicating the supramarginal gyrus of
the IPLda region previously linked to a range of goal-directed processesdin the
representation of instrumental divergence. While this recent work offers compelling

44 Goal-Directed Decision Making



preliminary evidence for the importance of instrumental divergence as a psychological
construct, several critical questions remain open, many of which have been noted
throughout this chapter. In this section, I will focus on two issues fundamental to the
representation and implementation of instrumental divergence.

First, at the core of the proposal set forth in this chapter is the notion that instrumental
divergence has intrinsic utility, serving both to justify the processing cost of goal-directed
computations and to motivate decisions that guide the organism toward high-agency en-
vironments. But where exactly does this utility come from? In Instrumental divergence
and the intrinsic utility of control section, I modeled the utility of instrumental diver-
gence by including it as a reward surrogate in a model-based RL algorithm. This
approach makes two assumptions: First, instrumental divergence is an explicitly repre-
sented variable and second, the apparent utility is directly attached to this variable, either
a priori or through experience. An alternative possibility is that the agent assumes that
subjective utilities may change over time, computing the values of future states and ac-
tions over a set of possible configurations of subjective utilities. Returning to the example
provided in the introduction, given a choice between the scenarios depicted in Fig. 2.1A
and B, respectively, and given that the subjective utilities of O1 and O3 are the same at
the time of choosing, if the agent considers an array of possible changes in those subjec-
tive utilities, computing model-based action values over all possibilities, then the high-
divergence scenario depicted in Fig. 2.1B would likely yield the greatest expected utility,
since it allows the agent to select, for each hypothesized future utility configuration, the
action that yields the outcome with greatest hypothetical utility. Thus, it is possible that
an influence of instrumental divergence on choice preferences, such as that demonstrated
by Mistry and Liljeholm (2016), could emerge in the absence of any explicit representa-
tion of instrumental divergence.

The nature of its apparent utility notwithstanding, if instrumental divergence is an
explicitly represented variable, as suggested by the neural correlates identified by
Liljeholm et al. (2013), another fundamental question is how exactly this construct is
implemented neurally. In other words, is there a distributed neural code that carries
information about the extent to which alternative actions differ with respect to their
outcome distributions, analogous to the computation specified in Eq. (2.1)? A possible
solution to this problem might be a neural network that discriminates between actions
based on their outcome distributions. Specifically, initial layers in the network might
retrieve the sensory-specific outcome features associated with distinct action alternatives,
and those outcome features would then serve as inputs to subsequent layers that identify
individual actions: The greater the decoding of action identities by the output layer of this
network, the greater the instrumental divergence of considered action alternatives.

In conclusion, in addition to a range of open questions regarding its specific effects on
decision-making, more fundamental aspects of instrumental divergence, such as the
computational basis of its apparent utility, and the architecture of its neural
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implementation, must also be addressed by a comprehensive account. Clearly, assessment
of the role of instrumental divergence in goal-directed choice is still in its infancy.
Nonetheless, the initial findings reviewed in this chapterdranging from a behavioral
influence on choice preferences and devaluation sensitivity to neural signaling in a region
frequently implicated in goal-directed controldpromise exciting possibilities.
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CHAPTER 3

The Temporal Dynamics of
Reward-Based Goal-Directed
Decision-Making
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1Virginia Tech Carilion Research Institute, Roanoke, VA, United States; 2DeepMind, London, United Kingdom; 3Gatsby
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The focus of this chapter is on the temporal dynamics of reward-based goal-directed
decision-making, specifically, on models that describe how decision-making evolves
during an individual episode. Unlike static choice models, which focus just on the choice
itself, dynamic models describe the time course of the decision process. Behaviorally, this
means that such models also make predictions about reaction times. Neurally, rather than
describing static latent quantities that have to be computed and represented on the way to
a decision, such models provide more comprehensive constraints on the components of
the decision process and the time course of their interaction. Although reward-based
goal-directed choice has a long history of study, surprisingly little work has been
conducted on dynamic models of the decision process. Luckily, decision dynamics
have a rich history of study in other cognitive domains, such as perceptual decision-
making and memory retrieval (Luce, 1986), and a large body of work exists on which
researchers of reward-based choice can rely. This literature is extensive, and includes a
wide range of models, but most share a common focal point: the idea of evidence
integration. We begin by presenting the general framework within the context of one
such particularly successful model, the Ratcliff drift-diffusion model (Ratcliff &
McKoon, 2008).

THE DRIFT-DIFFUSION MODEL

Here we provide a brief high-level description of the model, shown schematically in
Fig. 3.1. Mathematical detail can be found in Ratcliff (1978). The model describes binary
choiceda decision between two options. The state of the decision process is a single
quantity representing the total amount of relative evidence collected so far in favor of
one option versus the other. It is initialized to a reference value, labeled “z” in the figure,
and samples of competing evidence then gradually arrive over time (the general version
of the drift-diffusion model describes a continuous time process, but the model can be
conceptualized in discrete time), which the model integrates, resulting in momentary
fluctuations in the state variable. The state variable is biased to travel in a particular
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direction and by a particular magnitude on average (the drift piece), but the distance trav-
eled is subject to noise (the diffusion piece). A decision is made when the amount of over-
all evidence accrued hits one of two decision boundaries, which correspond to the
available options. The path of this evidence integration process represents the path of
the decision, and the time taken to reach one of the boundaries is the reaction time.

The state variable, or the evidence integrator, in such models may be prescribed a
probabilistic interpretation (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Gold
& Shadlen, 2001, 2002) and thought of as a quantity proportional to the log likelihood
or posterior ratio of the two options under consideration. The log likelihood ratio for

momentary evidence e is equal to log Prðejh1Þ
Prðejh2Þ, where h1 and h2 are hypotheses correspond-

ing to each of the two available options being the correct one (e.g., in perceptual
decision-making; in reward-based choice, presented later, the hypotheses correspond
to one option being valued greater than the other). If each sample of evidence is inde-
pendent, their log likelihood ratios are summed to compute the log likelihood ratio
for the entire sequence of evidence, analogous to the evidence integrator. If the prior
over the two hypotheses is not uniform, this information can be incorporated by adding
an appropriate bias to the overall log likelihood ratio, analogous to adjusting the reference
point “z.” Finally, an optimal decision rule known as the sequential probability ratio test
stipulates that a decision should be made when the likelihood ratio exceeds one of two
decision boundaries, exactly as described above. This perspective serves as partial moti-
vation for a more direct application of iterative probabilistic computation in a model
of multistep choice presented in a later section (Botvinick & An, 2009; Solway &
Botvinick, 2012).

Option 1

Option 2 0

z

θ

Figure 3.1 The drift-diffusion model, a model of one-step binary choice. The state of the decision is
represented by a point particle that begins its journey at “z” and is biased to drift toward one of two
boundaries, representing the two options under consideration. Each step is also subject to noise. A
decision is made when the particle hits one of the boundaries, and the amount of time taken is
the reaction time for the decision. The figure displays several sample decision paths.
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The drift-diffusion model has four classes of parameters: those related to the drift rate
(the average bias in evidence toward one or the other boundary), the location of one of
the boundaries (the second boundary can be fixed to an arbitrary value, e.g., 0), the initial
starting point for the evidence relative to the boundaries, and the nondecision time,
which includes the amount of time taken to process the stimulus through the visual
system and to generate a motor response. Like the location of the second boundary,
within-trial noise affecting momentary fluctuations in evidence is not identifiable, given
the other parameters, and is fixed to a constant value. There is also across-trial variability:
the drift rate has a Gaussian distribution across trials, and the starting point and nondeci-
sion components are uniformly distributed within a given range.

The model stipulates that during decision-making, new evidence in favor of each
option is gradually made available, but no single sample of evidence is conclusive. The
drift rate represents the average strength of evidence for choosing one option over the
other. In perceptual decision-making tasks, part of the uncertainty is inherent to the stim-
ulus itself. For example, a canonical task in this domain asks participants to judge the
direction in which a subset of noisy dots are moving (Newsome, Britten, & Movshon,
1989) over time. On each trial, some percentage of dots coherently move up or down
(or in other versions, left or right), while the remaining dots move at random. Because
of the randomness inherent in the motion of the dot display, it is difficult to use a single
pair of frames from this stimulus to make a decision. For example, on a trial with 5%
coherence, 5% of the dots move in concert, while the remaining 95% appear at random.
Multiple frames are required to judge the direction in which a subset of dots regularly
move together. As the coherence level is increased, more evidence is presented in
each pair of frames, resulting in a larger drift rate when the drift-diffusion model is fit
to data from this task (Ratcliff & McKoon, 2008).

The boundary separation represents the amount of caution employed by the
decision-maker. Boundaries that are further away from the reference point take longer
to reach, and such decision episodes average over more evidence in the process.
However, the increased accuracy that results comes at the cost of additional deliberation
time. The integration process may be metabolically costly, and the time spent can poten-
tially be used to gather other rewards.

Depending on situational context, it may be optimal to accept a lower level of
accuracy for an individual trial in order to quickly proceed to the next trial. Setting
the location of the boundary thus amounts to a speed/accuracy trade-off decision, and
it should be possible to find the optimal speed/accuracy trade-off for a given decision
context (Bogacz et al., 2006; Gold & Shadlen, 2002). Related to the boundary separa-
tion, the initial value for the relative evidence reflects the initial inclination toward
one or the other option and is also an important variable in setting the optimal decision
strategy. Whether and how the brain adjusts these two parameters in an optimal fashion is
the subject of ongoing work (Bogacz et al., 2006; Bogacz, Hu, Holmes, & Cohen, 2010;
Simen et al., 2009; Simen, Cohen, & Holmes, 2006).
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The interpretation of the nondecision time is straightforward: This component of the
model represents the sum of the amount of time taken for the stimulus information to
travel through the sensory system and the amount of time taken to physically generate
the appropriate motor response. Depending on the decision context, it may also include
the time necessary to convert the decision into the appropriate action (Wunderlich,
Rangel, & O’Doherty, 2010). Most models of temporal dynamics, including the
drift-diffusion model, focus on the decision process itself, and the inner workings of
this component of the model are left unspecified. It captures, in an abstract fashion,
the residual time to reach a decision, without describing the process that unfolds during
that time.

Although this may seem like an unsatisfactory aspect of this class of decision models, it
is also an advantage, in that the decision process can be studied independent of stimulus-
response modalities. If these two aspects of processing can really be separated, such a
model can make predictions across domains. This appears to be the case. For example,
although developed in the context of recognition memory (Ratcliff, 1978), the drift-
diffusion model has been widely applied to data from perceptual decision-making
(e.g., Gold & Shadlen, 2007; Ratcliff, 2002; Ratcliff & McKoon, 2008), as well as to lex-
ical decision-making (Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). Given the
model’s success in explaining data across decision domains, it is natural to begin studying
the temporal dynamics of reward-based goal-directed choice using the same set of
principles.

SIMPLE BINARY CHOICE

One line of work has imported the drift-diffusion model verbatim to study reward-based
binary choice problems where participants choose between food items or other types of
products. This work has demonstrated that the model can successfully account for mean
accuracy and correct-and-error reaction times for such decisions, as well as the entire
shape of the reaction time distributions (Milosavljevic, Malmaud, Huth, Koch, &
Rangel, 2010). A key feature of these results is that the best-fitting drift rate is propor-
tional to the difference in value (inferred from self-reported ratings) between the two
items in question. This finding is intuitive: the larger the difference in value between
two options, the more (noisy) the evidence is conveyed per unit time in favor of one
option over the other. In this way, value difference in reward-based decision-making
is analogous to the amount of stimulus (un)certainty in perceptual decision-making.

These initial findings have been expanded in several ways. In conjunction with eye
tracking, it has been shown that drift rate is also influenced by overt differences in atten-
tion, with enhanced processing for items that are attended to (Krajbich & Rangel, 2011;
Krajbich, Armel, & Rangel, 2010). A simple variant of the drift-diffusion model can also
account for decisions with more than two choices (Krajbich & Rangel, 2011). In this
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version, evidence for each item is accrued by independent integrators, and a decision is
made when the difference between the largest integrator and the other integrators
exceeds a threshold. In the case of binary choice, this model is analogous to the drift-
diffusion model, where the relative evidence represents the difference between two
independent integrators. Some work has begun mapping out the neural circuits imple-
menting these computations in the context of reward-based choice. A neural implemen-
tation of a simple variant of the drift-diffusion model, in tandem with dynamic causal
modeling, was used to show that noisy reward information represented by the ventrome-
dial prefrontal cortex is passed on to evidence accumulators in the dorsomedial prefrontal
cortex and the intraparietal sulcus, which in turn inform motor-related areas to execute
the appropriate action (Hare, Schultz, Camerer, O’Doherty, & Rangel, 2011).

In reward-based decision-making tasks, like in memory retrieval, the source of the
decision noise and what is being “integrated over” is less clear. In such tasks, the stimuli
themselves are usually not noisy: For example, a task may ask participants to choose
between two clearly displayed chocolate bars. However, the rewards associated with
the stimuli may be noisy. One possibility is that values are constructed by randomly
sampling previous experiences with the object in question from memory (e.g., instances
of the person eating the type of chocolate bar displayed). A second possibility, not
mutually exclusive from the first, is that values are affected by a random sampling of
the features associated with each object and its corresponding value (Milosavljevic
et al., 2010). These explanations are speculative at present, and much work remains to
be done to clarify the contributions to decision noise in reward-based choice (Shadlen
& Shohamy, 2016).

Although the drift-diffusion model can explain data on reward-based choice, it may
be a suboptimal decision strategy in this domain in the form described above. In percep-
tual decision-making, the relative reward associated with picking one option over the
other is independent of decision difficulty (participants are encouraged to be equally
accurate in all experimental conditions). However, in reward-based decision-making
tasks, decision difficulty is inversely proportional to relative reward. Here, by definition,
difficult decisions involve choosing between items that are close in value, and there is
little to gain by being accurate compared to easier decisions, where values are farther apart
(Oud et al., 2016). Under some circumstances, the standard drift-diffusion model can
be made optimal by adjusting (collapsing) the decision boundary over time (Tajima,
Drugowitsch, & Pouget, 2016)1. Whether and how the brain is able to approximate
this optimum is an open question.

1 Collapsing decision bounds also come into play in explaining optimal behavior in perceptual decision-
making when trial difficulty is mixed (Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget,
2012).
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The drift-diffusion model is only one of many evidence integration models, and it is
not the only one to have been applied to reward-based choice. A related perspective
comes from work on decision field theory (Busemeyer & Townsend, 1993; Diederich,
1997). This model was developed specifically in the context of reward-based goal-
directed choice and has been applied to a richer array of decision problems, including
problems with probabilistic outcomes and outcomes with multiple attributes. At the
core of the model is a similar evolving noisy preference state. It has been successful
not only at explaining the relationship between choice and reaction time data, but its
dynamic nature has also shed light on choice data that has challenged some static models
(Busemeyer & Townsend, 1993). The breadth of this work is beyond the scope of this
introductory review.

While an understanding of one-step choice is slowly beginning to take shape, less
work has been conducted on multistep decision problems. It is of course an unfortunate
state of affairs, because real-life decisions seldom involve a single step of action. This is
true for both of major decisions, for example, deciding what kind of career to pursue,
and less important, more proximal decisions, such as how to plan a weekend trip. In
examining the temporal dynamics of multistep decisions, there is no work in other
decision domains to fall back on, because multiple steps of actions are less inherent to
decisions in other domains. We next discuss some initial approaches to this problem,
each from a somewhat different perspective, but tied together by the principle of gradual
evidence accumulation.

MULTISTEP DRIFT-DIFFUSION MODELS

Simple binary choice can be represented by a shallow decision tree like the one shown in
Fig. 3.2A. The participant starts in the same initial root state at the start of the trial, and
deterministically transitions to one of two other states depending on the action they
choose, collecting reward along the way. A simple way to extend this paradigm to

(A) (B) (C)

Figure 3.2 Decision trees whose temporal dynamics have been studied. The open circle represents the
starting state, each closed circle represents a potential future state associated with reward, and each
arrow represents a deterministic action. (A) Simple reward-based binary choice (e.g., Krajbich et al.,
2010; Milosavljevic et al., 2010). (B) Experiment 1 of Solway and Botvinick (2015). (C) Experiment 2
of Solway and Botvinick (2015).
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multiple steps of action is to add one additional choice point on one side of this decision
tree, as shown in Fig. 3.2B. Choosing “left” results in a deterministic transition and
reward, and at the second stage, the participant is forced to choose a particular second
item, with only one option available. Choosing “right” results in a different deterministic
transition and reward, but the participant is also then asked to make a second decision
between two other items. A simple further extension of this paradigm asks participants
to make a second decision on both sides of the decision tree, as shown in Fig. 3.2C.

Solway and Botvinick (2015) ran two experiments, each asking participants to solve
one of these two types of decision trees. The stimuli consisted of various products, such as
DVDs and board games, which participants rated on a five-point scale at the start of the
experiment. At the first stage, participants were able to see the entire structure of the
decision tree. Making a choice at the first stage removed the opposite side of the tree,
and participants were asked to then make a second selection, even if only one option
was available.

In one-step decision problems, competition is between individual items. The drift-
diffusion model and its variants implement this competition, keeping track of the
evidence accrued in favor of each item. The difficulty of choice (i.e., of this competition)
can be indexed by a function of the disparity in value among items. In binary choice, this
function is usually just the absolute difference between the values (ratings) of the two
items. In multialternative choice, a variety of different functions can be used. One useful
option is the difference between the maximum value and the average of the remaining
values (Krajbich & Rangel, 2011). Decisions that are more difficult based on these
definitions typically have slower reaction times and lower (subjective) accuracy.

This perspective can be translated to the multistep case by reasoning in terms of each
complete branch of the decision tree, i.e., each path from the root node at the top to a leaf
node at the bottom, instead of individual items. For example, the decision tree in
Fig. 3.2B has three such paths, and the decision tree in Fig. 3.2C has four. Rather
than competition among individual items, in multistep choice, there is competition
between the paths through the decision tree. It is straightforward to extend the above
definition of decision difficulty to the multistep case, with one potential measure being
the difference in value between the maximum-valued branch and the average of the
remaining branches. Fig. 3.3A and D shows (in blue) first-stage accuracy and reaction
time as a function of this measure of difficulty for the decision tree with three branches
from Solway and Botvinick (2015). Fig. 3.4A and D plots the same information for the
decision tree with four branches. Accuracy increases and reaction time decreases for
decisions that are considered less difficult under this definition, similar to the one-step
case.

Fig. 3.3B,E and 3.4B,E display accuracy and reaction times for the second-stage
choice as a function of the absolute difference in value between the remaining items
(forced choice trials for the decision tree with three branches are not included). The
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data reveal accuracy and reaction time effects at the second stage as well, although the
absolute value of reaction time is much smaller than what is seen in one-step choice.
Together, these aspects of the data suggest that deliberation continues after the first-
stage decision is made.

A model describing the temporal dynamics of multistep choice must capture the two
properties discussed so far: (1) competition between the branches of the decision tree and
(2) deliberation that begins at earlier decision points continues at later decision points. A
simple extension of the drift-diffusion model that captures these properties, and also turns
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Figure 3.3 Results of Experiment 1 from Solway and Botvinick (2015). Empirical data appear in blue
with solid lines, and the winning model in orange with dashed lines. Bars represent within-subject
confidence intervals (Morey, 2008). In the figure and in the following description, value refers to
the sum of the ratings along one path of the decision tree. (A) First-stage choice accuracy as a function
of the difference between the maximum value and average of the other two values. A trial is consid-
ered correct if the first-stage choice does not rule out the optimal path. (B) Second-stage choice
accuracy as a function of the absolute difference between the ratings of the items remaining at
the second-stage. A trial is considered correct if the higher rated item is selected. Only trials where
a second-stage choice had to be made are included. (C) First-stage reaction time for correct trials.
A trial is considered correct if the best overall path was selected. (D) Second-stage reaction time
for correct trials. A trial is considered correct if the best overall path was selected. (E) First-stage
reaction time for correct trials, as defined in (C) and (D), as a function of the paths that appear together
in the tree. For example, “Max and second best”means that the two paths with the two largest values
were grouped on one side (pressing left or pressing right at the first stage, depending on the paths’
location, would leave both of them in play), and the smaller valued path was on the other side by
itself. (F) Overall choice accuracy, taking both stages into account. (From Solway and Botvinick (2015).)
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out to be the most parsimonious explanation of the data among several alternatives
(Solway & Botvinick, 2015), is displayed schematically in Fig. 3.5. The number of
evidence integrators equals the number of paths through the decision tree. During
deliberation, noisy reward information associated with each item is sampled and contrib-
utes to the evidence for the corresponding branch. A first-stage decision is made when a
sufficient amount of evidence has accrued on behalf of one path relative to the others,
that is, when the magnitude of the largest integrator exceeds that of the remaining inte-
grators by a threshold amount. The deliberation process then continues at the next stage,
with the surviving integrators continuing from where they left off until a second
threshold is reached. The model’s predictions are overlaid in orange in Fig. 3.3 and
3.4, where it can be seen that the model captures the accuracy and reaction time effects
at both decision stages.

Solway and Botvinick (2015) also tested a number of alternative multistep decision
models. We briefly describe the three that are, perhaps, of most interest. The first alter-
native assumes that decisions are conducted using backward induction: The best course of
action at each state at the bottom of the decision tree is determined first, and the best set
of options are then moved up and integrated with reward information above. The back-
ward induction model provided a worse account of the data than the model described
abovedhuman decision-making is more parallel in nature and simultaneously takes
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Figure 3.4 Results of Experiment 2. The panels parallel those of Fig. 3.3 for Experiment 1 of Solway
and Botvinick (2015). (From Solway and Botvinick (2015).)
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into account items at multiple level of a decision tree. Besides providing a worse quan-
titative fit, the model is also mechanistically awkward. As described above, the data sug-
gest that decision-making continues at lower levels of the tree after decisions are made at
higher levels. The model thus has to reason bottom-up on the first pass, and then again
top-down during a second pass, all while maintaining evidence accrued in favor of items
ruled out at the bottom of the first pass in addition to the chosen items.

Another model alternative assumed that if an item is shared between multiple com-
plete branches of the tree (e.g., the top left and right items in Fig. 3.2B and C), then
during each iteration of the deliberation process a single noisy sample of reward is gener-
ated for each such item and contributes to all (in this case, both) of the branches in which
it participates. This seems like the most parsimonious assumption, however, in the
winning model described above, this actually is not the case. Instead, in the model above,
a separate sample of reward is generated for each item in each branch. Besides providing a
worse quantitative fit, there are qualitative differences in fit that suggest the simpler
model’s mechanisms provide a poor account of the data. In particular, second-stage
accuracy is overestimated without additional deliberation at the second stage, in turn
requiring the model to perform no additional deliberation, and predicting a flat

Figure 3.5 Model of Solway and Botvinick (2015). Evidence in favor of each item is generated
independently for each branch and contributes to a corresponding evidence integrator. A first-
stage decision is made when the magnitude of the largest integrator exceeds that of the remaining
integrators by a threshold amount. The deliberation process then continues to the next stage, with the
surviving integrators continuing from where they left off until a second threshold is reached.
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second-stage reaction time curve, contrary to the data (Fig. 3.6). Mechanistically, this dif-
ference arises from noise being shared at the top level. In the winning model with un-
correlated noise, noise for the top level item can help push the evidence for either
branch in which it participates above threshold, creating more opportunity for the infe-
rior branch to win the competition and bringing accuracy in line with what is seen in the
data. In contrast, in the correlated noise model, the amount of noise that distinguishes
individual branches on each side of the tree is effectively halved, driving up second-
stage accuracy.

Although possibly surprising at first, the finding that the winning model samples items
separately for each path may have an intuitive explanation: Rather than sampling
branches in parallel, individuals may apply a serial sampling procedure, navigating
down the tree one branch at a time (see David Redish’s Chapter 6). Such an explanation
seems especially likely with larger decision trees. Eye tracking might be able to answer
whether this is the case in the present context.
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Figure 3.6 Simulation of both experiments (Experiment 1 appears in the first column, andExperiment 2
in the second) from Solway and Botvinick (2015) using a version of the model with correlated noise.
Because noise is correlated at the top level, the amount of noise that distinguishes individual branches
on each side of the tree is effectively halved, driving up second-stage accuracy. This in turn predicts a
flat second-stage reaction time curve. The reduction in noise at the first-stage differentially affects
different tree configurations, also resulting in a poor fit to this aspect of the data. (From Solway and
Botvinick (2015).)
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Finally, the third model variant of interest assumed that participants “prune” the tree
and make a first-step decision when the evidence for the worst item on one side is larger
than the evidence for the best item on the other side by a threshold amount. In addition
to providing a worse quantitative fit, this model predicts that for the tree with three
branches (Fig. 3.2B), decisions should be fastest when the best and second best branches
are on the same side, also contrary to the data (Fig. 3.7). The explanation for this is intu-
itive: When the maximum branch is by itself, the pruning mechanism cannot fire at all,
but when the maximum and second best branches are together, the evidence for the sec-
ond best item will sometimes overweigh the worst branch on the other side, triggering a
first-stage decision.

In short, the model that best accounts for data on multistep decisions is based on two
principles: (1) the branches of the decision tree representing the decision compete inde-
pendently, with evidence accruing on behalf of each and (2) the competition continues
further down the tree from where it left off at the level above. The model, like most
models, aims to capture key properties of the data rather than to provide a complete ac-
count of decision-making in every possible context. The current version of the model
certainly has limitations, perhaps especially with regard to how much larger decision trees
(in terms of breadth and/or depth) are handled (e.g., Huys et al., 2012, 2015), and future
work will need to incorporate ideas from static choice models of large decision contexts
into dynamic models of deliberation.

Some work is also being done to understand multistep decision-making using the lan-
guage of decision field theory (Hotaling, 2013; Hotaling & Busemeyer, 2012). The general
idea is similar to the multistep drift-diffusionmodel described earlier, in which decisions are
made by simulating paths down the decision tree. Although it also offers a process level
account of temporal dynamics, this work has so far focused more on choice than reaction
time data. The model has been shown to account for a multistep version of the payoff
variability effect, where outcomes with larger variance displayed multiple levels down a
decision tree, result in more random decisions at higher levels of the tree. Other work
has also begun exploring attentional biases by modeling how particular trajectories are
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Figure 3.7 Simulation of Experiment 1 from Solway and Botvinick (2015) using a version of the model
with (A) pruning and (B) pruning and correlated noise. The pruning mechanism predicts that first-
stage decisions should be fastest when the best and second best paths appear on the same side
of the decision tree, contrary to the data. (From Solway and Botvinick (2015).)
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overweighed or underweighed, and clustering participants based on model parameters
(e.g., into planners and nonplanners), although this work appears to be in early stages.

A BAYESIAN PERSPECTIVE ON MULTISTEP CHOICE

Extending previous work by Botvinick and An (2009), Solway and Botvinick (2012)
describe a somewhat different perspective on multistep choice. The motivation for this
line of work is twofold. First, as described above, the drift-diffusion model has a proba-
bilistic interpretation, with the evolving evidence proportional to the log likelihood or
posterior ratio of the two options under consideration. We will relate this idea to the cur-
rent model more specifically below. Second, there is a growing literature modeling
numerous aspects of cognition, such as (again) perception, in Bayesian terms. Bayesian
models specify a joint probability distribution among a set of component variables, and
given values for a subset of these variables, the Bayesian framework describes how to
compute the posterior probability distribution over the remaining variables conditional
on the given set. For example, one class of perception models posit that object recogni-
tion is Bayesian in nature: the brain learns and maintains a generative model describing
how latent object features give rise to percepts and uses Bayesian principles to compute
the posterior probabilities of different features generating a given frame (Dayan, Hinton,
Neal, & Zemel, 1995; Kersten, Mamassian, & Yuille, 2004).

Many such models can be usefully represented as a Bayesian network, like the one
shown in Fig. 3.8. In this example, the components P and S may be thought of as
“generating” the component A using a probabilistic function. It should be noted,
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Figure 3.8 The planning-as-inference model. The components of the environment and their relation-
ships are represented as a Bayesian network (probabilistic model). The nodes labeled S represent
states, the nodes A represent actions, the nodes ȒȒ represent immediate one-step reward, and the
single node labeled ȒȒc represents the cumulative reward for an entire multistep episode. Policy
nodes, labeled P, dictate what action to perform in each state at each time step. Planning proceeds
by iteratively computing p(Pjs1, Ȓc ¼ 1), using the posterior from each round as the prior on the next
round. (Adapted from Solway and Botvinick (2012).)

The Temporal Dynamics of Reward-Based Goal-Directed Decision-Making 61



however, that although the model is framed in generative terms, the underlying relation-
ship is not necessarily causal. That is, it is not necessarily the case thatP and S give rise to
A (although that could be the case). Instead, the model describes conditional probabili-
ties; how certain quantities rely on other quantities.

Solway and Botvinick (2012) detail a Bayesian perspective on goal-directed choice
based on a generative model of actioneoutcome and outcomeereward contingencies.
The structure of the model is motivated by another modeling framework called model-
based reinforcement learning. Reinforcement learning (RL) is a framework for learning
and decision-making whose algorithms can be divided into two broad groups: model-
free and model-based (Dolan & Dayan, 2013; Sutton & Barto, 1998). Model-free RL
learns directly, through trial and error, the actions that are reward-maximizing for a given
stimulus. Model-based RL, on the other hand, makes decisions by first learning a model
of the environment and then converting the model into a decision. The structure of the
model is defined broadly and can be used to represent a very wide range of decision
problems. It consists of two parts: a state transition function that dictates for each
state/action pair the probability of transitioning to each other state in the environment
(the actioneoutcome contingencies) and a reward function that describes for each
such transition how much reward or punishment to expect (the outcomeereward con-
tingencies). Taken together, this information can be used to generate the sort of decision
trees we discussed previously, rooted at the current state of the environment.

The RL framework has a long history and successful track record for describing a
range of behavioral and neural data (Dolan & Dayan, 2013). Model-based RL, in partic-
ular, has been used as a computational substrate for goal-directed control, but most of this
work has focused on static choice models. Solway and Botvinick (2012) describe a
dynamic perspective on model-based choice based on an iterative Bayesian inference
procedure. The decision model is displayed schematically in Fig. 3.8 and incorporates
the two pieces of the world model stipulated by model-based RL2. The nodes labeled
S represent states, the nodes A represent actions, the nodes R̂ represent immediate
one-step reward, and the single node labeled R̂c represents the cumulative reward for
an entire multistep episode. Policy nodes, labeled P, dictate what action to perform
in each state at each time step. Goal-directed choice requires computing the optimal
policies, i.e., the actions at each state and time step that maximize the cumulative
long-term reward. Continuous reward in this framework is transformed to a probabilistic
scale, such that reward nodes are Bernoulli and take on values of 0 or 1, with magnitude
encoded in the probability of “success” (i.e., observing a 1). Although this sounds like a
technical nuisance, it is crucial for querying the model, as will be described shortly.

2 Although the reward function is sometimes defined in terms of state/action/state triplets, here for
simplicity it is defined just in terms of states.
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Fig. 3.8A displays a slice of the model for a single step of action. This structure can be
concatenated ad infinitum to model multiple steps, as shown in Fig. 3.8B. The state for
the first time step is shaded to signify that it is “given,” that is, the individual knows where
they currently are. The goal then is to determine the policies (i.e., what action to take at
each step and in each state, signified by the P nodes) that maximize reward. This can be
done in two ways. First, the decision-maker can set P to each possible set of values in
turn, compute p(R̂cjs1, P) for each setting, and choose the policies that maximize this
value. However, there is also another way to query the model. Rather than reasoning
forward from possible policies to implied rewards, Bayesian inference can be used to
reason backward, conditioning on reward, and computing the posterior over the policies
that give rise to it. That is, rather than computing p(R̂cjs1, P) for each setting of P, we
compute p(Pjs1, R̂c ¼ 1). This is exactly analogous to the sort of reasoning posited by
Bayesian models of perception, which work backward to map latent features to percepts.
In goal-directed decision-making, we instead have a model of reward and reason back-
ward to the policies that maximize it.

In order to compute optimal policies under this scheme, the inference process has to
be performed iteratively over several rounds, each time using the value of p(Pjs1, R̂c ¼ 1)
computed on the previous round as the prior for the next round. Such an approach is
necessary for two reasons. First, the action that is optimal at each step depends on the
actions taken at other steps. These restrictions are mutually constraining, and several
iterations are required for the policies to settle in to the optimum. Second, as we have
seen before, single instances of reward information may be noisy, and this noise can be
muted by averaging over multiple samples. Herein also lies the parallel between the
present framework and models of evidence integration. The evolving posterior over
the policy nodes may be viewed as evidence for performing a particular action (at a
particular state and time step). As described previously, the drift-diffusion model has a
similar probabilistic interpretation, with the evidence proportional to the log posterior
ratio of the available action policies conditional on the “observations,” which in
reward-based decision-making, are noisy samples of reward. Reaction time can be
modeled by setting a threshold on these values, and rendering a decision when the prob-
ability of a policy exceeds the threshold amount.

The model is demonstrated to make appropriate decisions in a number of different
classical and modern experimental contexts, such as experiments on outcome revalua-
tion and contingency degradation, which are naturally framed within the RL frame-
work by setting and adjusting the appropriate parts of the reward and transition
function. If inference is performed using an algorithm called loopy belief propagation
(for details, see Pearl, 1988), the model offers an explanation for the existence and inter-
action of neurons coding a number of different decision variables, each previously studied
in isolation, including offered and chosen values, action values, policies, and other
variables.
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CONCLUDING REMARKS

In this chapter, we have outlined in broad strokes the computational work to date on
models of deliberation in reward-based goal-directed decision-making. Unlike static
choice models, such models make predictions not only about the sort of choices that
people make but also about the trajectory of the decision and the time it takes to
make the decision. These models borrow from a rich literature on perceptual
decision-making and memory retrieval (Luce, 1986) and share the general premise
that deliberation involves accruing (averaging over) noisy evidence on behalf of each
option. For one-step choice problems, two popular accounts of the data have come
from the drift-diffusion model (Ratcliff & McKoon, 2008) and decision field theory
(Busemeyer & Townsend, 1993). More recently, there has been a growing interest in
expanding our understanding of decision dynamics to include multistep choice problems,
which are obviously prevalent in everyday life. There are three perspectives on this ques-
tion: one extending the drift-diffusion model to the multistep case (Solway & Botvinick,
2015), another providing a Bayesian inference perspective (Solway & Botvinick, 2012),
and the third using the framework of decision field theory (Hotaling, 2013; Hotaling &
Busemeyer, 2012). None of these models describe the entirety of the decision process;
instead, each aims to capture key properties of the data. Future work will need to offer
a more integrated account of decision-making by using data that go beyond the bound-
aries where each model breaks down.

REFERENCES
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision

making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological
Review, 113(4), 700e765.

Bogacz, R., Hu, P. T., Holmes, P. J., & Cohen, J. D. (2010). Do humans produce the speedeaccuracy trade-
off that maximizes reward rate? The Quarterly Journal of Experimental Psychology, 63(5), 863e891.

Botvinick, M. M., & An, J. (2009). Goal-directed decision making in prefrontal cortex: A computational
framework. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Vol. 21. Advances in neural in-
formation processing systems (pp. 169e176).

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to de-
cision making in an uncertain environment. Psychological Review, 100(3), 432e459.

Dayan, P., Hinton, G. E., Neal, M. R., & Zemel, R. S. (1995). The Helmholtz machine. Neural
Computation, 7(5), 889e904.

Diederich, A. (1997). Dynamic stochastic models for decision making under time constraints. Journal of Math-
ematical Psychology, 41(3), 260e274.

Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2), 312e325.
Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N., & Pouget, A. (2012). The cost of

accumulating evidence in perceptual decision making. Journal of Neuroscience, 32(11), 3612e3628.
Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli.

Trends in Cognitive Sciences, 5(1), 10e16.
Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain: Decoding the relationship between sensory

stimuli, decisions, and reward. Neuron, 36(2), 299e308.

64 Goal-Directed Decision Making



Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30,
535e574.

Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P., & Rangel, A. (2011). Transformation of stimulus
value signals into motor commands during simple choice. Proceedings of the National Academy of Sciences of
the United States of America, 108(44), 18120e18125.

Hotaling, J. M. (2013). Decision field theory-planning: A cognitive model of planning and dynamic decision making
(Unpublished doctoral dissertation). Indiana University.

Hotaling, J. M., & Busemeyer, J. R. (2012). DFT-D: A cognitive-dynamical model of dynamic decision
making. Synthese, 189(1), 67e80.

Huys, Q. J. M., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., & Roiser, J. P. (2012). Bonsai trees in your
head: How the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Compu-
tational Biology, 8(3), e1002410.

Huys, Q. J. M., Lally, N., Faulkner, P., Eshel, N., Seifritz, E., Gershman, S. J.,…Roiser, J. P. (2015). Inter-
play of approximate planning strategies. Proceedings of the National Academy of Sciences of the United States of
America, 112(10), 3098e3103.

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of
Psychology, 55, 271e304.

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value
in simple choice. Nature Neuroscience, 13(10), 1292e1298.

Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between
visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences of the
United States of America, 108(33), 13852e13857.

Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. New York, NY:
Oxford University Press.

Milosavljevic, M., Malmaud, J., Huth, A., Koch, C., & Rangel, A. (2010). The drift diffusion model can
account for the accuracy and reaction time of value-based choices under high and low time pressure.
Judgment and Decision Making, 5(6), 437e449.

Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial
in Quantitative Methods for Psychology, 4(2), 61e64.

Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a perceptual decision.
Nature, 341, 52e54.

Oud, B., Krajbich, I., Miller, K., Cheong, J. H., Botvinick, M., & Fehr, E. (2016). Irrational time allocation
in decision-making. Proceedings of the Royal Society B: Biological Sciences, 283(1822), 20151439.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco, CA:
Morgan Kaufmann.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59e108.
Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a brightness discrimination

task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin & Review, 9(2),
278e291.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision
tasks. Neural Computation, 20(4), 873e922.

Shadlen, M. N., & Shohamy, D. (2016). Decision making and sequential sampling from memory. Neuron,
90(5), 927e939.

Simen, P., Cohen, J. D., & Holmes, P. (2006). Rapid decision threshold modulation by reward rate in a
neural network. Neural Networks, 19(8), 1013e1026.

Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P., & Cohen, J. D. (2009). Reward rate optimization in
two-alternative decision making: Empirical tests of theoretical predictions. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 35(6), 1865e1897.

Solway, A., & Botvinick, M. M. (2012). Goal-directed decision making as probabilistic inference: A compu-
tational framework and potential neural correlates. Psychological Review, 119(1), 120e154.

Solway, A., & Botvinick, M. M. (2015). Evidence integration in model-based tree search. Proceedings of the
National Academy of Sciences of the United States of America, 112(37), 11708e11713.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. The MIT Press.

The Temporal Dynamics of Reward-Based Goal-Directed Decision-Making 65



Tajima, S., Drugowitsch, J., & Pouget, A. (2016). Optimal policy for value-based decision-making. Nature
Communications, 7(12400).

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A diffusion model account of criterion
shifts in the lexical decision task. Journal of Memory and Language, 58(1), 140e159.

Wunderlich, K., Rangel, A., & O’Doherty, J. P. (2010). Economic choices can be made using only stimulus
values. Proceedings of the National Academy of Sciences of the United States of America, 107(34), 15005e15010.

66 Goal-Directed Decision Making



CHAPTER 4

Case-Based Decision Neuroscience:
Economic Judgment by Similarity
Rahul Bhui
Departments of Psychology and Economics & Center for Brain Science, Harvard University, Cambridge, MA, United States

It is said that the only constant in life is change. We are routinely faced with different
situations, no two exactly alike. We visit new places, try new foods, meet new people,
find new jobs, and invent new products. You have probably never read this very sentence
before. The pervasiveness of novelty can be paralyzing if one is not prepared for it. By
their nature, unfamiliar situations challenge our ability to draw on past experience.
And by our nature, humans make do.

In general, how do we appraise courses of action in various contexts? We could form
projections of what’s likely to happen as a result of each action in a context and combine
that with an evaluation of how desirable those outcomes are. Or we could lean on the
automatic attitudes drilled into us by extensive experience. These are the two prevailing
theories in neuroeconomics, expressed mathematically in terms of expected utility and
reinforcement learning. The biggest success story of decision neuroscience to date has
been in uncovering neural instantiations of these decision-making rules.

How might these two systems go awry when there is little direct experience to work
from? The former relies heavily on a cognitive map or mental structure but does not have
much to hang its structure on. The latter depends vitally on preexisting experience, but
this direct experience is unavailable. The capacity to cope in new circumstances is an
important but tricky skill.

A plausible alternative is to recall how well or poorly similar actions turned out in
similar contexts in the past. Such an approach to decision-making enables us to draw
on the variety of disparate experiences we acquire over time and respond gracefully to
the novelty and complexity that pervades real life. It imposes fewer assumptions about
the structure of the world compared with sophisticated probabilistic judgments, while
squeezing more information out of background knowledge than simple value caching.

I lay out a “case-based” system combining theory and empirical evidence from eco-
nomics, psychology, neuroscience, statistics, and computer science. Value judgment by
similarity corresponds to an economic model called case-based decision theory (CBDT),
inspired in part by a computational problem-solving process known as case-based reasoning
(CBR). This theory has links to nonparametric statistics, suggesting why and when the
system works well. Recent evidence from neuroscience indicates that we use this kind of
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system and implicates the hippocampus and related medial temporal lobe (MTL) regions as
neural loci. This can be thought of as a complementary narrative towhat has been described
as episodic control (Dayan, 2008; Lengyel & Dayan, 2008).

JUDGMENT AND DECISION-MAKING FROM SIMILARITY

Judgments based on similarity are ubiquitous. Consciously and unconsciously, we map
athletes onto predecessors to forecast performance (“LeBron James is the next Michael
Jordan”dESPN), we react to people based on group stereotypes, we talk about new
businesses in terms of existing analogues (describing various start-ups as the Ubers of
food delivery, flowers, laundry, lawn care, marijuana, and mortgage lending), we eval-
uate products based on brand lines, we search historic economic events for relations to
modern ones (“The Great Recession is just like the Great Depression”dForbes), we
hold to legal precedent as a guide for future cases, and we pitch new TV shows or movies
as mixtures of old concepts (“The pitch [for Hollywood movie Man’s Best Friend] was
‘Jawswith Paws’. Investors were told that if the movie Jawswas a huge success, a similar
plot but on land with a dog could also be a huge success.”dReid Hoffman).

People are psychologically attuned to similarity. This is for good reason. In a sense, all
learning is premised on finding similarity. Heraclitus said that “you cannot step twice into
the same river,”which is not only a deep philosophical truth but also an evolutionary prob-
lem. If every instant is unique, how can we learn and make decisions from experience?We
are thus tasked with recognizing useful parallels that allow us to generalize from the past.

At its best, similarity-based judgment constitutes an ecologically valid heuristic for
summarizing a vast landscape of information in service of decision-making. A neural
network trained to classify handwritten digits holds the potential to perform well on
digits it has never seen before, provided it has access to data on similarity between digits
(as implicitly evaluated by the classification probabilities from another neural network;
Hinton, Vinyals, & Dean, 2015). It has never encountered a “3,” but knowing that
certain “2’s” are visually similar while “1’s” are quite different implicitly contains a fair
amount of information about what exactly a “3” looks like. This is precisely the kind
of quality required for good transfer learning. This aspect of similarity is intimately tied
to our propensity to associate and connect and categorize. We may not be wired to easily
navigate probabilistic state spaces, but we are able to effortlessly form comparisons and
associations between concepts in our memory.

This is not to say that similarities are always well founded. The movie Man’s Best
Friend turned out to be terrible, for instance. Classic examples of irrationality can be
explained by indiscriminate similarity judgment. When asked how likely it is that the
outspoken socially involved philosophy major Linda is a bank teller or a feminist bank
teller, people respond that she is more likely to be the latter than the former (Tversky
& Kahneman, 1983). Although this belief violates the laws of probability, Linda better
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resembles our idea of a feminist bank teller and so we judge that possibility to be more
likely (Bar-Hillel, 1974; Kahneman & Tversky, 1972). We can be unconsciously misled
by superficial connections, even when we are experts. Prominent venture capitalist Paul
Graham was quoted as saying “I can be tricked by anyone who looks like Mark
Zuckerberg. There was a guy once who we funded who was terrible. I said: ‘How could
he be bad? He looks like Zuckerberg!’” While this was said in jest, such biases are plau-
sible. Gilovich (1981) asked professional sportswriters and varsity football coaches to
predict the success of fictitious young players based on written profiles. In one manipu-
lation, a player won an award named after a famous pro who either played in the same
position or a different position. Success ratings turned out to be higher when the pro
played in the same position.

For better or worse, we often form evaluations based on examples considered similar
to our present situation. A body of research in economics explores the theme of valuation
based on similarity. This work centers on a theoretical framework that reflects the mental
contagion of value.

Case-based decision theory
CBDT is a model of decision-making, which takes past experiences as its primitives and
weights those experiences based on their similarity to the current choice situation. It was
developed and originally axiomatized by Gilboa and Schmeidler (1995a) as a psycholog-
ically plausible complement to expected utility theory. In order to apply classical ex-
pected utility theory, the agent must hold subjective probabilities over all pertinent
states of the world. In many situations, this state space and its associated probabilities
can be extremely complicated, intricate, or unnatural to construct. When deciding on
a new restaurant to visit for dinner, one might not naturally estimate probability distri-
butions over the quality of food and service for each place. Instead, one might simply
call to mind their experiences at places thought to be roughly similar. From the start,
Bayesian decision theory was primarily considered appropriate inside what Savage
(1954) called a small world, where knowledge is plentiful. CBDT was meant to tackle
decision-making in large worlds.

The primitive concepts of CBDT are a set of past cases and subjective similarity
assessments between each case and the current situation. The agent’s memory M is a
set of cases formally described as triples (q, a, r), where q represents the problem situation,
a is the action taken, and r is the result. The agent evaluates an action by combining the
utilities of outcomes that occurred when that action was taken in the past. These utilities
are weighted by the similarity between the current situation (with description p) and each
past case (with description q), s( p, q):

UðaÞ ¼
X

ðq;a;rÞ˛M
sð p; qÞuðrÞ.
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Gilboa and Schmeidler (1997a) generalized this to allow similarity between cases to
depend on acts as well as descriptions, so UðaÞ ¼ P

ðq;b;rÞ˛Msðð p; aÞ; ðq; bÞÞuðrÞ, and
Gilboa, Schmeidler, and Wakker (2002) provided two additional axiomatic derivations
clarifying its empirical content. A variant also formulated in Gilboa and Schmeidler
(1995a) uses averaged similarity:

V ðaÞ ¼
X

ðq;a;rÞ˛M

sð p; qÞP
ðq0;a;rÞ˛Msð p; q0ÞuðrÞ.

To illustrate, suppose you are deciding which city to visit for a vacation and have
narrowed the options down to Paris and Sydney. Though you have been to neither,
you recall your past trips to Montreal, Los Angeles, and Vancouver, as laid out in
Table 4.1. Though French-speaking urban Montreal was chilly, you had a decent
time there (utility 5). You feel the city is quite similar to Paris (similarity 0.8) but hardly
at all like Sydney (similarity 0.1). LA was hot, which you like, and occasionally smoggy,
which you do not, but it was pleasant overall (utility 6). You consider LA to moder-
ately resemble Sydney (similarity 0.5) but not Paris (similarity 0). The metropolis of
Vancouver was special with its beautiful mountains, oceans, and fresh airdyour favor-
ite trip by far (utility 10). The city seems to you halfway between Paris and Sydney
(similarity 0.5 each). As a standard case-based decision-maker, the projected utility of
visiting Paris is 0.8 � 5 þ 0 � 6 þ 0.5 � 10 ¼ 9, while the projected utility of visiting
Sydney is 0.1 � 5 þ 0.5 � 6 þ 0.5 � 10 ¼ 8.5, a calculation about which you remi-
nisce on your flight to Paris. (If you were using the averaged variant, this decision would
be reversed.)

Similarity functions
What might the similarity function look like? Goldstone and Son (2005) organize
psychological models of similarity into four types: geometric, feature-based,
alignment-based, and transformational. (Research in machine learning has developed
more computationally sophisticated takes on these styles; see for example, Chen, Garcia,
Gupta, Rahimi, & Cazzanti, 2009.)

Geometric models represent objects as multidimensional points in a metric space. The
similarity between objects is calculated as inversely related to the distance between them

Table 4.1 Case-based decision theory calculation example
City s(city, Paris) s(city, Sydney) Utility

Montreal 0.8 0.1 5
Los Angeles 0 0.5 6
Vancouver 0.5 0.5 10
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in this space. A basic form may be found in models of generalization gradients originating
from experiments on behavioral responses to stimuli varying in simple physical dimen-
sions like wavelength of light (Ghirlanda & Enquist, 2003; Spence, 1937). Similarity of
behavioral response is usually described as decreasing in the distance of stimulus qualities
with exponential decay, s(x, y) ¼ a exp(�jx � yj/b), or Gaussian decay, s(x, y) ¼ a

exp(�(x � y)2/b2), where a and b are scaling parameters. While having the appeal of
parsimony, these models are typically applied to low-level stimuli and imply properties
such as symmetry that are at odds with experimental results in other circumstances.

Feature-based models represent objects as collections of features. Similarity is based on
a linear combination of the common and distinctive features of each object and is not in
general symmetric. In Tversky’s (1977) contrast model, s(x, y) ¼ qf (XX Y) �
af (X � Y ) � bf (Y � X ), where X and Y are the feature sets of stimuli x and y, f is a
monotonically increasing function, and q, a, and b are nonnegative weights. With
additional restrictions, stimulus similarity based on the contrast model forms a natural
category structure that can be compactly represented in a hierarchical tree. In the ratio
model, s(x, y) ¼ f (XX Y )/( f (XX Y ) þ af (X � Y ) þ bf (Y � X )), normalizing simi-
larity between 0 and 1.

Alignment-based models involve more complex mappings of features based on
higher-order structure mapping. Similarity depends on the degree to which object fea-
tures can be structurally aligned. For example, Goldstone’s (1994) model of “similarity,
interactive activation, and mapping” comprises a neural network that learns about the
correspondences between stimulus features. Each node reflects the hypothesis that given
features map onto each other across stimuli, with excitatory and inhibitory activation
encouraging an exclusive one-to-one correspondence. Similarity is based on the
weighted mean of feature proximity weighted by activation of the node representing
the feature pair.

Transformational models are based on topological warping operations such as rota-
tion, scaling, and translation. Similarity is computed from transformational distance,
the degree of warping required to transform one stimulus into another. This may be
defined in simple ways such as the minimum number of transformations needed (Imai,
1977), or in more complicated ways like Kolmogorov complexity, the length of the
shortest computer program that describes the necessary transformations (Hahn, Chater,
& Richardson, 2003). This style of model is typically applied to perceptual stimuli.

Empirical studies of case-based decision theory
CBDT has been applied to study consumer behavior (Gilboa & Schmeidler, 1993,
1997b, 2003; Gilboa, Postlewaite, & Schmeidler, 2015), brand choice (Gilboa & Pazgal,
1995), individual learning (Gilboa & Schmeidler, 1996), social learning (Blonski, 1999;
Heinrich, 2013; Krause, 2009), sequential planning (Gilboa & Schmeidler, 1995b), asset
pricing (Guerdjikova, 2006), real estate (Gayer, Gilboa, & Lieberman, 2007), portfolio
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choice (Golosnoy & Okhrin, 2008), technology adoption (Eichberger & Guerdjikova,
2012), manufacturing capacity ( Jahnke, Chwolka, & Simons, 2005), macroeconomic ex-
pectations (Pape & Xiao, 2014), and Japanese TV drama watching (Kinjo & Sugawara,
2016). The idea of similarity between strategic games on both structural and perceptual
levels has been used to analyze learning, transfer, and spillover across different games and
institutional setups (Bednar, Chen, Liu, & Page, 2012; Cason, Savikhin, & Sheremeta,
2012; Cooper & Kagel, 2003; Cownden, Eriksson, & Strimling, 2015; Di Guida &
Devetag, 2013; Guilfoos & Pape, 2016; LiCalzi, 1995; Mengel & Sciubba, 2014; Rankin,
Van Huyck, & Battalio, 2000; Samuelson, 2001; Sarin & Vahid, 2004; Spiliopoulos,
2013; Steiner & Stewart, 2008).

Experimental tests specifically conducted on CBDT have yielded encouraging results.
Ossadnik, Wilmsmann, and Niemann (2013) ran a ball and urn experiment with a twist.
Every ball had three separate payoffs on it, identified by colors (which were the same
across balls). On each trial, participants had to choose a color. A ball was drawn from
the urn (which contained a known number of balls) and only the payoff associated
with the chosen color was revealed. After a number of trials, a second round began in
which a few balls were removed from the urn without being revealed. Later on, a third
round began in which several balls were similarly added to the urn. Given the limited
information available and the high number of possible ball-color-value combinations,
full Bayesian updating would be difficult. The experimenters found that, as compared
with maximin-type criteria and simple model-free reinforcement learning, the data con-
formed best to CBDT supposing that similarity across trials was proportional to the num-
ber of balls in common.

Participants in the study of Grosskopf, Sarin, and Watson (2015) were in the role of a
company having to choose production levels for an economic good. The amount of
profit for a given production level depended on “market conditions,” which were rep-
resented by a list of five symbols. In each round, participants had access to only a few past
cases, which were combinations of market conditions (case descriptions), production
choices (actions), and profit levels (outcomes). Similarity between the vectors of past
and present market conditions was taken to be the number of symbols in common, a spe-
cial case of Tversky’s (1977) contrast model. CBDT described participant behavior better
than a heuristic, which ignored market conditions and chose the production level
yielding the highest past value.

Bleichrodt, Filko, Kothiyal, and Wakker (2017) used a special design to test the core
of CBDT without making any structural assumptions about similarity. Participants made
choices on the basis of hypothetical case banks, one of which consisted of true values and
would be used for payment. Cases dealt with the monthly value appreciation of real estate
investments in various parts of the Netherlands. Participants had to choose between gam-
bles with payoffs based on the appreciation percentage of a new piece of real estate. This
experimental design allows certain functions of similarity weights to be estimated, which
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can be used to test the implications of CBDT from binary choices alone. CBDT predicts
that people choose by combining, in a specific way, the hypothetical memory with their
personal assessment of similarity across types and locations of real estate. The theory’s ax-
ioms impose behavioral restrictions reflecting the consistency of similarity weights across
decisions. These restrictions were generally satisfied by the data.

Pape and Kurtz (2013) combined CBDT with the ALCOVE neural network model
to analyze classification learning. In this model, the relative importance of each feature
dimension is updated from feedback, with overall learning rate, aspiration level, and de-
gree of imperfect recall estimated as model parameters. A simulated case-based agent
predicted the speed of learning well across categorization schemes of various difficulty
levels (Nosofsky & Palmeri, 1996; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,
1994). Moreover, additive similarity was found to fit the data better than averaged
similarity.

CBDT is attractive because it forces us to link choice to the set of cases in our memory
in a way that offers a platform for the impact of memory and associations in economic
modeling. Particularly in the most complex of situations, all cases may not be immedi-
ately recalled. Rather, we have to engage in mental search. Evaluation may derive
from finite samples drawn from memory, as some theories posit. At the extreme, people
often retrieve only a single case to work from. If the probability of retrieval is propor-
tional to the similarity between cases, then the averaged case-based assessment constitutes
the expectation of retrieved value. When we take into account that people draw small
samples from similar cases in memory (Qian & Brown, 2005), regularly observed biases
affecting judgment and decision-making can be parsimoniously explained (Gayer, 2010;
Hertwig, Barron, Weber, & Erev, 2004; Marchiori, Di Guida, & Erev, 2015; Stewart,
Chater, & Brown, 2006).

Computational models of association can be integrated with CBDT to produce a uni-
fied model for studying the effects of framing on economic decisions. After all, such phe-
nomena are about altered patterns of mental association stemming from the way a
problem is presented. In novel conditions, the case-based estimate represents a kind of
half-educated guess. It is stitched together, Frankenstein-like, from whatever comes to
mind. It is not an exceptionally consistent estimate and is prone to being jostled by
the vagaries of memory. Preferences are therefore unstable, cobbled-together assessments
of value that shift as different memories are emphasized. In this vein, Gonzalez and col-
leagues have developed case-based (aka instance-based) models that incorporate similarity
and selective retrieval in the ACT-R architecture to predict and explain a variety of eco-
nomic choices (Dutt & Gonzalez, 2012; Dutt, Arl�o-Costa, Helzner, & Gonzalez, 2014;
Gonzalez, 2013; Gonzalez & Dutt, 2011; Gonzalez, Lerch, & Lebiere, 2003; Harman &
Gonzalez, 2015; Lebiere, Gonzalez, & Martin, 2007; Lejarraga et al., 2012, 2014). Some
of this work focuses explicitly on framing, accounting for variation in preferences based
on differences in the retrieval process (Gonzalez & Mehlhorn, 2016).
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COMPUTATIONAL CHARACTERIZATIONS

Case-based reasoning
The idea of computational connections should not be entirely surprising as CBDT was
conceived of with a certain computational backdrop in mindda problem-solving process
known as CBR that stores training data and waits to make judgments until a new prob-
lem is posed (Stanfill & Waltz, 1986; Riesbeck & Schank, 1989; Aha, Kibler, & Albert,
1991; Kolodner, 1992, 1993). The heart of CBR lies in solving new problems by reusing
and adapting solutions to similar old problems. It is captured by the “CBR cycle” con-
sisting of the 4 R’s: Retrieve, Reuse, Revise, and Retain (Richter & Weber, 2013).
When a new problem is encountered, similar past cases are retrieved from the case base,
their information is reused to construct solutions, their solutions are revised to fit current
needs, and the new experience is retained for future use.

CBR has been fruitfully applied to commercial tasks as diverse as customer service,
vehicle fault diagnosis and repair, and aircraft part construction (Watson & Marir,
1994; Leake, 1994, 1996; Montani & Jain, 2010, 2014). For example, a critical task in
the aerospace industry is to precisely bond together composite materials using extreme
heat and pressure in an autoclave. However, the right way to arrange these materials
in the autoclave is complicated because its heating properties are not perfectly under-
stood, and identical examples are unavailable because product designs are always chang-
ing. The company Lockheed successfully tackled this problem with a software system
called Clavier, which recommended new layouts by adapting previous similar layouts.
Clavier proved useful even with a small case base, and with more experience its “perfor-
mance ‘grew’ to approach that of the most experienced autoclave operator in the shop”
(Hennessy & Hinkle, 1992).

Why has CBR proven so successful? It can be flexibly applied to a wide range of prob-
lems, even difficult ones encountered for the first time. CBR is a type of lazy learning,
meaning that the answer is only generated when a new query arises. This just-in-time
approach is helpful when faced with an infinite number of unencountered and unforeseen
possibilities. We are commonly forced to perform in novel circumstances where causal re-
lationships are not well understood but background knowledge can still prove useful, and
CBR can support transfer learning here (Aha, Molineaux, & Sukthankar, 2009; Klenk,
Aha, & Molineaux, 2011). We can further understand case-based decision-making by
comparing control systems from a statistical standpoint.

Biasevariance trade-off
CBDT shares properties with nonparametric estimation. The case-based estimate is a
similarity-weighted sum of case values. It takes the same kind of form as a nonparametric
kernel estimate, which is a kernel-weighted sum of data points. The similarity function
plays the role of the kernel, assessing how close the new input value is to each of the old
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input values in psychological space, and then blending the old output values accordingly.
The case-based estimate with averaged similarity especially mimics the Nadarayae
Watson kernel regression estimator, a locally weighted average of data points. If only a
single case is retrieved due to cognitive limitations, the model coincides with nearest-
neighbor interpolation. Case-based estimation may not be as agnostic as statistical tech-
nique about the domain of application since background information is contained in the
shape of the similarity function. It may also exhibit properties such as asymmetry
(Tversky, 1977) that are atypical in statistical applications. Nonetheless, formal links
have been established between case-based and kernel-based methods (Gilboa, Lieber-
man, & Schmeidler, 2011; see also H€ullermeier, 2007). We may thus view CBDT
from one angle as a nonparametric estimate of value. This link helps us see why and
when the case-based estimate is useful.

A case-based controller exhibits a different statistical trade-off than model-free and
model-based controllers. This entails a distinct pattern of advantages and disadvantages.
A case-based system stakes out an intermediate position between model-free and
model-based systems on the biasevariance spectrum.

Case-based control employs knowledge derived from unsupervised or other subtler
forms of learning to a greater degree than a model-free system. It better leverages expe-
rience by casting a wider net in the sea of memory. In other words, it engages in greater
generalization from other circumstances to its present condition. Simplistic reinforce-
ment learning models relinquish this power and neglect background relationships be-
tween acts or contexts. Continuous state or action spaces provide extreme examples of
the need to generalize. Continuity has been a classic issue in reinforcement learning partly
because it implies that an agent never encounters the exact same action or state more than
once. Incorporating the values of similar actions in similar contexts sharpens predictions.
A kernel approach turns out to be robust to convergence problems that other solutions
suffer from in continuous state spaces (Gershman & Daw, 2017; Ormoneit & Sen, 2002).
Generalizing does come with the cost of statistical bias as the extra data reflect circum-
stances that may only be marginally relevant and can significantly degrade performance
when poorly selected. In line with this, nonparametric estimators carry an intrinsic
smoothing bias, which results from using data far from the focal point to reduce the esti-
mator variance. But when one has almost no direct experience, using imperfectly rele-
vant knowledge is worthwhile. For this reason, statisticians regulate smoothing bias via
choice of bandwidth and find that the optimal window is larger when the sample is small.
The benefit of even limited or noisy additional information is high when facing new
stimuli.

However, a case-based controller is not as bold as a model-based controller. Model-
based estimates impose strong assumptions in order to hone their predictions and reduce
the portion of generalization error stemming from variance. This is the benefit of a cogni-
tive map. But it comes at the cost of bias from two sources. First is the coarsening inherent
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in the construction of any mental model. All practical models must be simplifications,
otherwise they would be far too complicated to represent. Second is the more egregious
misspecification resulting from a mistaken understanding of the world. This issue is made
worse by conditions of limited experience, when little data are available to constrain the
map. Like nonparametric objects, case-based estimates avoid structure in order to miti-
gate bias but yield to the error from variance. A model-based system goes out on a
limb in an attempt to make sharp predictions across new circumstances. In this sense,
the model-based controller is the staunch one that sticks to its guns, while the case-
based controller exhibits a more flexible and graceful judgment. A drawback is that
the latter will learn more slowlydit hesitates to draw inferences even when those infer-
ences may be justifiabledbut as the maxim goes, it is better to be approximately right
than definitely wrong. When traveling through new and complex surroundings, where
the risk of a misstep can be high, clinging stubbornly to potentially outmoded conclu-
sions is especially maladaptive.

Gilboa, Samuelson, and Schmeidler (2013) construct a unified model containing
multiple classes of reasoning. They show that an agent may exhibit cycles where Bayesian
reasoning is used until an unexpected event occurs, at which point case-based and rule-
based reasoning take the lead until more data are collected and a new probabilistic model
is formed. CBR can thus be inductively rational in the face of the unexpected. Lengyel
and Dayan (2008) show that a kind of episodic memory-based control can outperform
model-based control when the world is novel and complex. Erroneous or misspecified
aspects of the model-based belief structure, represented as inferential noise, produce
costly mistakes particularly when problems are multistage and experience is limited.
Researchers at Google DeepMind recently demonstrated that in the low-data regime,
such episodic control prevails over other state-of-the-art algorithms in complicated
sequential decision-making tasks like video games (Blundell et al., 2016), especially
when the feature mapping can also be trained (Pritzel et al., 2017).

Despite these useful characterizations of case-based control, our understanding of
how similarity is realistically learned and processed in the brain has more to say. This
understanding could inspire further hybrid models that draw out the economic implica-
tions of lifelike neural architectures. The idea of a case-based system dovetails with recent
interest in the role of the MTL, and specifically the hippocampus, in decision-making.
This region might be considered a primary neural locus for the processes of learning
and memory that instantiate a case-based system.

NEURAL PATHWAYS

Generalization and the hippocampus
Hippocampal function is traditionally conceived in terms of spatial knowledge and
episodic memory. However, growing attention is being paid to how its associational

76 Goal-Directed Decision Making



processing flexibly subserves the learning and construction of value, especially in novel
and complex situations (Seger & Peterson, 2013; Shohamy & Turk-Browne, 2013;
Wimmer & Shohamy, 2011). Though the canonical view of feedback learning focuses
on the basal ganglia, recent work suggests expanding the previously overlooked role
of the MTL. Dopamine-driven striatal learning turns out to be limited, for example,
when feedback is delayed or withheld. The hippocampal region, which appears to
play a central role in generalization, is then required to bind information about cues
and outcomes across time and space. While the striatum is responsible for encoding
stimuluseresponse links, the hippocampus is responsible for encoding stimulusestimulus
links. The MTL supports generalization by this process of bundling stimulus representa-
tions into associative networks, within which items are considered similar neurally and
psychologically based on shared connections.

We tend to view memory as dealing with the past, but it actually exists to help us
predict the future. The process of association carried out by the hippocampus has two
purposes from a decision-making perspective: First is to retrieve relevant memories,
particularly those elements corresponding to value, in service of present decisions; second
is to construct, modify, and consolidate memory in service of future decisions.

The hippocampus tugs the mental strings connected to an encountered configuration
of stimuli in an attempt to anticipate forthcoming stimuli and rewards. The ingredients
needed for decision-making and value learning appear to be represented in the hippo-
campus. Human neuroimaging has revealed concurrent value and choice signals in
area CA1 of the hippocampus shortly before choices are made, as well as outcome signals
following choice (Lee, Ghim, Kim, Lee, & Jung, 2012). Striking evidence for a control
system distinct from standard dopaminergic and striatal mechanisms comes from feedback
learning experiments, which involve comparisons and dissociations with Parkinson's dis-
ease (PD) patients and MTL amnesics (Reber, Knowlton, & Squire, 1996; Moody,
Bookheimer, Vanek, & Knowlton, 2004; Shohamy, Myers, Onlaor, & Gluck, 2004,
2009). Foerde, Race, Verfaellie, and Shohamy (2013) documented a double dissociation
on a standard probabilistic learning task with either immediate or delayed feedback.
When faced with immediate feedback, PD patients were impaired while amnesics per-
formed as well as controls, whereas with delayed feedback, PD patients performed as
well as controls while amnesics were impaired. Remarkably, the delay difference produc-
ing the effect was not long (1 s vs. 7 s).

Consistent with the idea that a case-based system is most advantageous under novelty,
Poldrack et al. (2001) showed that control appears to be transferred from MTL to the
striatum as classification learning proceeds. Moreover, several studies demonstrate
involvement of the hippocampus in spillover of value to stimuli and actions that are
new but similar to those observed or taken in the past (Kahnt, Park, Burke, & Tobler,
2012; Wimmer, Daw, & Shohamy, 2012). Barron, Dolan, and Behrens (2013) created
especially novel stimuli, which were new combinations of familiar foods, such as an
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avocado and raspberry smoothie. This forced participants to construct assessments of the
novel goods via combination of past experiences. Activity in the hippocampus was found
to be related to this construction process.

Though the exact mechanisms by which the MTL comes to generalize value are as
yet unknown, any theories must respect the fundamental associative nature of hippocam-
pal function (Horner & Burgess, 2013). As a multimodal convergence zone, it takes in
signals from many regions. By the manner in which the hippocampus recognizes stimulus
bundles, it links lower level stimuli to higher level associations and concepts, illustrated by
sparse coding cells, extreme versions of which are popularly known as “grandmother
cells” or “Jennifer Aniston neurons” (Kreiman, Koch, & Fried, 2000; Quiroga, Reddy,
Kreiman, Koch, & Fried, 2005, 2008, 2014). It thus exerts some control over one’s de-
gree of conceptual granularity, thereby impacting degrees of generalization. One pro-
posed mechanism of generalization that fits this picture is integrative encoding,
wherein episodes with overlapping elements are integrated into a linked network of
mnemonic associations (Shohamy & Wagner, 2008). Retrieval under novel circum-
stances then activates this network and can indirectly draw upon associations between
concepts or stimuli that were never directly experienced together (Walther, 2002), me-
chanically similar to the creation of false memories (Roediger & McDermott, 1995).
Even bumblebees may similarly merge memories after feedback learning (Hunt &
Chittka, 2015). Indeed, when a new memory is formed, older memories with overlap-
ping events are reactivated (Schlichting, Zeithamova, & Preston, 2014), alongside the re-
wards tied to those older memories (Kuhl, Shah, DuBrow, &Wagner, 2010; Wimmer &
B€uchel, 2016).

Stimulus associations and the hippocampus
A large body of human and animal studies reveals that whenever stimuli are separated in
time and space, the hippocampus is central to connecting them to each other as well as
their spatial and temporal context (Staresina & Davachi, 2009). This is especially the case
when the configurations are stable and consistent (Mattfeld & Stark, 2015). The hippo-
campus is engaged during sequence learning (Schendan, Searl, Melrose, & Stern, 2003),
and lesions impair the ability to learn and remember temporal regularities (Curran, 1997;
Farovik, Dupont, & Eichenbaum, 2010; Schapiro, Gregory, Landau, McCloskey, &
Turk-Browne, 2014). It is usually crucial for “trace conditioning” in which there is a sig-
nificant interval between the end of the conditioned stimulus and beginning of the un-
conditioned stimulus presentation (Bangasser, Waxler, Santollo, & Shors, 2006; Cheng,
Disterhoft, Power, Ellis, & Desmond, 2008) and also seems involved in “delay condition-
ing” when there is a long delay between conditioned and unconditioned stimulus onset
even if they overlap (Berger, Alger, & Thompson, 1976; Christian & Thompson, 2003;
Green & Arenos, 2007; Tam & Bonardi, 2012). Computational models are able to
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predict hippocampal learning in such paradigms by focusing on how its stimulus repre-
sentations change over the course of a trial (Ludvig, Sutton, Verbeek, & Kehoe, 2009,
2008; Moustafa et al., 2013).

When new stimulus configurations are encountered, the hippocampus binds the
components together and associates them with past bundles of stimuli, whether learning
is explicit or implicit (Degonda et al., 2005; Rose, Haider, Weiller, & B€uchel, 2002). The
ultimate goal is to make better predictions through generalization. Accordingly, when
there is reason to believe that different stimuli will foreshadow similar prospects, these
stimuli actually become represented more similarly by neural activity patterns, so that
they will be treated similarly in further processing. The stimuli come to activate similar
networks and also become embedded and integrated more strongly within these net-
works, leading them to be better remembered (Kuhl et al., 2010; LaRocque et al.,
2013; Staresina, Gray, & Davachi, 2009). Intriguingly, the degree of this representational
overlap for a given memory is negatively related to the strength of its unique episodic
reinstatement, suggesting a trade-off between integration of the memory into the
network and retrieval of its specific details (Tompary & Davachi, 2017).

This enhanced pattern similarity can be triggered in multiple ways. Most directly, cues
that are associated with the same outcome are mentally bundled together, and informa-
tion learned about one is generalized to the others. This phenomenon of acquired equiv-
alence relies on the hippocampal formation (B�odi, Csibri, Myers, Gluck, & K�eri, 2009;
Coutureau et al., 2002; Myers et al., 2003; Preston, Shrager, Dudukovic, & Gabrieli,
2004). The stimuli come to be coded more similarly in the hippocampus (McKenzie
et al., 2014) and become easier to confuse with each other (Meeter, Shohamy, & Myers,
2009). Stimuli that merely appear close together in time and context, absent outcomes,
are like-wise informationally linked. This sensory preconditioning also depends on the
hippocampal formation (Port & Patterson, 1984; Wimmer & Shohamy, 2012), and so
might higher-order conditioning, when the original cue is conditioned before cues are
paired (Gilboa, Sekeres, Moscovitch, & Winocur, 2014). Such stimuli become repre-
sented more similarly by MTL activity patterns (Hsieh, Gruber, Jenkins, & Ranganath,
2014; Schapiro, Kustner, & Turk-Browne, 2012), and pattern similarity at the time of
retrieval is related to one’s subjective sense of temporal and contextual proximity be-
tween the objects (Ezzyat & Davachi, 2014), as well as successful memory for their order
(DuBrow & Davachi, 2014).

Neural pattern similarity in the temporal lobe appears representative of psychological
similarity (Charest, Kievit, Schmitz, Deca, & Kriegeskorte, 2014; Davis & Poldrack,
2014; Davis, Xue, Love, Preston, & Poldrack, 2014), perhaps because psychological
category structure may be represented in such a dimension-reduced and hierarchical
manner that it can be smoothly mapped onto a two-dimensional neural substrate
(Huth, Nishimoto, Vu, & Gallant, 2012; Kriegeskorte et al., 2008). There is some
evidence that hippocampal coding for nonsemantic item-context bundles also follows
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a hierarchical structure. McKenzie et al. (2014) recorded activity from neuronal ensem-
bles of rats in a learning task and found context to be of primary importance to coding
similarity, followed by position of items within the environment, followed by the item
valence (reward status), and lastly the item identity itself. These results can help us under-
stand how similarity is constructed on deep levels.

Neural computations of the hippocampus
Some of the mechanisms contributing to such high-level patterns are reasonably well un-
derstood. Computational theories describe the associative retrieval and encoding func-
tions of the hippocampal region in terms of information processing by each of its
anatomical substructures in turn (Gluck & Myers, 2001; Hasselmo & Eichenbaum,
2005; Marr, 1971; McNaughton & Nadel, 1990; Treves & Rolls, 1994). Input from
the neocortex is first processed through hippocampal afferents in a specialized manner,
with the perirhinal and lateral entorhinal cortices supporting item memory and the
parahippocampal and medial entorhinal cortices supporting context memory (Diana,
Yonelinas, & Ranganath, 2013, 2007; Kragel, Morton, & Polyn, 2015; Libby, Hannula,
& Ranganath, 2014; Reagh & Yassa, 2014). The entorhinal cortex (EC) acts as a primary
gateway between the hippocampus and the rest of the brain. Information travels through
a loop with recurrence and multiple paths (Andersen, Bliss, & Skrede, 1971): The EC
projects to the dentate gyrus (DG), area CA3 (through the perforant pathway), and
area CA1; DG projects sparsely to CA3 via mossy fibers; CA3 exhibits a relatively large
amount of recurrent collaterals feeding back onto itself, and projects to CA1 via Schaffer
collaterals; and CA1 projects out of hippocampus via subiculum and EC back out to
neocortex, and via fornix to other regions in cortex.

A computational linchpin is area CA3, thought to form a recurrent autoassociative
network that reconstructs complete memories from partial inputs (Gluck & Myers,
1997). In this process of pattern completion, the presentation of cues reinstates networks
of activity based on the nexus of associated places, times, histories, concepts, and out-
comes, particularly those that are most pivotally and centrally connected. Pattern
completion by CA3 is integral to both memory retrieval and encoding, though they
invoke different neural paths. Mice and rats with lesions to CA3 are impaired on spatial
learning tasks especially when given a smaller number of cues with which to retrieve the
full memory (Gold & Kesner, 2005; Nakazawa et al., 2002) and single-unit recording
shows CA3 output as being closer to stored representations than to degraded input pat-
terns (Neunuebel & Knierim, 2014). This sort of retrieval is predominantly initiated by
direct input from the EC and is accordingly disrupted by lesions of the perforant pathway
(Lee & Kesner, 2004), though some evidence suggests that dentate granule cells also help
with pattern completion (Gu et al., 2012; Nakashiba et al., 2012). However, the projec-
tion from the EC is too weak to handle the encoding of new memories.

80 Goal-Directed Decision Making



Autoassociative encoding can be powerful enough to yield one-shot learning, in
which a single trial alone is enough to firmly store a memory (Day, Langston, & Morris,
2003; Nakazawa et al., 2003; Rutishauser, Mamelak, & Schuman, 2006). Incoming pat-
terns must be separated if they are to be stored distinctively, which is considered a func-
tion of the DG (Bakker, Kirwan, Miller, & Stark, 2008; Leutgeb, Leutgeb, Moser, &
Moser, 2007; McHugh et al., 2007; Schmidt, Marrone, & Markus, 2012). Encoding is
indeed driven by the mossy fibers from the DG, and new learning is disturbed if these
are inactivated, although retrieval is usually spared (Lassalle, Bataille, & Halley, 2000;
Lee & Kesner, 2004). The mossy fiber synapses come close to the bodies of CA3 pyra-
midal neurons and are sometimes called “detonator synapses” because they hold the abil-
ity to forcefully induce associative plasticity among CA3 neurons and their afferents
(Brandalise & Gerber, 2014; Chierzi, Stachniak, Trudel, Bourque, & Murai, 2012; Lee
et al., 2013; Lysetskiy, F€oldy, & Soltesz, 2005; Rebola, Carta, Lanore, Blanchet, &Mulle,
2011).

Reencoding must normally happen when the stimuli anticipated by cued associations
fail to match the stimuli actually encountereddthat is, when there is a prediction error.
Signals of expectancy violation have been detected in the hippocampus with a range of
methods (Fyhn, Molden, Hollup, Moser, & Moser, 2002; Hannula & Ranganath,
2008; Honey, Watt, & Good, 1998; Knight, 1996; Kumaran & Maguire, 2006, 2007)
and appear to be associative in that they are based on unexpected combinations of stimuli
rather than merely novelty of stimuli alone (Kafkas & Montaldi, 2015; Shohamy &
Wagner, 2008). These signals have been localized to area CA1, which is ideally placed
to act as a comparator or matchemismatch detector, as it receives sensory information
about the environment from the EC along with the associative predictions formed by
CA3 (Chen, Olsen, Preston, Glover, & Wagner, 2011; Duncan, Ketz, Inati, & Davachi,
2012). Such signals are likely needed to switch between the retrieval and encoding modes
of CA3 autoassociation. When expectations are not met, encoding is triggered and mem-
ories are updated, by either strengthening or weakening connections and representations
as needed. The mnemonic representations of items that fail to materialize when expected
become weaker, making them easier to forget (Kim, Lewis-Peacock, Norman, & Turk-
Browne, 2014). These associative prediction errors guide learning in many circumstances,
of which novelty is an important class (Kumaran & Maguire, 2007, 2009). In this way,
the prediction error induces plasticity to adaptively enhance learning under novelty,
complementing the adaptive properties of choice under novelty discussed earlier.

INTERACTIONS BETWEEN SYSTEMS

Many doors are open for interaction between control systems. The hippocampus is
anatomically embedded in multiple dopaminergic pathways. The neurophysiological re-
cord shows direct connections between the hippocampal formation and the ventral
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striatum (Floresco, Todd, & Grace, 2001; Legault, Rompr�e, & Wise, 2000; Lisman &
Grace, 2005) and possibly dorsal striatum (Finch, 1996; Finch, Gigg, Tan, & Kosoyan,
1995; Jung, Hong, & Haber, 2003; La Grutta & Sabatino, 1988; Sabatino, Ferraro,
Liberti, Vella, & La Grutta, 1985; Sørensen & Witter, 1983) and Scimeca and Badre
(2012) discuss several ways the striatum could support retrieval. Direct dopaminergic pro-
jections from the ventral tegmental area (VTA) have been shown to enhance long-term
potentiation in the hippocampus to support plasticity and encoding (Duncan, Tompary,
& Davachi, 2014; Lisman & Grace, 2005; Shohamy & Adcock, 2010; Wittmann et al.,
2005). Recent evidence indicates that dopamine release from the locus coeruleus also
plays a pivotal role in hippocampal signaling (Kempadoo, Mosharov, Choi, Sulzer, &
Kandel, 2016; Takeuchi et al., 2016), especially for one-shot learning in highly novel
contexts (Wagatsuma et al., 2018). Dopamine modulates hippocampal plasticity on time-
scales from minutes to hours (Bethus, Tse, & Morris, 2010; Frey et al., 1990; Lisman,
Grace, & Duzel, 2011; O’Carroll, Martin, Sandin, Frenguelli, & Morris, 2006),
improving memory encoding and consolidation (Apitz & Bunzeck, 2013; Axmacher
et al., 2010; Imai, Kim, Sasaki, & Watanabe, 2014; Kafkas & Montaldi, 2015; McNa-
mara, Tejero-Cantero, Trouche, Campo-Urriza, & Dupret, 2014; Murayama & Kita-
gami, 2014; Rosen, Cheung, & Siegelbaum, 2015; Rossato, Bevilaqua, Izquierdo,
Medina, & Cammarota, 2009). Memory strength can thus be easily enhanced by reward,
and information acquisition itself can provide pseudorewards or bonuses (Kakade &
Dayan, 2002), strengthening memory via similar neural pathways (Bunzeck, Doeller,
Dolan, & Duzel, 2012; Gruber, Gelman, & Ranganath, 2014; Kang et al., 2009; Witt-
mann, Daw, Seymour, & Dolan, 2008, 2007).

In the other direction, the hippocampus can activate dopaminergic neurons in the
VTA by sending CA1 novelty signals through the subiculum, nucleus accumbens, and
ventral pallidum (Bunzeck & D€uzel, 2006; Lisman & Grace, 2005). Contextual
information straight from CA3 also travels through lateral septum to the VTA (Luo,
Tahsili-Fahadan, Wise, Lupica, & Aston-Jones, 2011). Hippocampal pattern completion,
replay of experience, and autobiographical recollection evoke or reinstate representations
of value in the striatum to help accurately consolidate memories and associations relating
to stimuli (Han, Huettel, Raposo, Adcock, & Dobbins, 2010; Schwarze, Bingel, Badre,
& Sommer, 2013) or rewards (Kuhl et al., 2010; Lansink, Goltstein, Lankelma,
McNaughton, & Pennartz, 2009; Speer, Bhanji, & Delgado, 2014).

Growing evidence reveals that episodic memory can guide value-based decision-
making and is starting to shed light on how the hippocampus and striatum interact in
the process (Pennartz, Ito, Verschure, Battaglia, & Robbins, 2011). In a simple value
learning paradigm, Duncan and Shohamy (2016) documented behaviorally that contex-
tual familiarity encouraged the retrieval and use of past episodes in decision-making.
Murty, FeldmanHall, Hunter, Phelps, and Davachi (2016) showed that cues were used
to adaptively guide lottery choice when learned cueeoutcome associations were strong.
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Wimmer and B€uchel (2016) cued the retrieval of single past episodes in which stimuli
were associated with rewards and found that risk preferences were biased by reactivation
of the reward values, which were represented in the striatum. Gluth, Sommer,
Rieskamp, and B€uchel (2015) found that evaluation of snack food was biased toward
items that were better remembered, and they observed corresponding value signals in
the striatum, hippocampus, and ventromedial prefrontal cortex (vmPFC). They further
found that this bias was mediated by hippocampalevmPFC functional connectivity.
Several other studies have observed that the strength of hippocampalestriatal connectiv-
ity during reward learning and at rest is related to value generalization (Gerraty, Davidow,
Wimmer, Kahn, & Shohamy, 2014; Kumaran, Summerfield, Hassabis, & Maguire, 2009;
Wimmer & Shohamy, 2012; Wimmer et al., 2012). Thus, the distributed neural repre-
sentation of stimuli, values, and their associations depends crucially on what type of in-
formation must be retrieved and applied.

Interactions between case-based and model-free systems
Both competitive and cooperative links have been observed between case-based and
model-free behaviors, as well as their presumed neural substrates.

Several experiments indicate competitive links between MTL-dependent declarative
learning and striatum-dependent procedural learning (Moody et al., 2004; Poldrack &
Packard, 2003; Poldrack, Prabhakaran, Seger, & Gabrieli, 1999), which may be mediated
by PFC (Poldrack & Rodriguez, 2004). Rats with hippocampal lesions actually perform
better on procedural learning tasks (Eckart, Huelse-Matia, & Schwarting, 2012). It may
be that hippocampal contexteoutcome associations interfere with striatal actione
outcome contingencies that could be more important in such circumstances over the
long run (Cheung & Cardinal, 2005). Collins, Ciullo, Frank, and Badre (2017) imposed
working memory load by increasing the number of stimuli to be learned and found that
this strengthened model-free reward prediction errors. Wimmer, Braun, Daw, and
Shohamy (2014) used a drifting probabilistic reward learning task in which a unique inci-
dental picture accompanied each trial. Better episodic memory for the pictures on a sur-
prise memory test the following day was negatively correlated with reward and
reinforcement learning rate during the task. For individual trials on which the picture
was successfully remembered, reward had a weaker influence on the subsequent choice,
and reward prediction error signals in the putamen were negligible.

At the same time, cooperative links have been demonstrated in similar paradigms
(Ferbinteanu, 2016). Bornstein, Khaw, Shohamy, and Daw (2017) showed that
decision-making in a multiarmed bandit task was biased by incidental reminders of
past trials, consistent with a version of model-free reinforcement learning that incorpo-
rates episodic sampling. Aberg, M€uller, and Schwartz (2017) found that delivered and
anticipated rewards were positively related to associative memory encoding, and
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valence-dependent asymmetries in these effects were modulated by individual differences
in sensitivity to reward versus punishment. Dickerson, Li, and Delgado (2011) observed
that prediction errors in feedback learning correlated positively with activity in both the
putamen and the hippocampus. In some experiments centered on either episodic mem-
ory encoding or probabilistic reward learning, activity in the hippocampus appears to
positively correlate with activity in the putamen on feedback trials when stimuli are suc-
cessfully remembered later (Sadeh, Shohamy, Levy, Reggev, & Maril, 2011; Wimmer
et al., 2014). In a probabilistic learning task with feedback accompanied by incidental
trial-unique images, Davidow, Foerde, Galv�an, and Shohamy (2016) found that stronger
episodic memory encoding was correlated with enhanced reinforcement learning among
adolescents but not adults. Moreover, functional hippocampalestriatal connectivity was
positive only for adolescents. Thus the process of development may play an important
role in how these systems interact. Kahnt et al. (2012) looked at value updating in a
perceptual association paradigm, augmenting a standard reinforcement learning model
with a similarity-based generalization gradient. They found that hippocampalestriatal
connectivity was negatively correlated with the width of the generalization window,
suggesting a discriminative mechanism.

The exact nature of such interactions thus remains an open question. Computational
theory may help suggest possible mechanisms, especially cooperative ones. Various
strands of the artificial intelligence literature synergistically combine CBR with model-
free reinforcement learning to enhance transfer learning. This is particularly valuable
when state and action spaces are large or continuous (Santamaría, Sutton, & Ram,
1997). Similar past cases can accelerate learning by contributing to initial guesses of the
value function, which can then be revised according to temporal difference learning,
retaining its promises of long-run convergence (Drummond, 2002; Gabel & Riedmiller,
2005; Sharma et al., 2007; Bianchi, Ribeiro, & Costa, 2008, 2009; Celiberto, Matsuurade
Ma‘ntaras, & Bianchi, 2010, 2011). Once learning has converged in a task, the optimal
policy can be abstracted for transfer to future tasks (Von Hessling & Goel, 2005). In re-
turn, reinforcement learning is able to influence the retrieval of cases by helping with on-
line assessment of the best similarity metrics for CBR ( Juell & Paulson, 2003). Cases may
be stored preferentially when the agent is attaining high rewards (Auslander, Lee-Urban,
Hogg, & Munoz-Avila, 2008) and selectively pruned when they hinder prediction or
exceed storage (Gabel & Riedmiller, 2005; Wilson & Martinez, 2000).

Such computational models suggest further possibilities for neural interplay between
case-based and model-free systems. Along related lines, an influential body of work has
been inspired by the well-known Dyna architecture (Sutton, 1990), which is used to
explain hippocampal replay of recent memories during rest ( Johnson & Redish, 2007;
Kurth-Nelson, Economides, Dolan, & Dayan, 2016). Modified temporal difference al-
gorithms with offline replay of previously experienced sequences allow extra practice,
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substantially speeding up early learning ( Johnson & Redish, 2005; Johnson & Venditto,
2015).

Another important form of generalization relies on eligibility traces, which are
computational accessories to temporal difference learning attached to states or actions
that facilitate their value updates across temporal gaps (Barto, Sutton, & Brouwer,
1981; Sutton & Barto, 1998). Given its responsibilities in connecting stimuli across delays,
the hippocampus may be involved in instantiating eligibility traces (Ludvig et al., 2009).
Implementation could happen by means of synaptic tagging, in which recently active
synapses are tagged for increased susceptibility to long-term potentiation or depression
over longer periods of time (Frey & Morris, 1997; Izhikevich, 2007). Dopamine firing
patterns do appear to reflect eligibility traces (Pan, Schmidt, Wickens, & Hyland,
2005), and we have seen how strongly entangled the hippocampus is with various dopa-
mine circuits. However, such hypotheses remain to be empirically verified. Notably,
eligibility traces are most beneficial in non-Markovian environments. Among other rea-
sons, this could occur when agents are unsure of what to attend to in an unfamiliar
setting, rendering the state space only partially observable.

Interactions between case-based and model-based systems
Model-based decision-making relies on sophisticated forecasting, typically involving the
estimation of state transition probabilities. One source of these subjective probabilities
may be a case-based system (Blok, Medin, & Osherson, 2003; Taylor, Jong, & Stone,
2008).

Some evidence supports the existence of a hippocampal process for learning transition
probabilities that operates in parallel with the striatum and is linked to model-based
decision-making (Bornstein & Daw, 2012, 2013). Hippocampal similarity-based learning
is also thought to be one mechanism for learning word transition probabilities of artificial
grammars (Opitz & Friederici, 2004). Such belief updating may be premised on sequen-
tial association learning (Amso, Davidson, Johnson, Glover, & Casey, 2005) and the
binding of regularities across time and space as discussed earlier. Consistent with a key
role for association, Doll, Shohamy, and Daw (2015) found that generalization in an ac-
quired equivalence task was correlated with use of a model-based strategy in a separate
sequential learning task. Theoretically, probabilities constructed from stimulus associa-
tions might reflect the successor representation (Dayan, 1993), which assesses the ex-
pected future visitations of states based on their sequential cooccurrence. This can be
done latently prior to the introduction of reward and sheds light on how cognitive
maps may be neurally instantiated in the hippocampus (Stachenfeld, Botvinick, &
Gershman, 2014, 2017). The successor representation could explain why sensitivity to
contingency degradation is impaired in rats with lesions of the hippocampal region but
sensitivity to outcome devaluation is spared (Corbit & Balleine, 2000; Corbit, Ostlund,
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& Balleine, 2002). A mild disparity in these sensitivities occurs even under normal
circumstances in humans, which may be explained by a hybrid successor representa-
tion/model-based mechanism (Momennejad et al., 2017). Moreover, the temporal
context model of episodic memory can be viewed as estimating the successor represen-
tation (Gershman, Moore, Todd, Norman, & Sederberg, 2012), revealing a deep
connection between episodic memory and reinforcement learning.

Outcome projection based on similar cases is common in the world at large and has
proven successful when facing complex problems. As John Locke said, “in things which
sense cannot discover, analogy is the great rule of probability.” Similarity-based
approaches can help accurately predict college admissions (Klahr, 1969), movie revenue
(Lovallo, Clarke, & Camerer, 2012), and legal case outcomes (Teitelbaum, 2014). His-
torically, weather forecasting was done by seeing how conditions evolved on similar
recorded days (Kruizinga & Murphy, 1983). In general, this method of “reference class
forecasting” suggested by Kahneman and Tversky (1982) has been found helpful in proj-
ect management to the point where it is officially endorsed by the American Planning
Association, particularly for “nonroutine projects . and other local one-off projects”d
in other words, novel problems with limited past data. One branch of decision theoretic
models formalizes the idea by constructing probabilities from similarity-weighted fre-
quencies of past outcomesda kernel estimate of event occurrence. Billot, Gilboa, Samet,
and Schmeidler (2005) provide an axiomatized representation of probabilities as
similarity-weighted frequencies. Others have relaxed their assumptions in various
ways, such as by allowing beliefs to depend on the database size, having multiple beliefs
to reflect ambiguity (Eichberger & Guerdjikova, 2010), and combining similarity-
weighted frequencies with a prior in a nested Bayesian framework (Bordley, 2011).
Theoretical predictions from these models await empirical testing.

Another line of research focuses on a more flexible form of forecasting based on imag-
ination. Imagining potential outcomes in detail can help agents evaluate options, and the
hippocampus plays a significant role in this mental simulation (Buckner & Carroll, 2007;
Gilbert &Wilson, 2007; Suddendorf & Corballis, 2007). Just as the hippocampus enables
us to reconstruct vivid scenes from past episodes, it also helps us to conjure up potential
future scenarios from reconstituted episodes (Schacter, Addis, & Buckner, 2007, 2008,
2012). In the process, it may interact with vmPFC to integrate related events in a flexible
and prospectively useful form (Benoit, Szpunar, & Schacter, 2014; Weilb€acher & Gluth,
2017; Zeithamova & Preston, 2010; Zeithamova, Dominick, & Preston, 2012). Future
events are imagined in more detail when they would occur in familiar or recently expe-
rienced settings, revealing their origins in past episodes (Szpunar & McDermott, 2008).
Envisioning future events recruits similar temporal and prefrontal regions as envisioning
the past (Addis, Wong, & Schacter, 2007; Okuda et al., 2003; Schacter & Addis, 2007;
Szpunar, Watson, & McDermott, 2007), and hippocampal amnesics typically exhibit
impaired episodic prospection (Klein, Loftus, & Kihlstrom, 2002; Hassabis, Kumaran,
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&Maguire, 2007; Addis, Sacchetti, Ally, Budson, & Schacter, 2009; Andelman, Hoofien,
Goldberg, Aizenstein, & Neufeld, 2010; Kwan, Carson, Addis, & Rosenbaum, 2010;
Race, Keane, & Verfaellie, 2011, 2013). Such imaginative prospection may be goal-
relevant and enhanced by reward (Bulganin & Wittmann, 2015), though not always
adaptively (Gershman, Zhou, & Kommers, 2017). Animals in choice experiments exhibit
a phenomenon known as vicarious trial and error, in which they pause at choice points
and orient themselves toward potential options, as if they were envisioning the future
implications of taking a given path ( Johnson, van der Meer, & Redish, 2007;
Muenzinger, 1938; Tolman, 1938). This behavior appears to rely on the hippocampus
(Hu & Amsel, 1995; Hu, Xu, & Gonzalez-Lima, 2006), and hippocampal activity repre-
sents positions traveling down each path ahead of the animal ( Johnson & Redish, 2007).

This type of goal-relevant simulation sometimes plays a role in intertemporal choice,
as the constructed representation of future reward may feed into previously identified
frontoparietal control regions associated with a preference for longer-term options
(McClure, Laibson, Loewenstein, & Cohen, 2004). Rats with hippocampal lesions
tend to pick smaller, immediate rewards (Abela & Chudasama, 2013; Cheung &
Cardinal, 2005; Mariano et al., 2009; McHugh, Campbell, Taylor, Rawlins, & Banner-
man, 2008; Rawlins, Feldon, & Butt, 1985). People who are prompted to consciously
imagine spending a delayed reward in the future tend to choose the delayed option
more often, and the strength of this bias is correlated with simulation richness (Benoit,
Gilbert, & Burgess, 2011; Daniel, Stanton, & Epstein, 2013; Lebreton et al., 2013; Lin
& Epstein, 2014; Liu, Feng, Chen, & Li, 2013; Peters & B€uchel, 2010). Hippocampal
amnesics do not display this effect, although their intertemporal choices appear to be
comparable to controls who are not prompted to use imagination (Palombo, Keane,
& Verfaellie, 2014; though see Kwan et al., 2015), in accordance with multiple process
hypotheses. From a theoretical standpoint, associative neural network models of region
CA3 naturally generate standard reward discounting curves derived from the predicted
similarity representations they produce with respect to future states (Laurent, 2013).

A final intriguing angle centers on analogical reasoning, which depends on higher-
order structural similarity and enables powerful generalization (Gentner, James Holyoak,
& Kokinov, 2001; Holyoak, 2012; Kolodner, 1997). Analogizing appears to be a
problem-solving ability near the peak of cognition and decision-making. Raven’s
Matrices, which test abstract relational reasoning, rank highly among mental tests in their
g-loading ( Jensen, 1998). The flexible application and recombination of past cases in-
vokes more conscious processing involving our evolutionarily well-developed PFC
(Krawczyk, 2012; Zeithamova & Preston, 2010). Analogical thinking has been tested
in other species as well, and only chimpanzees have succeeded at a level modestly com-
parable to humans (Zentall, Wasserman, Lazareva, Thompson, & Rattermann, 2008).
Notably, successful chimps were those with prior training in symbolic representations
like language or tokens. Thus, high-level relational comparisons may be key to both
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generalization and intelligence. These skills make a difference even at the frontier of
human ability. The brokerage firm Merrill Lynch was styled after cofounder Charlie
Merrill’s experience in the supermarket industry (Gavetti, Levinthal, & Rivkin, 2005),
and mathematician Stefan Banach often said that “good mathematicians see analogies
between theorems or theories; the very best ones see analogies between analogies.”

CONCLUSION

Decision neuroscience has been guided by the formal characterization of habitual and
goal-directed control in terms of model-free and model-based systems. Research
emerging from multiple fields points to the importance of alternative memory-based
mechanisms in learning and valuation, straining the boundaries of the traditional dichot-
omy. I have reviewed the behavioral and neural evidence characterizing these “case-
based” mechanisms from several angles.

Empirical research in psychology and economics shows that evaluation often occurs
on the basis of similarity judgments (Gilovich, 1981). Theoretical work from economics,
psychology, and computer science describes how decisions can be made by drawing on
similar past cases (Gilboa & Schmeidler, 1995a; Kolodner, 1992). Computational and sta-
tistical perspectives reveal that such methods have different properties than typical model-
free and model-based rules, analogous to nonparametric techniques (Gilboa et al., 2011).
In particular, case-based evaluation makes fewer assumptions about problem structure
than model-based evaluation, while still generalizing beyond the circumstances of past
observations more than model-free evaluation. As a result, case-based approaches can
be adaptive compared to other systems in novel and complex settings (Gilboa et al.,
2013). This provides a normative justification for such alternative mechanisms and sug-
gests under which conditions we might expect them to be mobilized.

The hippocampus and broader MTL structures are natural candidates to subserve a
case-based system. Recent work in neuroscience indicates that these regions are involved
in value-based judgment to a previously unrecognized extent. The hippocampus can
reinstate memories of stimulus and reward associations when triggered by task-relevant
or external cues (Wimmer & B€uchel, 2016), and it sometimes even represents value sig-
nals directly (Gluth et al., 2015). Hippocampal involvement occurs especially with stimuli
that are novel or natural objects (Barron et al., 2013) or when learning occurs over rela-
tively long timescales (Foerde et al., 2013). Case-based computations could also support
or compete with those of model-free or model-based systems, and both types of inter-
action have been observed (Bornstein & Daw, 2013; Wimmer et al., 2014).

A number of open questions follow from this perspective:
• Can tighter correspondences be found between brain activity and computational the-

ory for a case-based system? Representations of value derived from reinforcement
learning and expected utility have been observed in the striatum and prefrontal cortex
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(Daw & O’Doherty, 2013; Knutson, Taylor, Kaufman, Peterson, & Glover, 2005), as
have more exotic quantities such as regret (Lohrenz, McCabe, Camerer, &
Montague, 2007). Case-based decision theory provides another quantitative account
of value that may help explain neural activity.

• How does the interaction between hippocampal and striatal functions depend on the
properties of the decision problem? In some tasks, the hippocampus reinstates contex-
tual features to support striatal value representations (Wimmer & B€uchel, 2016),
while in other tasks, value signals appear to be represented in the hippocampus itself
(Gluth et al., 2015). The distributed representation of value likely depends on prop-
erties of the stimulus and environment, such as familiarity and complexity, but clear
principles are still to be laid out.

• What other adaptive properties might normatively justify contributions of episodic
memory to decision-making? Computational noise in a model-based system can
stem from stringent memory demands, so episodic control may exhibit more robust
performance due to lower cognitive costs (Lengyel & Dayan, 2008). Such arguments
may suggest new predictions about how factors like cognitive load affect learning and
behavior.
To address these questions will require moving beyond traditional neuroeconomic

paradigms in which artificial stimuli are presented repeatedly and value is learned incre-
mentally. Neuroimaging techniques with high spatial resolution must also be used to
measure brain activity in humans because the size, shape, and cytoarchitecture of the
hippocampus make it difficult to image.

Evaluation based on similarity has arisen time and again across the behavioral and
computational sciences. I have attempted to synthesize a wide range of relevant theoret-
ical and empirical findings into a cohesive foundation for neuroeconomics to build on.
These ideas reveal the need for studies that reflect the novel, unstructured, non-
Markovian, discontiguousdin short, messydnature of the world at large. Decision-
making under such conditions may call upon different sets of mechanisms than those
traditionally considered. The transparency and simplicity of most neuroeconomic exper-
iments may obstruct our view of what happens when matters are not so tidydand we
live in an untidy world.
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CHAPTER 5

Learning Structures Through
Reinforcement
Anne G.E. Collins
Department of Psychology, University of California, Berkeley, Berkeley, CA, United States

INTRODUCTION

The flexible and efficient decision-making that characterizes human behavior requires
quick adaptation to changes in the environment and good use of gathered information.
Thus, investigating the mechanisms by which humans learn complex behaviors is critical
to understanding goal-directed decision-making. In the past 20 years, cognitive neuro-
science has progressed immensely in understanding how humans learn from rewards
and punishment, particularly for simpler behaviors shared in common with other mam-
mals, such as learning simple associations between stimuli and actions. Reinforcement
learning (RL) theory (Sutton & Barto, 1998) has provided a crucial theoretical frame-
work explaining how humans learn to represent the value of choices and/or make
decisions that are more likely to lead to rewards than to punishments. However, both
cognitive neuroscience and artificial intelligence fields struggle with explaining more
complex, and more characteristically human, learning behaviors, such as rapid learning
in completely new and complex environments.

This chapter discusses the use of the RL framework to understand many complex
learning behaviors, focusing specifically on model-free RL algorithms for learning values
of or policies over states and actions, since we have a good understanding of how
corticoebasal ganglia loops use dopaminergic input to implement an approximate
form of this computation. We will show that many forms of complex human RL can
be framed by applying this RL computation, provided that we model the inputs and
outputs of the algorithm appropriately. Specifically, we argue that by better defining
the state and action spaces for which humans learn values or policies, we can broadly
widen the types of behaviors for which RL can account. We support this statement
with examples from the literature showing how the brain may be performing the same
computations for different types of inputs/outputs and how this can account for complex
behavior, such as hierarchical RL (HRL), structure learning, generalization, and transfer.

We will first provide a short introduction to RL, both from a computational point of
view, highlighting the limitations and difficulties encountered by this algorithm, and
from a cognitive neuroscience point of view, mapping these computations to neural
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mechanisms.Wewill then attempt to unify multiple frameworks from the human learning
literature, such as representation learning (Wilson & Niv, 2012), HRL (Botvinick, Niv, &
Barto, 2009), rule learning (Collins & Koechlin, 2012), and structure learning (Collins &
Frank, 2013), into a single framework, whereby the brain uses a single mechanistic
computationddefined by a model-free RL mechanismdand applies it to different input
and output spaces, notably, state and action spaces. We will first focus on howwe can miti-
gate the curse of dimensionality by altering how we define state spaces, leading to more
complex and efficient learning. We will then show that assuming different action spaces,
in particular, by introducing temporal abstraction or rule abstraction, leads to faster
learning and to an ability to generalize information. Last, we will show that humans some-
times create latent state or action spaces, which seemingly makes learning problems more
complicated but comes with a number of behavioral advantages. Finally, we will conclude
by broadening to other open questions in flexible learning: the role of the reward function
in RL, the various algorithms other than model-free RL that may also contribute to effi-
cient learning, and the roles of models of the environment in learning.

REINFORCEMENT LEARNING

Reinforcement learning algorithms
RL models are a class of algorithms designed to solve specific kinds of learning problems
for an agent interacting with an environment that provides rewards and/or punishments
(Fig. 5.1A). The following type of “grid world” problem exemplifies an archetypical RL
problem (Fig. 5.2A). The agent (black square) sits in one of the cells of a grid environ-
ment and can navigate through the grid by choosing one of four actions (up, down,
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Figure 5.1 Schematic of reinforcement learning (RL) systems. (A) RL algorithms observe a state s as
input and select an action a as output. The environment provides reinforcement r, which is used
to update the RL algorithm and transitions to the next state. (B) An approximation of these compu-
tations is performed in the corticoebasal ganglia loop (Frank et al., 2004). For example, a sensory
observation leads to preactivation of possible actions in the premotor cortex (PMC); the PMCebasal
ganglia loops allow gating of one action; dopamine (DA) signals a reward prediction error (RPE) signal
that reinforces corticostriatal synapses, allowing the gating mechanism to select the actions most
likely to lead to reward. (C) This learning process occurs at multiple hierarchical levels in the brain
in parallel (Collins & Frank, 2013). For example, loops involving the prefrontal cortex allow learning
to occur between abstract contexts and high-level rules, which then constrains the lower-level
learning loop.
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left, or right). The agent can collect points by selecting some actions or by entering some
cells (e.g., the top-left corner in Fig. 5.2A). The goal of the agent is to maximize points
earned. Defined more technically, an RL problem is characterized by a state space S
(here, the cells in the grid world), an action space A (here, the four available actions),
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...
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+100

Figure 5.2 Examples of reinforcement learning (RL) problems. (A) Grid world: The artificial agent nav-
igates between cells using one of four directions. (B) Animals navigate in a maze to obtain reward; the
states si are physical locations. (C) Instrumental learning task: Participants use reward feedback to
learn to select the correct button for each possible stimulus (e.g., shapes). (D) Representation learning
task: Participants need to select one of two patterns; only one dimension matters (here, shape matters,
with the star being the most rewarding of the two shapes). (E) Hierarchical learning: Participants learn
that for one color (reddtop), the shape of the input determines the correct action, but for the other
color (bluedbottom), the texture determines the correct action. (F) Options framework or hierarchical
RL (HRL): In both cases, participants select the same high-level action (or option): go to the star. This
constrains a different sequence of low-level actions. (G) Structure learning: Participants learn to select
one high-level abstract action (a rule, or task set, TS1) for some colors and another (TS2) for other
colors; in parallel, they learn to associate low-level actions (button presses) to stimuli (here, shapes)
for each of the high-level abstract rules. (H) Latent rule learning: Participants learn high-level rules
as in (G) but do not observe the contexts. Instead, they infer the latent context from their observations
of the outcomes to their choices.
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a transition function T(s,a,s’) ¼ p(s’js,a) that controls the probability of the next state s’
given that the agent chose action a in a state s and a reward function R(s,a,s’). The
goal of the agent is to optimize the expected sum of future discounted rewards and,
specifically, to find a policy p(s,a) ¼ p(ajs) that maximizes this sum. One way to achieve
this goal is to estimate the expected value of each state or of each state and action under
the optimal policy (where value is the expected sum of discounted future rewards). If one
can do this, the optimal policy falls out by selecting the action with the highest value.

There are many different algorithms that propose solutions to this problem and offer
guarantees of convergence. We focus on a simple class of algorithms, called model-free
because they do not require a model of the environment (i.e., knowledge of the transi-
tion function and the reward function). We focus on model-free RL algorithms, such as
temporal difference learning, Q-learning, SARSA, and actor-critic algorithms (Sutton &
Barto, 1998), because they have been extremely helpful in understanding animal
behavior and neural correlates of learning. Model-free RL algorithms use a key quantity,
called the reward prediction error, to learn to estimate values of states or of stateeaction
pairs. At each trial t, the reward prediction error is defined as the difference between what
is expected for future discounted reward after taking an action (the sum of reward r and
discounted value of next step gV(st þ1), where g is the discount factor) and what was
expected prior to taking that action (V(st)). Using the reward prediction error
rpe ¼ r þ gV(st þ1)�V(st) to update the previous estimate of V(st) by a small increment
of the error a.rpe (where a is the learning rate) is a good algorithm under certain assump-
tions and constraints (Sutton & Barto, 1998).

Reinforcement learning in the brain
Through this model-free RL algorithm, an artificial agent can learn the optimal way to
attain a reward in the simple grid world of the example in Fig. 5.2A, after many attempts
to solve this problem (Sutton & Barto, 1998). It is a good model of behavior for an animal
learning to find its way toward a reward in a maze (Fig. 5.2B). Further, this algorithm has
been a critical source of progress in the cognitive neuroscience of learning because it pro-
vides a useful model of the neural correlates of RL. Specifically, researchers have discov-
ered that dopaminergic neurons fire in a pattern that is consistent with a reward
prediction error signal: Their firing increases phasically with unexpected reward,
decreases phasically with missed expected reward or with unexpected punishment, and
stays at the tonic level for expected rewards (Montague, Dayan, & Sejnowski, 1996).
Dopamine release in the striatum follows parametrically what would be expected for a
bidirectional reward prediction error signal (Hart, Rutledge, Glimcher, & Phillips,
2014). Furthermore, dopamine signaling in the striatum modulates plasticity of cortico-
striatal synapses, with increased dopamine strengthening associations in the pathway facil-
itating action selection and decreasing them in the pathway blocking it; decreased
dopamine has the opposite effects in these pathways (Adamantidis et al., 2011; Hamid
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et al., 2015; Kravitz, Tye, & Kreitzer, 2012; Tai, Lee, Benavidez, Bonci, & Wilbrecht,
2012). Corticoebasal ganglia loops act as a gate for action selection that is dependent
on the strength of these two corticostriatal pathways (Collins & Frank, 2014; Frank,
Seeberger, & O’Reilly, 2004). Thus, there is strong evidence that corticoebasal ganglia
loops implement a model-free RL computation, with dopamine reward prediction errors
training corticostriatal associations to help select choices that lead to reward and avoid
those that lead to punishment (Fig. 5.1B).

Limitations
Model-free RL algorithms are thus very successful at explaining animal learning because
they capture many behaviors well, including for example, probabilistic reward learning
(Frank, Moustafa, Haughey, Curran, & Hutchison, 2007), and they have a plausible
mechanistic implementation in the brain. Using these computational models to link be-
tween brain and behavior has increased understanding of individual differences in RL, of
learning deficit in some pathologies (e.g., Parkinson) and of the effect of dopaminergic
drugs on learning (Frank, 2005). However, model-free RL also has a number of limita-
tions that have led cognitive neuroscience and artificial intelligence researchers to look
at other algorithms to better model human learning and enhance artificial agents, respec-
tively. One major limitation of RL is that it suffers from the curse of dimensionality:While
RL can be relatively efficient in small problem spaces, learning with this algorithm in rela-
tively bigger problem spaces would take an enormous amount of practice, making it
extremely inefficient. In contrast, humans can often learn new behaviors very quickly
(e.g., how to drive a car). Another limitation is that model-free RL is inflexible: When
the environment changes (e.g., the position of the reward in the grid world), model-
free RL algorithms need to slowly unlearn. By contrast, humans (and animals) are sensitive
to changes in the environment and can quickly alter their behavior toward their goal. To
solve these and other limitations of model-free RL algorithms, researchers in artificial in-
telligence and cognitive neuroscience have proposed new algorithms. For example,
model-based RL algorithms offer some solutions to the inflexibility problem by proposing
a different way of computing expected values that integrates knowledge about the model
of the world. However, we will show here that we can understand many complex human
behaviors in the framework of the same simple model-free algorithm, with its grounding
in a well-understood neural implementation, by carefully considering the state and action
spaces over which model-free computations of estimated values or policies are performed.

Framing the problem
What are state and action spaces when modeling human behavior? This modeling choice
is often dictated by the experimental design and is assumed away as obvious. We give
some examples in Fig. 5.2B and C. The most direct translation from original RL

Learning Structures Through Reinforcement 109



algorithms, such as grid worlds, is the modeling of spatial learning tasks in which animals
need to learn to find a reward in a maze. States are modeled as discrete places in the maze
at which a decision is needed, and actions are modeled as choices of direction (e.g., left or
right; Fig. 5.2B). Note that making different choices for the state/action space could lead
to a very different model (e.g., with more discrete places in the maze, actions could
include stop, groom, etc.). For human behavior, state spaces are often replaced with
sets of stimuli, and actions are replaced with simple choices, such as key presses
(Fig. 5.2C); this modeling choice retains a fairly unambiguous interpretation of the envi-
ronment. Probabilistic reward learning tasks offer a good example of the ambiguity of
defining state/action spaces. In these tasks (e.g., Davidow, Foerde, Galvan, & Shohamy,
2016; Frank et al., 2004), subjects may be asked to choose between two shapes (e.g.,
Fig. 5.2D). There is some ambiguity in how this task should be modeled. Is the state
the current pair of stimuli? Is this pair dependent or independent of their left/right
position? More generally, this task tends to be modeled as a single state and two actions:
“picking the star” or “picking the circle.” It is important to note that (1) this action state is
much more abstract than “press the left/right button,” as it does not map to a single set of
motor commands, and (2) a different choice, for example, “pick left” versus “pick right,”
would be unable to capture behavior in this task, since left and right are not informative
about reward. Despite the abstraction of this action space, the model-free RL algorithm
excels at capturing the behavior and neural effects in this task (Davidow et al., 2016). We
show here that we can capture many behaviors of higher complexity in the model-free
RL framework by carefully considering the state and action spaces over which the
computations occur. Table 5.1 shows in pseudocode how this can be done in the
examples of Fig. 5.2. We will show that developing appropriate states and action spaces
overcomes many issues thought of as classic limitations of model-free RL.

STATE SPACES

Simplifying the state space
Figuring out an appropriate state space over which RL operates can dramatically improve
RL performance by reducing the curse of dimensionality. Learning to drive is a task,
which teenagers may accomplish in a few hours but which many top artificial intelligence
researchers and companies have been unable to get an artificial agent to perform without
major issues. How do we use our experience from 15 years of life to accomplish such fast
learning? Taking all visual inputs into account would be overwhelming to a learning
agent, as we essentially never see the same scene twice when driving. However, if one
can discern that the relevant information for making a decision whether to stop or to
go at an intersection is the color of the light (red, yellow, or green) then one part of
the problem is suddenly reduced to a one-dimensional, two-feature state space. Niv and
colleagues investigated such state space learning in a series of studies (Leong et al., 2017;
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Niv et al., 2015; Wilson & Niv, 2012; see also Chapter 12 by Shuck, Wilson, and
Niv), and a simplified example is schematized in Fig. 5.2D. At each trial, participants
were shown three items and needed to choose one item to try to win points. Each
item had three dimensions (shape, color, and texture), and each dimension had three
features (e.g., red, blue, and green). In a learning problem, only one feature from one
dimension (e.g., the star) had a high likelihood of leading to reward; thus, if participants
were able to learn that the other two dimensions did not matter and that they should
learn to represent the problem as an RL problem concerned only with shapes, they could
significantly simplify the dimensionality of the problem and thus improve their perfor-
mance (Wilson & Niv, 2012). Results showed that behavior was best explained by a

Table 5.1 Pseudocode for learning examples in Fig. 5.2

RL represents a single learning algorithm producing a policy over given state or action spaces S, A. Light blue is the “naïve”
or flat modeling of a problem, using the simplest state spaces for inputs and action spaces for outputs. Black models structure
learning, as observed in participants.
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process where participants learned to focus their attention on a single dimension and
applied simple RL to features of this dimension. Thus, they effectively created a relevant,
smaller state space, over which an RL algorithm was run (Table 5.1D); indeed, reward
prediction error signals in the striatum were better explained by assuming RL happened
over the state space defined by the focus of attention than by other models. This is one of
the most direct examples of how humans define nonobvious state spaces over which to
learn values or policies with RL. An important question is how we create the state space
itself; in the example given here, how do we learn the feature on which we should focus
our attention? A study by Leong et al. (2017) showed that creation of state space can be
performed using reward feedback, such that there is a bidirectional interaction: Attention
told subjects over which dimensions they should perform RL, and reward prediction er-
rors helped participants direct their attention to the correct dimension and thus create the
state space over which to operate RL.

Multiple state spaces
A state space that is appropriate for one goal may not be appropriate for another.
Consider our driving example with the traffic light: If you are in the lane to go straight,
the main round lights are relevant to your decision to stop or go, but if you are in the lane
to turn left, you should ignore these lights and instead pay attention to the left arrow
lights. Said differently, your state space should be conditioned on an additional aspect
of the environment: which lane you are in. Being able to create multiple state spaces
and knowing the one to which you should apply RL would allow significantly more
complex learning behavior. Indeed, it would allow a hierarchical contextualization of
learning by context. A series of studies (Badre & Frank, 2011; Badre, Kayser, & Esposito,
2010; Frank & Badre, 2011) has shown that healthy young adults are able to hierarchical-
ly contextualize the learning space and that it strongly improves their learning. Partici-
pants saw a single three-dimensional item on the screen and had to learn which of
three actions to pick to receive points. In a flat condition, all the three dimensions
were needed to figure out the correct action for an item, leading to three-dimensional
state spaces with an overwhelming 18 items. In a hierarchical condition, one of the di-
mensions (color) controlled which of the other two dimensions was relevant for learning
(e.g., if the item was red, only the shape mattered, but if it was blue, only the texture
mattered; Fig. 5.2E). Thus, participants could essentially build two small state spaces
(one corresponding to three textures and another to three shapes) and at each trial deter-
mine which state space to use based on the color of the item (Table 5.1E). Badre et al.
(2010) showed that participants did learn this way, as evidenced by much more efficient
learning in the hierarchical condition than in the flat condition. Further, studies (Badre &
Frank, 2011; Frank & Badre, 2011) have shown that this method of learning could be
computationally understood as RL computations happening over two hierarchical loops
and different state (and actiondsee below) spaces (Fig. 5.1B): The top loop learned
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through RL which of the two state spaces to select for a given color, while the bottom
loop learned which key press to select for either of the two simpler state spaces.

This example highlights a number of important points. First, RL computations may
happen over multiple state spaces in the same learning problem, with other signals serving
as a contextualizing factor. Second, they may happen simultaneously over multiple state
spaces (in the previous example, learning which state space to select for a color state and
which key to press for a given shape or texture). This latter point implies two further
important features: (1) a notion of hierarchy, whereby the choice from one of the RL
loops has an influence over the learning and decision of a “lower-level” loop and (2)
the choice in the higher hierarchical loop is more abstract than the one at the lower
leveldindeed, in this example, RL in the top loop happens not only on a subpart of
the original state space (the color dimension) but also on a new abstract action space,
indicating the dimension on which a subject must focus attention. Below, we will
come back to hierarchical representations in RL and to the importance of learning action
spaces, in addition to state spaces.

ACTION SPACES

Abstract hierarchical action spaces
The study by Frank and Badre (2011), discussed above, showed that learning the hierar-
chical structure of the environment, which simplifies a large unstructured state space into
two smaller state spaces selected conditionally on a context, can facilitate learning. It
introduced the need to operate RL not only over multiple state spaces but also over
an abstract action space, where the action is the decision of which lower-level state space
to use. More generally, other complex learning behavior can be obtained by this com-
bination of two characteristics: (1) RL at multiple hierarchical levels simultaneously
and (2) RL over abstract higher-level action spaces that control lower-level decisions.
In that sense, the higher-level actions are themselves policies mapping lower-level stimuli
to lower-level actions. A body of work extended the previous notion of HRL by
showing that such abstract actions could be more than just attentional filters (i.e., the
dimension of the input to which I should focus my attention for making my decision),
and could instead be abstract policies, also called “rules” or task sets (Collins & Frank,
2016a,b, 2013; Collins & Koechlin, 2012). Specifically, similarly to the studies of Badre
and colleagues, these studies showed that participants learned to make a choice at a higher
level in response to a feature of the environment (e.g., a color) and that the higher-level
choice constrained answers to other features of the environment. However, in this case,
the higher-level choice was not that one should focus on one dimension and neglect
another dimensiondindeed stimuli were only two-dimensional. Rather, the higher-
level choice constrained the correct set of choices for the features of the second dimen-
sion (Fig. 5.2G).
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Going back to the driving example, whether you are in France or in the United
Kingdom, you need to pay attention to all the same visual signals to drive correctly.
However, the actions you take in answer to these signals depend on the context:
arriving at a circle in France requires you to turn right, but the same in the United
Kingdom requires you to turn left. Thus, more complex behavior sometimes requires
us not only to use context to determine where to focus our attention but also to deter-
mine how to respond to the focus of our attention. We showed that participants create
such high-level abstract choice spaces, where choices correspond to this high-level pol-
icy choice; we call them rules or task sets (Collins & Frank, 2016a,b, 2013; Collins &
Koechlin, 2012, Table 5.1G). Creating rules that one selects in response to a context,
but that are not bound or equated to that context, is a critical factor in flexible, efficient
learning. Indeed, because participants created these choice spaces, they were also able to
try these choices in new contexts; this means that they were able to generalize a
high-level policy to a new context (for example, the rules of driving in France apply
mostly as a whole to driving in Germany). Furthermore, the new associations were
stored by the policy learned at the lower level, constrained by the higher-level choice,
without being tied to the context in which it was learned. Thus, participants were able
to transfer knowledge learned in one context to other contexts that required selecting
the same rule (for example, after having observed that driving is similar in Boston and
Berkeley, learning how to handle a four-way stop in one location would immediately
transfer to the other).

Creating an abstract action space (where actions are rules or task sets and can be
viewed as a policy over another state action space) greatly increases the flexibility and
efficiency of learning because it allows generalization and transfer. It also provides
some form of divide and conquer, whereby a complicated decision over a large state space
(all possible input features) is transformed into a series of simpler, hierarchical decisions:
first selecting a rule in response to a context; then, given that rule, selecting an action in
response to a stimulus. We showed with computational modeling and electroencepha-
lography (Collins, Cavanagh, & Frank, 2014; Collins & Frank, 2016a,b, 2013) that this
process can be performed in a model that applies RL computations in hierarchical
corticoebasal ganglia loops (Fig. 5.1C). Thus, such hierarchical structure learning can
also be understood as RL over appropriate state (at multiple hierarchical levels) and action
(at multiple abstraction levels) spaces.

Temporally abstract actions
The previously described form of RL is clearly hierarchical: It consists of selecting a
higher-level rule, which is really a policy in that it constrains selection of actions at the
lower level. This feature allows us to draw a parallel to a specific class of algorithms
that are known in the literature as “HRL,” also called the “options framework.” The
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options framework also seeks to improve on simple RL mechanisms by building a more
complex action space and, specifically, by introducing options. Options can be seen as
local policies or hierarchical actions (Table 5.1F). In the simplest case, options correspond
to a class of sequences of simple actions that lead to a subgoal. For example, reaching the
door of a room in a grid world is a high-level option and may define a local policy (how
to reach a door from any point in the room or the star in the example of Fig. 5.2F). In the
driving example, an example of a high-level option is shifting gears. You may learn at the
high level when to shift or not to shift gears, but then once you select that option, it
requires a series of lower-level actions (engage the clutch, shift the gear, then release
the clutch) over which you can also learn.

Using options can partially solve the curse of dimensionality by facilitating explora-
tion (Botvinick et al., 2009). Indeed, a single higher-level choice may lead an agent to
explore further and more efficiently. Options also capture an important feature of human
sequential behavior, which often includes hierarchical sequences of actions. A few studies
have shown evidence of human learning and neural computations being well explained
by the options framework, whereby learning happens hierarchically, both for the option
itself and for the actions within the option (Diuk, Tsai, Wallis, Botvinick, & Niv, 2013;
Ribas-Fernandes et al., 2011; Solway et al., 2014). In these studies, participants made
choices in sequential environments that provided a possibility for HRL. Further, these
studies showed evidence in the brain for reward prediction errors corresponding to
learning over both action spaces (within the option policy and at the higher hierarchical
level).

LATENT STATE AND ACTION SPACES

We have shown that many complex learning behaviors can be explained as applying a
simple model-free RL algorithm to the correct state and action space, or sometimes as
applying more than one RL computation to multiple appropriate state and action spaces
in parallel. An interesting feature is that in hierarchical forms of RL (structure learning,
options framework, and hierarchical rule learning), the higher-level action space is
abstract in the form of a policy. In particular, it cannot be described as a concrete motor
action. Here, we show that abstraction in the state space can also help understand more
complex learning behaviors. In particular, assuming unobservable, or latent, states can
greatly enhance the flexibility of the learning agent (Gershman, Norman, & Niv,
2015). For example, if you are driving in winter, you might not be able to see that
the road is icy, but if you observe that your usual actions lead to undesirable consequences
(slipping), you might deduce that the latent cause in the environment is the weather and
adapt your behavior based on this latent cause. This example captures some of the impor-
tant features for which RL over latent states or causes can better explain human learning:
when the contingencies of the environment change suddenly but not in an observable
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way (e.g., in reversal learning experiments (Hampton, Bossaerts, & O’Doherty, 2006)),
an RL agent operating over the observable state space needs to unlearn previous associ-
ations before being able to learn new associations. By contrast, humans may identify a
change point, infer a new unobservable context or latent cause, and learn over this state.
Several studies (Gershman, Blei, & Niv, 2010; Gershman et al., 2015; Soto, Gershman, &
Niv, 2014) have shown how this assumption can explain a number of learning phenom-
ena, such as extinction and compound generalization.

Latent spaces enrich the state representations over which RL operates. In combina-
tion with other previously described mechanisms, such as abstract action spaces (rules)
that hierarchically constrain simultaneous learning over other state and action spaces,
the mechanism of creating latent spaces provides an explanation for additional aspects
of human fast and flexible learning. One behavioral study (Collins & Koechlin, 2012)
had participants learn associations between one-dimensional stimuli and actions (task
sets) using probabilistic reward feedback (Fig. 5.2H). The task sets changed periodically
without warning and, unbeknownst to participants, could be reused as a whole later in
the experiment.

Results showed that participants were able to create both an abstract action space of
task sets and an abstract state space of latent temporal contexts (Table 5.1H); they iden-
tified the current temporal context as a state in which a given task set was to be selected,
constraining RL over association between an observable state space (stimuli) and actions
(key presses). Furthermore, when they identified a new temporal context (after an
inferred switch in the environmental contingencies), they explored in the abstract action
space of task sets, reselecting previously learned strategies as a whole, rather than
exploring only in the low-level state space (Collins & Koechlin, 2012; Donoso, Collins,
& Koechlin, 2014). This strategy allowed participants to transfer task sets to new contexts
and thus to adapt more quickly than they would have otherwise.

The examples given above show that much of complex human learning does not
require any learning algorithm more complex than model-free RL, provided that the
latter algorithm is applied to the right inputs and outputs (state and action spaces).
This process may require (1) running this algorithm over more than one set of spaces
in parallel, a task for which the corticoebasal ganglia loops are well configured
(Alexander & DeLong, 1986), and (2) using hierarchical influence of one output over
another input, for which the prefrontal cortex is well organized (Badre, 2008; Koechlin,
Ody, & Kouneiher, 2003; Koechlin & Summerfield, 2007; Nee & D’Esposito, 2016).
These features enable much more efficient and flexible learning than was originally
thought possible with a simple model-free algorithm for RL value estimation. Specif-
ically, they allow for fast and efficient exploration, improvement of performance by
massive simplification of problems, and fast learning in new environments by generaliza-
tion and transfer of information.
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HOW DO WE CREATE THE STATE/ACTION SPACES?

Efficiently modeling complex human learning with model-free RL crucially relies on
operating over the right state and action spaces. Using inappropriate spaces instead
strongly impairs learning, as shown, for example, by Botvinick et al. (2009) in simulations
where using incorrect options lead to slowed exploration. The question of how we
acquire the appropriate state and action spaces for our current environments remains
largely open, although the previous examples do suggest some potential mechanisms.

For learning state spaces when the optimal state space is a subspace of the full sensory
space, some studies (Leong et al., 2017; Niv et al., 2015) suggest that we use a frontopar-
ietal mechanism to focus attention specifically on that subspace and that we learn to do so
using reinforcement. Frank and Badre (2011) suggest that the gating mechanisms of the
prefrontal cortexebasal ganglia loops may learn which aspects of the environment to
keep in working memory, as well as which items should be allowed to influence other
loops, thus also using the simple RL mechanism to create the ad hoc state spaces required
for HRL. Collins and Frank (2013) also showed that such mechanisms enabled the
creation of abstract action spaces. Furthermore, there seems to be a strong bias toward
learning occurring hierarchically. Specifically, some studies (Badre & Frank, 2011; Badre
et al., 2010) have shown that participants engaged anterior portions of the prefrontal
cortex a priori initially, even in problems that could not be simplified. Further, other
studies (Collins & Frank, 2013; Collins et al., 2014) have shown that participants built
a hierarchical abstract rule structure even in environments that did not immediately
benefit from it, highlighting a more general drive toward this kind of organization.
This bias toward hierarchical learning could be due to a prior belief that hierarchical
structures are useful (Collins & Frank, 2016a,b) or to constraints that result from the
way our hierarchical corticoebasal ganglia loops evolved from motor cortexeoriginating
loops (Collins & Frank, 2016a,b), or, more likely, it could be due to both.

A series of models from Alexander, Brown, and colleagues (Alexander & Brown,
2011, 2014, 2015) also point out the potential importance of medial prefrontal cortex
in learning rules for cognitive control. Their models assume that the medial prefrontal
cortex learns to represent errors of prediction at various hierarchical levels, thus teaching
the lateral prefrontal cortex to represent useful state and action spaces to minimize such
errors of prediction. These models also resonate with work by Holroyd and colleagues
(Holroyd &McClure, 2015; Holroyd & Yeung, 2012), which points out the importance
of the anterior cingulate cortex (ACC) in extended motivated behavior. Specifically, they
argue that the ACC enables HRL (in the sense of the options framework), whereby the
hierarchy is in the choice of higher-level actions that constrain sequences of lower-level
actions.

This HRL/options framework also raises the question of how the action space is
created, or the “options discovery” problem: How do we create options that take us

Learning Structures Through Reinforcement 117



to the doors of the room rather than to the windows? Theoretical work suggests that us-
ing pseudoreward when reaching a subgoal and using RL with this pseudoreward to learn
the option may help option creation (Botvinick et al., 2009), and there is some evidence
that such a mechanism may occur in the brain (Diuk et al., 2013; Ribas-Fernandes et al.,
2011; Solway et al., 2014). However, how do we determine useful subgoals? Work by
Schapiro and colleagues (Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013;
Schapiro, Turk-Browne, Botvinick, & Norman, 2016) has shown that humans are able
to identify bottlenecks in the environments we navigate and, if given a chance, create
options with these bottlenecks as subgoals, which might be one mechanism for creating
a useful action space in the framework of options.

Interestingly, some methods for learning useful state and action spaces require a model
of the environment. For example, creating useful options may require identifying bottle-
necks in a mental map of the environment. In the case of latent state spaces, in particular,
a model of the environment consists of a likelihood function, defining expected out-
comes (for example rewards) in response to interactions with the environment under a
given latent space (Collins & Koechlin, 2012; Gershman et al., 2015). Using this likeli-
hood function allows both an inference about the current hidden state and the online
creation of what the latent state space is (Collins & Frank, 2013; Gershman et al.,
2010). It is important to note that these models are used to create a state space and to infer
a state but that, despite this use of a model, the learning algorithm in operation may still
be a model-free RL algorithm. This highlights the blurry line between what we should
label as model-free and model-based learning (see also Chapter 18 by Miller, Ludvig,
Pezzulo, and Shenhav); most learning may use a model of the environment, even in
the absence of a mechanism of forward planning, as is usually defined in formal
model-based RL algorithms (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). RL
with a model can reach many more types of behaviors than those usually understood
by model-based RL.

OPEN QUESTIONS

We have shown that thinking of human learning as a simple computation occurring
over well-tailored state and action spaces can explain many feats of flexible and efficient
decision-making. However, many open questions remain, one of which we have
already discussed: how these state and action spaces are built. Two other classes of ques-
tions also merit further research to better understand human learning. Learning from
reinforcement requires four elements: a state and action space, a reward function,
and an algorithm to learn a policy. We have focused here on the role of the state
and action spaces and have just assumed a simple model-free RL algorithm and reward
function. However, both learning algorithms and reward functions should be further
investigated.
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Reward function
Most RL experiments use primary or secondary rewards or punishments, such as food,
pain, points, and money (gains or losses), as reinforcers. However, other features might
also contribute to the reward function. For instance, theoretical and experimental results
have suggested various “bonuses” to the reward function, related for example to novelty
(Kakade & Dayan, 2002) and information (Bromberg-Martin & Hikosaka, 2009); these
and other influences may be reflected in the dopamine reward prediction error signal (see
also , Chapter 11 by Sharpe and Schoenbaum). Other results have shown costs in the
form of mental effort and conflict (Cavanagh, Masters, Bath, & Frank, 2014; Kool &
Botvinick, 2014; Westbrook & Braver, 2015; see also Chapter 7 by Kool, Cushman,
and Gershman). Furthermore, the movement of gamification relies on the notion that
learners are motivated by nonrewarding outcomes (e.g., stars) that mark the attainment
of subgoals (Deterding, Dixon, Khaled, & Nacke, 2011; Hamari, Koivisto, & Sarsa,
2014). This notion relates to pseudoreward, which may be useful for learning options
in the HRL framework: Maintaining motivation over extended behaviors when real
reward is infrequent might require us to consider intermediary, symbolic subgoals as
rewarding (Diuk et al., 2013; Ribas-Fernandes et al., 2011; Lieder & Griffiths, n.d.).
Theoretical work has shown that this notion could tremendously improve learning in
complex situations (Lieder & Griffiths, n.d.). Thus, future research in human learning
should aim to better understand what outcomes contribute to the reward function
used by the RL algorithm for learning and to determine whether humans manipulate
this reward function beyond normal reward to create better representations of the
learning problem.

Algorithms
Separating the algorithm of learning from its inputs and outputsdthe state and action
spacesdenables us to better understand how a rich collection of human learning behav-
iors can be explained with this framework. However, this argument should not be taken
to mean that we propose the brain uses only the learning algorithm presented and exactly
this algorithm to learn to make decisions from reward information. In fact, much remains
poorly understood about the computations performed by the brain to learn policies. For
the model-free RL algorithm, we understand that the corticoebasal ganglia loops with
dopamine reward prediction errors approximate it, but many precise aspects of this
computation remain under debate. For example, the direct and indirect pathways appar-
ently have redundant roles in learning (Collins & Frank, 2014; Dunovan & Verstynen,
2016); more research is needed to better understand their distinct contributions to
model-free RL.

Furthermore, it is very likely that the brain also uses, in parallel, other algorithms to
learn policies from reward. One method is simple memorization of associations in
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working memory, which accounts for part of learning from rewards in simple associative
learning tasks (Collins & Frank, 2012; Collins, Ciullo, Frank, & Badre, 2017). Similarly,
by allowing us to sample from past events, episodic memory may play an important role
in policies learned from reward (Bornstein & Norman, 2017; Bornstein, Khaw,
Shohamy, & Daw, 2017). Furthermore, there is also ample evidence that humans also
perform model-based planning RL in parallel to model-free RL (Daw et al., 2011;
Doll, Duncan, Simon, Shohamy, & Daw, 2015). Exactly how this prospective planning
occurs, especially many steps ahead, is not well understooddit may depend on the use of
heuristics to simplify the forward search (Huys et al., 2015) or inferential processes
(Chapter 3 by Solway and Botvinick). Thus, much remains unknown about the
algorithms themselves.

CONCLUSION

Human learning is incredibly efficient and flexible and does much to promote human
intelligence and goal-directed behavior. In this chapter, we explored how a very simple
family of algorithmsdthat we know are approximately implemented by a precise neural
circuitry in the braindcan explain a surprisingly wide array of complex learning, unifying
literature on HRL, the options framework, structure learning, and representation
learning. Specifically, we show that this simple computation of expected value (or policy
weight), obtained by incremental updates with reward prediction errors, can lead to very
efficient learning, exploring, transfer, and generalization when applied to useful state and
action spaces. Understanding how we construct these useful spaces and how we interlock
multiple computational loops in parallel to learn at multiple levels simultaneously is a
future challenge. One important point is that finding useful spaces is not simply a matter
of simplifying the sensory and motor space by factoring it into lower-dimensional or
discrete subspaces but can rather also involve making the spaces more complexdcreating
new states that are not a subspace of sensory and motor space but are abstract states and
actions carrying more information about the structure of the problem. These state and
action spaces of higher complexity can counter-intuitively lead to an eventual improve-
ment in behavior by rendering decision-making more flexible and by providing useful
subpolicies that achieve subgoals or other generalizable chunks of behavior.

REFERENCES
Adamantidis, A. R., Tsai, H.-C., Boutrel, B., Zhang, F., Stuber, G. D., Budygin, E. A.,… de Lecea, L.

(2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-
seeking behavior. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 31(30),
10829e10835. http://doi.org/10.1523/JNEUROSCI.2246-11.2011.

Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature
Neuroscience, 14(10), 1338e1344. http://doi.org/10.1038/nn.2921.

Alexander, W. H., & Brown, J. W. (2014). A general role for medial prefrontal cortex in event prediction.
Frontiers in Computational Neuroscience, 8(69). http://doi.org/10.3389/fncom.2014.00069.

120 Goal-Directed Decision Making

http://doi.org/10.1523/JNEUROSCI.2246-11.2011
http://doi.org/10.1038/nn.2921
http://doi.org/10.3389/fncom.2014.00069


Alexander, W. H., & Brown, J. W. (2015). Hierarchical error representation: A computational model of
anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27(11), 2354e2410. http://
doi.org/10.1162/NECO_a_00779.

Alexander, G., & DeLong, M. (1986). Parallel organization of functionally segregated circuits linking basal
ganglia and cortex. Annual Review of Neuroscience.

Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends
in Cognitive Sciences, 12(5), 193e200. http://doi.org/10.1016/j.tics.2008.02.004.

Badre, D., & Frank, M. J. (2011). Mechanisms of hierarchical reinforcement learning in cortico-striatal
circuits 2: Evidence from fMRI. Cerebral Cortex (New York, N.Y.: 1991), 1e10. http://doi.org/10.
1093/cercor/bhr117.

Badre, D., Kayser, A. S., & Esposito, M. D. (2010). Article frontal Cortex and the Discovery of abstract action
rules. Neuron, 66(2), 315e326. http://doi.org/10.1016/j.neuron.2010.03.025.

Bornstein, A. M., Khaw, M. W., Shohamy, D., & Daw, N. D. (2017). What’s past is present: Reminders of
past choices bias decisions for reward in humans. bioRxiv.

Bornstein, A. M., & Norman, K. A. (2017). Putting value in context: A role for context memory in decisions
for reward. bioRxiv.

Botvinick, M. M., Niv, Y., & Barto, A. C. (2009). Hierarchically organized behavior and its neural founda-
tions: A reinforcement-learning perspective. Cognition, 113(3), 262e280.

Bromberg-Martin, E. S., & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance
information about upcoming rewards.Neuron, 63(1), 119e126. http://doi.org/10.1016/j.neuron.2009.
06.009.

Cavanagh, J. F., Masters, S. E., Bath, K., & Frank, M. J. (2014). Conflict acts as an implicit cost in reinforce-
ment learning. Nature Communications, 5(5394). http://doi.org/10.1038/ncomms6394.

Collins, A. G. E., Cavanagh, J. F., & Frank, M. J. (2014). Human EEG uncovers latent generalizable rule
structure during learning. The Journal of Neuroscience, 34(13), 4677e4685. http://doi.org/10.1523/
JNEUROSCI.3900-13.2014.

Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load strengthens reward
prediction errors. The Journal of Neuroscience, 37(16), 2700e2716. http://doi.org/10.1523/
JNEUROSCI.2700-16.2017.

Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not
reinforcement learning? A behavioral, computational, and neurogenetic analysis. The European Journal
of Neuroscience, 35(7), 1024e1035. http://doi.org/10.1111/j.1460-9568.2011.07980.x.

Collins, A. G. E., & Frank, M. J. M. J. (2013). Cognitive control over learning: Creating, clustering, and
generalizing task-set structure. Psychological Review, 120(1), 190e229. http://doi.org/10.1037/a0030852.

Collins, A. G. E., & Frank, M. J. (2014). Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Psychological Review, 121(3),
337e366. http://doi.org/10.1037/a0037015.

Collins, A. G. E., & Frank, M. J. (2016a). Neural signature of hierarchically structured expectations predicts
clustering and transfer of rule sets in reinforcement learning. Cognition, 152, 160e169. http://doi.org/
10.1016/j.cognition.2016.04.002.

Collins, A. G. E., & Frank, M. J. (2016b). Motor demands constrain cognitive rule structures. PLoS
Computational Biology, 12(3), e1004785. http://doi.org/10.1371/journal.pcbi.1004785.

Collins, A. G. E., & Koechlin, E. (2012). Reasoning, learning, and creativity: Frontal lobe function and
human decision-making. Plos Biology, 10(3), e1001293. http://doi.org/10.1371/journal.pbio.1001293.

Davidow, J. Y., Foerde, K., Galvan, A., & Shohamy, D. (2016). An upside to reward Sensitivity: The
Hippocampus supports enhanced reinforcement learning in adolescence. Neuron, 92(1), 93e99.
http://doi.org/10.1016/j.neuron.2016.08.031.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on
humans’ choices and striatal prediction errors. Neuron, 69(6), 1204e1215. http://doi.org/10.1016/j.
neuron.2011.02.027.

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness. In
Proceedings of the 15th International Academic MindTrek Conference on Envisioning future Media environments -
MindTrek ’11 (p. 9). New York, New York, USA: ACM Press. http://doi.org/10.1145/2181037.
2181040.

Learning Structures Through Reinforcement 121

http://doi.org/10.1162/NECO_a_00779
http://doi.org/10.1162/NECO_a_00779
http://doi.org/10.1016/j.tics.2008.02.004
http://doi.org/10.1093/cercor/bhr117
http://doi.org/10.1093/cercor/bhr117
http://doi.org/10.1016/j.neuron.2010.03.025
http://doi.org/10.1016/j.neuron.2009.06.009
http://doi.org/10.1016/j.neuron.2009.06.009
http://doi.org/10.1038/ncomms6394
http://doi.org/10.1523/JNEUROSCI.3900-13.2014
http://doi.org/10.1523/JNEUROSCI.3900-13.2014
http://doi.org/10.1523/JNEUROSCI.2700-16.2017
http://doi.org/10.1523/JNEUROSCI.2700-16.2017
http://doi.org/10.1111/j.1460-9568.2011.07980.x
http://doi.org/10.1037/a0030852
http://doi.org/10.1037/a0037015
http://doi.org/10.1016/j.cognition.2016.04.002
http://doi.org/10.1016/j.cognition.2016.04.002
http://doi.org/10.1371/journal.pcbi.1004785
http://doi.org/10.1371/journal.pbio.1001293
http://doi.org/10.1016/j.neuron.2016.08.031
http://doi.org/10.1016/j.neuron.2011.02.027
http://doi.org/10.1016/j.neuron.2011.02.027
http://doi.org/10.1145/2181037.2181040
http://doi.org/10.1145/2181037.2181040


Diuk, C., Tsai, K., Wallis, J., Botvinick, M., & Niv, Y. (2013). Hierarchical learning induces two simulta-
neous, but separable, prediction errors in human basal ganglia. The Journal of Neuroscience : The Official
Journal of the Society for Neuroscience, 33(13), 5797e5805. http://doi.org/10.1523/JNEUROSCI.5445-
12.2013.

Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw, N. D. (2015). Model-based choices involve
prospective neural activity. Nature Neuroscience, (February), 1e9. http://doi.org/10.1038/nn.3981.

Donoso, M., Collins, A. G. E., & Koechlin, E. (2014). Foundations of human reasoning in the prefrontal
cortex. Science, 344(6191), 1481e1486. http://doi.org/10.1126/science.1252254.

Dunovan, K., & Verstynen, T. (2016). Believer-skeptic meets actor-critic: Rethinking the role of basal
ganglia pathways during decision-making and reinforcement learning. Frontiers in Neuroscience,
10(106). http://doi.org/10.3389/fnins.2016.00106.

Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of
cognitive deficits in medicated and nonmedicated parkinsonism. Journal of Cognitive Neuroscience, 17(1),
51e72. http://doi.org/10.1162/0898929052880093.

Frank, M. J., & Badre, D. (2011). Mechanisms of hierarchical reinforcement learning in corticostriatal circuits
1: Computational analysis. Cerebral Cortex (New York, N.Y.: 1991), 2010, 1e18. http://doi.org/10.
1093/cercor/bhr114.

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple disso-
ciation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy
of Sciences of the United States of America, 104(41), 16311e16316. http://doi.org/10.1073/pnas.
0706111104.

Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement
learning in parkinsonism. Science (New York, N.Y.), 306(5703), 1940e1943. http://doi.org/10.1126/
science.1102941.

Gershman, S. J., Blei, D. M., & Niv, Y. (2010). Context, learning, and extinction. Psychological Review,
117(1), 197e209. http://doi.org/10.1037/a0017808.

Gershman, S. J., Norman, K. A., & Niv, Y. (2015). Discovering latent causes in reinforcement learning.
Current Opinion in Behavioral Sciences, 5, 43e50. http://doi.org/10.1016/j.cobeha.2015.07.007.

Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification Work? e a literature review of empirical
studies on gamification. In 2014 47th Hawaii International Conference on system Sciences (pp.
3025e3034). IEEE. http://doi.org/10.1109/HICSS.2014.377.

Hamid, A. A., Pettibone, J. R., Mabrouk, O. S., Hetrick, V. L., Schmidt, R., Vander
Weele, C. M.,…Berke, J. D. (2015). Mesolimbic dopamine signals the value of work. Nature
Neuroscience, 19(1), 117e126. http://doi.org/10.1038/nn.4173.

Hampton, A. N., Bossaerts, P., & O’Doherty, J. P. (2006). The role of the ventromedial prefrontal cortex in
abstract state-based inference during decision making in humans. The Journal of Neuroscience: the Official
Journal of the Society for Neuroscience, 26(32), 8360e8367. http://doi.org/10.1523/JNEUROSCI.1010-
06.2006.

Hart, A. S., Rutledge, R. B., Glimcher, P. W., & Phillips, P. E. M. (2014). Phasic dopamine release in the rat
nucleus accumbens symmetrically encodes a reward prediction error term. Journal of Neuroscience, 34(3),
698e704. http://doi.org/10.1523/JNEUROSCI.2489-13.2014.

Holroyd, C. B., & McClure, S. S. M. (2015). Hierarchical control over effortful behavior by rodent medial
frontal cortex: A computational model. Psychological Review, 122(1), 54e83. http://doi.org/10.1037/
a0038339.

Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends
in Cognitive Sciences, 16(2), 122e128. http://doi.org/10.1016/j.tics.2011.12.008.

Huys, Q. J. M., Lally, N., Faulkner, P., Eshel, N., Seifritz, E., Gershman, S. J.,…Roiser, J. P. (2015). Inter-
play of approximate planning strategies. Proceedings of the National Academy of Sciences of the United States of
America, 112(10), 3098e3103. http://doi.org/10.1073/pnas.1414219112.

Kakade, S., & Dayan, P. (2002). Dopamine: Generalization and bonuses. Neural Networks, 15(4), 549e559.
http://doi.org/10.1016/S0893-6080(02)00048-5.

Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefron-
tal cortex. Science (New York, N.Y.),, 302(5648), 1181e1185. http://doi.org/10.1126/science.1088545.

122 Goal-Directed Decision Making

http://doi.org/10.1523/JNEUROSCI.5445-12.2013
http://doi.org/10.1523/JNEUROSCI.5445-12.2013
http://doi.org/10.1038/nn.3981
http://doi.org/10.1126/science.1252254
http://doi.org/10.3389/fnins.2016.00106
http://doi.org/10.1162/0898929052880093
http://doi.org/10.1093/cercor/bhr114
http://doi.org/10.1093/cercor/bhr114
http://doi.org/10.1073/pnas.0706111104
http://doi.org/10.1073/pnas.0706111104
http://doi.org/10.1126/science.1102941
http://doi.org/10.1126/science.1102941
http://doi.org/10.1037/a0017808
http://doi.org/10.1016/j.cobeha.2015.07.007
http://doi.org/10.1109/HICSS.2014.377
http://doi.org/10.1038/nn.4173
http://doi.org/10.1523/JNEUROSCI.1010-06.2006
http://doi.org/10.1523/JNEUROSCI.1010-06.2006
http://doi.org/10.1523/JNEUROSCI.2489-13.2014
http://doi.org/10.1037/a0038339
http://doi.org/10.1037/a0038339
http://doi.org/10.1016/j.tics.2011.12.008
http://doi.org/10.1073/pnas.1414219112
http://doi.org/10.1016/S0893-6080(02)00048-5
http://doi.org/10.1126/science.1088545


Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive
function. Trends in Cognitive Sciences, 11(6), 229e235. http://doi.org/10.1016/j.tics.2007.04.005.

Kool, W., & Botvinick, M. (2014). A labor/leisure tradeoff in cognitive control. Journal of Experimental
Psychology: General, 143(1), 131e141. http://doi.org/10.1037/a0031048.

Kravitz, A. V., Tye, L. D., & Kreitzer, A. C. (2012). Distinct roles for direct and indirect pathway striatal
neurons in reinforcement. Nature Neuroscience, 15(6), 816e818. http://doi.org/10.1038/nn.3100.

Leong, Y. C., Radulescu, A., Daniel, R., Dewoskin, V., Niv, Y., & Partners, T. (2017). Dynamic interaction
between reinforcement learning and attention in multidimensional environments. Neuron, 93(2),
451e463. http://doi.org/10.1016/j.neuron.2016.12.040.

Lieder, F., Griffiths, T.L. (n.d.). Helping people make better decisions using optimal gamification.
Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems

based on predictive Hebbian learning. The Journal of Neuroscience: the Official Journal of the Society for
Neuroscience, 16(5), 1936e1947.

Nee, D. E., & D’Esposito, M. (2016). The hierarchical organization of the lateral prefrontal cortex. eLife,
5(March 2016), 1e26. http://doi.org/10.7554/eLife.12112.

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C., Radulescu, A., & Wilson, R. C. (2015).
Reinforcement learning in multidimensional environments relies on attention mechanisms. The Journal
of Neuroscience : The Official Journal of the Society for Neuroscience, 35(21), 8145e8157. http://doi.org/10.
1523/JNEUROSCI.2978-14.2015.

Ribas-Fernandes, J. J. F., Solway, A., Diuk, C., McGuire, J. T., Barto, A. G., Niv, Y., & Botvinick, M. M.
(2011). A neural signature of hierarchical reinforcement learning. Neuron, 71(2), 370e379. http://doi.
org/10.1016/j.neuron.2011.05.042.

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M. (2013). Neural
representations of events arise from temporal community structure.Nature Neuroscience, 16(4), 486e492.
http://doi.org/10.1038/nn.3331.

Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2016). Complementary
learning systems within the hippocampus: A neural network modeling approach to reconciling episodic
memory with statistical learning. bioRxiv, 51870. http://doi.org/10.1101/051870.

Solway, A., Diuk, C., C�ordova, N., Yee, D., Barto, A. G., Niv, Y., & Botvinick, M. M. (2014). Optimal
behavioral hierarchy. PLoS Computational Biology, 10(8). http://doi.org/10.1371/journal.pcbi.1003779.

Soto, F. A., Gershman, S. J., & Niv, Y. (2014). Explaining compound generalization in associative and causal
learning through rational principles of dimensional generalization. Psychological Review, 121(3),
526e558. http://doi.org/10.1037/a0037018.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning (Vol. 9). MIT Press.
Tai, L.-H., Lee, A. M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient stimulation of distinct

subpopulations of striatal neurons mimics changes in action value. Nature Neuroscience, 15(9),
1281e1289. http://doi.org/10.1038/nn.3188.

Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective, &
Behavioral Neuroscience, 15(2), 395e415. http://doi.org/10.3758/s13415-015-0334-y.

Wilson, R. C., & Niv, Y. (2012). Inferring relevance in a changing world. Frontiers in Human Neuroscience,
5( January), 1e14. http://doi.org/10.3389/fnhum.2011.00189.

Learning Structures Through Reinforcement 123

http://doi.org/10.1016/j.tics.2007.04.005
http://doi.org/10.1037/a0031048
http://doi.org/10.1038/nn.3100
http://doi.org/10.1016/j.neuron.2016.12.040
http://doi.org/10.7554/eLife.12112
http://doi.org/10.1523/JNEUROSCI.2978-14.2015
http://doi.org/10.1523/JNEUROSCI.2978-14.2015
http://doi.org/10.1016/j.neuron.2011.05.042
http://doi.org/10.1016/j.neuron.2011.05.042
http://doi.org/10.1038/nn.3331
http://doi.org/10.1101/051870
http://doi.org/10.1371/journal.pcbi.1003779
http://doi.org/10.1037/a0037018
http://doi.org/10.1038/nn.3188
http://doi.org/10.3758/s13415-015-0334-y
http://doi.org/10.3389/fnhum.2011.00189


This page intentionally left blank



CHAPTER 6

Goal-Directed Sequences in the
Hippocampus
Brandy Schmidt1, Andrew M. Wikenheiser2, A. David Redish1
1Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States; 2National Institute on Drug Abuse
Intramural Research Program, Baltimore, MD, United States

Humans make goal-directed decisions every day. New data suggest that other mammals
also make goal-directed decisions. Current theories hypothesize that goal-directed
decisions arise from search processes through imagined forward models by which we
work out the consequences of specific actions then choose from among those actions
based on the utility of the outcomes (Niv, Joel, & Dayan, 2006). In this chapter, we
will review the processes that underlie goal-directed decision-making in mammalian
brains and make the case that the hippocampus is a key component of the imagination
process. First, however, we will need to address the question of imagination because if
you need imagination for goal-directed decision-making and nonhuman animals make
goal-directed decisions, then we need to determine what imagination is, neurally, so
that we can measure it in nonhuman animals.

In humans, the term episodic future thinking refers to the capacity to imagine an auto-
biographical experience that happens in the future (Buckner & Carroll, 2007). Episodic
future thinking engages the same neural mechanisms as remembering past experiences
(Addis, Wong, & Schacter, 2007; Hassabis, Kumaran, Vann, & Maguire, 2007; Schacter
et al., 2012). The fact that recall of past events is fragile (Talarico & Rubin, 2003) and
varies depending on the presently available cues (Loftus & Palmer, 1974) suggests that
remembering past experiences, like imagining future outcomes, entails flexibly retrieving
previously stored information and recombining that information into an imagined situ-
ation. Studies involving aging populations (Schacter, Gaesser, & Addis, 2013), amnesiacs
(Cole, Morrison, Barak, Pauly-Takacs, & Conway, 2016; Hassabis, Kumaran, &
Maguire, 2007; Kurzcek et al., 2015; Race, Keane, & Verfaellie, 2011; Tulving, 1985;
Zeman, Butler, Muhlert, & Milton, 2013), patients with Alzheimer’s disease (Haj,
Antoine, & Kapogiannis, 2015; Irish & Piolino, 2016) and prefrontal lesions (Ramussen
& Bersten, 2016) all show a reduction in both remembering the past and imagining the
future. Imaging studies have shown that a similar neural network is activated during
episodic future thinking and remembering past experiences, including the medial tempo-
ral lobe, retrosplenial cortex, medial prefrontal cortex (mPFC), and lateral temporal
and parietal regions (Addis et al., 2007; Hassabis, Kumaran, Vann, et al., 2007;
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Schacter, Addis, & Buckner, 2007). Additionally, the ventromedial prefrontal cortex may
facilitate access to the conceptual knowledge of a scenario necessary to simulate an
episodic event, as well as the valuation of these events (Bonnici et al., 2012; Kumaran,
Summerfield, Hassabis, & Maguire, 2009; Lin, Horner, Bisby, & Burgess, 2015;
Peters & Buchel, 2010).

Theoretically, planning requires the ability to predict consequences of actions and
outcomes, and thus requires a model of the world, including both a categorization of
the states of the world and the transitions between those states. In reinforcement learning
models, determining action policies through planning is termed “model-based decision-
making” because of its dependence on a model of the world (Niv et al., 2006; Sutton &
Barto, 1998).

Although they cannot demonstrate it linguistically, behavioral observations and neu-
ral recordings suggest that rodents are capable of developing these models of the world.
Tolman (1948) termed this a “cognitive map.” Tolman was led to this conclusion
through the observation of latent learning: In an early study by Tolman and Honzik
(1930), rats were trained in a complex maze full of turns and dead ends. The end of
the maze contained food reward that one group of rats received after reaching the end
of the maze; the second group of rats had a barrier between them and the reward and
were taken out of the maze once they reached the end. The rats that had access to the
food reward learned the maze quickly; however, the rats that did not have access to
the food reward failed to run the maze reliably. Interestingly, after 10 trials, these rats
then had access to the food reward and their performance on the maze immediately
improved, even outperforming the original group of rats. The data show that the rats
had learned the maze, even if they lacked the motivation to run it.

Tolman’s “cognitive map” concept was that the rat had an internal representation of
the structure of the environment. From this internal representation of the structure of the
environment, it is theoretically possible to simulate the possible actions and to imagine
the consequences of your actions. Computationally, this allows the discovery of shortcuts
(O’Keefe &Nadel, 1978; Redish, 1999; Samsonovich & Ascoli, 2005) and the evaluation
of the consequences of one’s actions in the light of one’s current needs (Niv et al., 2006).
Importantly, planning using the cognitive map could be contrasted with situationeaction
decisions, in which one learns to take an action in response to the current situation, with
no explicit representation of the consequences of the action (Daw, Niv, & Dayan, 2005;
Hull, 1943; Niv et al., 2006; van der Meer, Kurth-Nelson, & Redish, 2012). Tolman
hypothesized that rats (and people) were learning the structure of the world so that
they could later plan action paths through it, while Hull hypothesized that rats (and
presumably people) were learning what actions to take in given situations.

This dichotomy between Tolman’s cognitive map and Hull’s stimulus-response can
be most easily seen in the T-choice plus maze (Barnes, Nadel, & Honig, 1980; Packard &
McGaugh, 1996; Tolman, 1948; Fig. 6.1). In this task, rats are first allowed to explore a
plus-shaped maze, presumably allowing them to derive the structure of that maze. They
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are then trained to turn left from the South arm to the West arm. The rat can learn this
task either through a planning-based (Tolmanian) algorithm, in which it knows where it
is (on the South arm) and knows where it wants to go (to the West arm), or through a
situationeaction association (Hullian) algorithm, in which it knows to turn left when
placed on the maze. Although these two algorithms are not dissociable from the South
arm, when a rat is placed on the North arm, these algorithms produce different behaviors.
A Tolmanian rat will turn right to the West arm, taking a different action to achieve the
same result, while a Hullian rat will turn left to the East arm, taking the same action but
achieving a different result. Of course, it is not that one of these options is correct and the
other wrong, but they are different generalizations of the changed situation. Rats with
limited training show Tolmanian choices, turning right to the West arm, but rats with
extended training show Hullian responses, turning left to the East arm (Packard &
McGaugh, 1996).

This task has been extensively studied. Manipulations that make the cognitive map
easier to learn (more cues, rats with better vision) shift rats toward Tolmanian mapping

(A)

(B)

(C)

(D)

Figure 6.1 The plus maze task can dissociate which navigational strategy the rat is using (Packard &
McGaugh, 1996). (A) In this plus maze task, rats are trained to turn left from the South arm to the West
arm. The rat can either use a planning-based (Tolmanian) algorithm, in which it knows where it is (on
the South arm) and knows where it wants to go (to the West arm), (B) or the rat can use a situatione
action association (Hullian) algorithm (bottom mazes), in which it knows to turn left when placed on
the maze. (C and D) When a rat is placed on the North arm, it is possible to determine which naviga-
tion strategy the rat is using. A Tolmanian rat uses spatial cues to make this decision and goes to the
place (where the food reward is located). In contrast, a Hullian rat will continue to turn left, this time
ending up on the East arm. Rats with limited training show Tolmanian choices, turning left to the West
arm, but rats with extended training show Hullian responses, turning right to the East arm.
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processes (Chang & Gold, 2004), as do manipulations that make learning the situatione
action associations less useful (Gardner et al., 2013; Schmidt, Papale, Redish, & Markus,
2013). Importantly, anterior dorsolateral striatum is a key structure in the development of
the Hullian situationeaction process (Chang & Gold, 2003; Kesner, Bolland, & Dakis,
1993; Packard, 1999; Packard & McGaugh, 1992, 1996; Yin, Knowlton, & Balleine,
2004), while the hippocampus, mPFC, and the posterior dorsomedial striatum are critical
to behavioral flexibility and the use of the cognitive map in Tolmanian decisions
(Bissonette & Roesch, 2017; Chang & Gold, 2003; Packard, 1999; Packard &McGaugh,
1992, 1996; Ragozzino, Detrick, & Kesner, 1999; Rich & Shapiro, 2007, 2009; Yin
et al., 2004). As can be seen in the plus maze example, the cognitive map is easiest to
study in the light of navigation, where the map can be directly observed and map-
based navigation can be contrasted with learning specific routes (i.e., action sequences).
In this navigation framework, a map places external information onto a coordinate
system, allowing one to infer novel relationships between them (Gallistel, 1990; O’Keefe
& Nadel, 1978; Redish, 1999). Importantly, a map is more than a coordinate system.
While a map requires a coordinate system as input, the map is the relationship between
the external information and the coordinate system and is unlikely to include the
coordinate system internally (Redish & Touretzky, 1997). Extensive evidence suggests
that the hippocampus maintains these relationships of objects in the environment in
regard to each other and to the animal by relating them to this extrahippocampal
coordinate system. This cognitive map would then allow an animal to have awareness
of its environment irrespective of any particular sensory input and to mentally combine
different parts of the environment even if they have never been experienced at that same
time (O’Keefe & Nadel, 1978; Redish, 1999; Worden, 1992).

When rats reach a choice point, they often pause, orienting and reorienting toward
their potential routesda behavior termed vicarious trial and error (VTE; Gardner
et al., 2013; Hu & Amsel, 1995; Muenzinger, 1938; Muenzinger & Gentry, 1931;
Redish, 2016; Tolman, 1938). VTE is seen during early learning and decreases with
task proficiency (Tolman, 1939). VTE increases with changes in task demands
(Blumenthal, Steiner, Seeland, & Redish, 2011; Steiner & Redish, 2012) or by increasing
the number of choices/options (Bett et al., 2012). We have found that VTE increases in
rats when learning and/or using a hippocampal place strategy, during strategy conflicts,
and immediately after error trials, again suggesting that rats are engaged in deliberation
during VTE (Schmidt et al., 2013). VTE is most likely a behavioral reflection of
indecision in deliberative decision-making (Amemiya & Redish, 2016; Gardner et al.,
2013; Papale, Stott, Powell, Regier, & Redish, 2012; van der Meer et al., 2012; see
Redish, 2016 for a review).

In humans and rodents, the hippocampus and prefrontal cortex are both engaged dur-
ing spatial navigation and planning (O’Keefe & Nadel, 1978; Redish, 1999; Spiers &
Maguire, 2007). For example, in a recent fMRI study by Kaplan et al. (2017), participants
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were trained on novel spatial navigation paradigm where they needed to plan paths of
varying difficulty on novel mazes. The authors found that the prefrontal cortex and
the hippocampus were both engaged during navigation planning. Interestingly, the func-
tional connectivity between these two structures was higher when planning required
more deliberation and preceding correct choices. Similarly, the rodent hippocampus
and mPFC are functionally engaged during deliberative decision-making, showing
increased coherence in the theta frequency specifically at choice points and phase locking
of mPFC neurons to hippocampal theta oscillations (Benchenane et al., 2010; Hyman,
Zilli, Paley, & Hasselmo, 2005; Jones & Wilson, 2005; Siapas & Wilson, 1998). Lesions
to the hippocampus impair VTE behavior (Bett et al., 2012; Hu & Amsel, 1995);
however, disrupting normal hippocampal functions can actually lead to an increase in
VTE behavior (Papale, 2015; Robbe et al., 2007). This leads us to hypothesize that
the hippocampus is not the driving force for VTE behavior but that VTE is engaged
by another neural system. Wang et al. (2015) proposed that during decision-making,
the lateral prefrontal cortex generates numerous potential action plans (i.e., take this
choice, skip this choice) and that this information is sent to the hippocampus, which
retrieves the stored representations related to these specific actions. The hippocampus
then iteratively engages the mPFC as it sorts through different hippocampal-generated
behavioral simulations, in order to determine the best choice of action. Lesion studies
have found that the mPFC facilitates behavioral flexibility during new learning
(Ragozzino et al., 1999), the same time period when VTE behavior is prevalent. In
further support of this hypothesis, our lab has recently found that disrupting the
mPFC with Designer Receptors Exclusively Activated by Designer Drugs reduces VTE
behavior (Schmidt & Redish, 2016, Society for Neuroscience Abstract). Recent studies have
found that mPFC is engaged during strategy changes, particularly during times when
VTE is increased (Benchenane et al., 2010; Bissonette & Roesch, 2017; Powell & Redish,
2016).

HOW CAN WE EXAMINE EPISODIC FUTURE THINKING/MENTAL
TIME TRAVEL?

Exactly how can we measure episodic future thinking or mental time travel in rodents?
Try as we might, we have so far been unable to get our rats to fill out any of our post-
behavioral training questionnaires. Instead, one must infer cognition through behavioral
observation, which historically engendered much debate about the reliability of such in-
ferences (Hull, 1943; MacCorquodale & Meehl, 1948; Skinner, 1948; Watson, 1913).
However, the recognition that imagination entails activation of the same neural systems
as during active perception and action suggests that it may be possible to observe episodic
future thinking (mental time travel), even in nonlinguistic animals such as rodents
( Johnson, Fenton, Kentros, & Redish, 2009). Imagination of sensory objects activates
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the same sensory areas as when those objects are perceived (Haxby, Connolly, &
Guntupalli, 2014; Kosslyn, 1994; O’Craven & Kanwisher, 2000; Pearson, Naselaris,
Holmes, & Kosslyn, 2015). Similarly, imagination of motor actions activates the motor
areas ( Jeannerod, 1994; Rizzolatti & Craigero, 2004). It has even been possible to use
these imagination processes to directly observe planning in humans (Abram, 2017;
Doll, Duncan, Simon, Shohamy, & Daw, 2015).

Doll et al. (2015) trained subjects on the two-step decision task (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Fig. 6.2). In this task, subjects are given two choices
(C1 ¼ A or B). This choice leads to a second layer of two possible choices (C2 ¼ C
or D, or C3 ¼ E or F). Choosing A in C1 leads to C2 (C vs. D) 80% of the time and
C3 (E vs. F) 20% of the time, while choosing B in C1 leads to C2 20% of the time
and C3 80% of the time. Choosing C, D, E, or F leads to a probabilistically delivered
reward. The key to this task is that the probability of reward delivery changes slowly
over time, so the goal of the task is to return to a winning outcome. Because planning
systems take the structure of the world into account, after a rare transition (A / C3
or B/ C2), a planning-based (Tolmanian) algorithm would choose the other choice
(A/ C3/ E/F / reward/ B; B/ C2 C/D/ reward/ A), while a habit/
procedural/do-it-again situationeaction association (Hullian) algorithm would repeat
the original choice (A /.reward/ A; B/.reward/ B). Thus, this task is able

Choice 1
A B

Choice 2
C D

Choice 3
E F

PC(R) PD(R) PE(R) PF(R) 

A F PF(R) =

A
A!

P (R)

B!

(A) (B)

Figure 6.2 Two-step decision task (Daw et al., 2011). (A) In this task, subjects are initially given a
choice (Choice 1 ¼ A or B). This leads to a second layer of two possible choices (Choice 2 ¼ C or
D or Choice 3 ¼ E or F). Choosing A in Choice 1 leads to Choice 2 (C or D) 80% of the time and Choice
3 (E or F) 20% of the time, while choosing B in Choice 1 leads to Choice 2 20% of the time and Choice
3 80% of the time. Choosing C, D, E, or F leads to a probabilistically delivered reward. The probability
of reward delivery changes slowly over time, and the goal is to return to a winning outcome. (B)
Because planning systems take the structure of the world into account, after a rare transition
(A / Choice 3 or B / Choice 2), a planning-based (Tolmanian) algorithm would choose the
other choice (A / Choice 3 / E/F / reward / B; B / Choice 2C/D / reward / A), while a
habit/procedural/do-it-again situationeaction association (Hullian) algorithm would repeat the
original choice (A / .reward / A; B / .reward / B). Thus, this task is able to differentiate
Tolmanian planning processes from Hullian situationeaction processes.
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to differentiate Tolmanian planning processes from Hullian situationeaction processes,
much like the plus maze described earlier. Doll et al. (2015) designed this task using
cues that could be differentiated in fMRI (faces, tools, body parts, landscapes) and found
that when subjects showed planning behaviors, the fMRI signals indicated imagination
of the upcoming cues.

A similar process can be used in neurophysiological recordings from awake, behaving
nonhuman animals (such as rats) ( Johnson et al., 2009). Pyramidal cells in the hippocam-
pus, aka “place cells,” show spatially specific firing properties (O’Keefe & Dostrovsky,
1971; O’Keefe & Nadel, 1978; Redish, 1999), typically showing a peak firing in a small
location in the environment and remaining mostly quiet in the rest of the environment.
The area of maximal firing is referred to as the “place field.” The place fields of different
cells are distributed throughout the environment (Muller, 1996), creating a maplike
representation of the environment (O’Keefe & Nadel, 1978; Redish, 1999). In addition
to firing at the rat’s current location, place cells also show rare extrafield firing, i.e., firing
occasionally in locations separate from their place field. This nonlocal firing is typically
seen at feeder/reward sites (see Redish, 1999 for review) and decision points ( Johnson
& Redish, 2007). With large enough neural ensembles, it is possible to decode the infor-
mation represented within the ensemble (Wilson & McNaughton, 1993; Zhang,
Ginzburg, McNaughton, & Sejnowski, 1998). During these extrafield firing events,
decoding reveals nonlocal representations of space ( Jensen & Lisman, 2000; Johnson &
Redish, 2007; Pfeiffer & Foster, 2013).

More recent studies have determined that during this nonlocal firing, the place cells
are activated in behaviorally relevant sequences that can represent trajectories the rat
previously traversed or could traverse (Davidson, Kloosterman, & Wilson, 2009; Foster
& Wilson, 2006; Gupta, van der Meer, Touretzky, & Redish, 2010, 2012; Pfeiffer &
Foster, 2013; Skaggs & McNaughton, 1996). What was once believed to be noise is
now hypothesized to reflect the rodent “thinking” about another location. The answer
to how the hippocampus engages in episodic future thinking thus lies in the firing
sequences of hippocampal place cells and their relation to local field potentials.

Place cell ensemble firing sequences are typically seen during two oscillatory events
(Fig. 6.3): sharp-wave ripple complexes (SWR; 150 ms 150e220 Hz burst events),
which occur during sleep and awake quiescence (Buzsaki, Leung, & Vanderwolf,
1983; O’Keefe & Nadel, 1978), and theta oscillations (more continuous 6e10 Hz
processes), which occur during movement and attentive states (Buzsaki, 2002; O’Keefe
& Nadel, 1978; Vanderwolf, 1969). During sleep (Kudrimoti, Barnes, & McNaughton,
1999; Lee & Wilson, 2002; Skaggs & McNaughton, 1996; Wilson & McNaughton,
1994) and quiet wakefulness (Csicsvari, O’Neill, Allen, & Senior, 2007; Diba & Buzsaki,
2007; Foster & Wilson, 2006; Gupta, van der Meer, Touretzky, & Redish, 2012;
Jackson, Johnson, & Redish, 2006; Jadhav, Kemere, German, & Frank, 2012; O’Neill,
Senior, & Csicsvari, 2006; Pfeiffer & Foster, 2013; Singer, Carr, Karlsson, & Frank,
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2013), brief episodes of high-amplitude, fast-frequency SWR dominate the local field
potential in CA1 and CA3 as a result of synchronous CA3 and CA1 activity (Buzsaki,
2015; Buzsaki et al., 1983; Csicsvari, Hirase, Mamiya, & Buzsaki, 2000). During
SWR, place cell assemblies “replay” spatial trajectories previously traversed in a tempo-
rally condensed manner. These reactivation and replay sequences were first observed
during sleep after behaviors (Buzsaki, 2015; Pavlides & Winson, 1989; Wilson &
McNaughton, 1994). Note that reactivation and replay during sleep are examples of
imagination and mental time traveldrepresentations of other places and other times,
such as reactivation of recently experienced behaviors on a track, while the rat rests on
a separate platform.

From their first discovery, SWR sequences were hypothesized to facilitate memory
consolidation, by continually recapitulating previous experiences during sleep (Alvarez
& Squire, 1994; Buzsaki et al., 1983; Gais & Born, 2004; Marr, 1971; Sutherland &
McNaughton, 2000). During sleep, pyramidal cell firing sequences are generally replayed
in the original order of firing (forward replays) supporting their theorized role in memory
consolidation. However, when SWR sequences were discovered during awake quies-
cence, not only did they fire in the original order of the trajectory traversed but also
in the reverse order (backward replay; Csicsvari et al., 2007; Foster & Wilson, 2006;

1000 ms
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Figure 6.3 Examples of sequences. (A) Top: example of theta sequence while the rat is located at the
choice point. Each place field center is represented by a colored dot (place in sequences corresponds
to color bar in bottom right panel, blue is early, pink is later). Bottom: place cells sorted relative
to the rat’s location over a single theta cycle. Local Field Potential filtered for theta (6e10 Hz) and
gamma (40e100 Hz). (B) Example of sharp-wave ripple sequences for forward (top left) and backward
(top right) sequences. Bottom: place cells sorted relative to the rat’s location over a sharp-wave ripple.
(Adapted with permission from Gupta et al. (2010, 2012).)
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Gupta et al., 2010). They also traversed novel trajectories never before experienced by
the rat (Gupta et al., 2010), which suggests that they likely play a role in exploring the
cognitive map (Derdikman & Moser, 2010; Samsonovich & Ascoli, 2005), much like
mind-wandering in humans (Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016).

Other studies, however, have found that firing during wake SWRs can predict the
subsequent path of the animal. Pfeiffer and Foster (2013) trained rats on a goal-
directed navigation task to forage for food reward between randomly distributed loca-
tions and a stationary “home” location. During events with large multiunit cellular
activity, though not specifically during SWR, but usually coinciding with, sequences
represented trajectories to behaviorally relevant locations; for example, when the rat
was away from the home location, sequences predicted trajectories going home; howev-
er, this was not seen during random foraging (Fig. 6.4). Interestingly, these trajectory
events were not simply paths in front of the rat; sequences represented future paths
regardless of the head direction of the rat. Similar to Gupta et al. (2010), sequences
even represented novel trajectories back to the home location.

The specific roles played by reactivations during SWR events remain unclear. There
is some evidence that sequences during awake quiescence are more variable than
sequences during sleep (Wikenheiser & Redish, 2013), including both forward and
backward sequences, and seem to be related to attended areas of the maze, such as recent
and future paths (Davidson et al., 2009; Foster & Wilson, 2006; Pfeiffer & Foster, 2013;
Silva, Feng, & Foster, 2015), as well as novel and important, but not recently experi-
enced, paths (Gupta et al., 2010). One possibility is that the sequences seen during quiet
waking states are akin to imagination in the human default mode network (Raichle
et al., 2001), allowing the novel connection of new concepts (Samsonovich & Ascoli,
2005). Another possibility is that it is a potential substrate for memory retrieval to be
used in planning processes (Carr, Jadhav, & Frank, 2011; Pfeiffer & Foster, 2013;
Schmidt & Redish, 2013). Disrupting SWRs in waking states impairs working memory
and learning ( Jadhav et al., 2012) and increases VTE behavior (Papale, Zielinski, Frank,
Jadhav, & Redish, 2016).

Jadhav et al. (2012) selectively disrupted awake SWR events in rats trained on a
hippocampal-dependent spatial alternation task. In the W maze, the rats were rewarded
for alternating between the three arms of the maze. When the rats were on the outside
arm, they were rewarded for entering the center arm of the maze. When the rats were on
the center arm, however, they were only rewarded for visiting the outermost arm that
was not previously visited (i.e., leftecentererightecentereleft). This allowed the com-
parison between two arm trajectories, one with a memory component and the other
without. Awake SWR ripples were disrupted through a stimulation electrode targeting
the ventral hippocampal commissure. Electrical stimulation within 25 ms of SWR detec-
tion disrupted SWR events and multiunit activity. Interestingly, SWR disruption
impaired spatial working memory on the W maze by selectively impairing outbound
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trials while sparing inbound trials. These deficits were found despite no overall change to
place cell firing characteristics or fields as well as intact sleep SWR sequences. These data
suggest that disrupting awake SWR impaired spatial memory performance by disrupting
the link between recent and remote experiences that SWR are believed to provide.

In contrast, sequences during sleep seem to be more veridical (i.e., forward) (Skaggs &
McNaughton, 1996; Wikenheiser & Redish, 2013) and include both the hippocampal
sequence and the consequence of those sequences (seen as activation of reward-related
information in downstream nucleus accumbens, Lansink, Goltstein, Lankelma,
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Figure 6.4 Sequences depict future trajectories to home location. (A) In order to determine whether
sequences predicted future paths, the angular displacement between the future projected path and
the actual future and previous paths taken were measured. The angular displacement was measured
between the projected and actual trajectories at progressively increasing radii from the rat’s location.
Angular displacements at zero represent trajectories taken that matched with the predicted trajectory.
(A) Differences between future paths and projected paths to goal locations were concentrated around
zero angular displacement and more uniformly distributed when compared to the past path. (B) Dif-
ferences between future paths and projected paths to home locations showed weaker relationships.
(Adapted with permission from Pfeiffer and Foster (2013).)
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McNaughton, & Pennartz, 2009; Pennartz et al., 2004). Reactivation during sleep is
generally hypothesized to facilitate the consolidation of contextual information by
strengthening synaptic connections and transferring information from the hippocampus
to the cortex (Sutherland & McNaughton, 2000). Supporting a role for replay as goal-
directed exploration, Lansink et al. (2008) found that ventral striatal reward-related infor-
mation appeared time-locked to hippocampal replaysdcells representing the appropriate
reward site fired at the end of SWR sequences replaying approaching that reward site.
Disruption of SWRs during postbehavior sleep disrupts learning and consolidation effects
(Ego-Stengel & Wilson, 2010; Girardeau, Benchenane, Wiener, Buzsaki, & Zugaro,
2009), and activation of dopaminergic signals during sleep-based reactivation leads
to learning of that reactivated site as a goal (de Lavilleon, Lacroix, Rondi-Reig, &
Benchenane, 2015). Recently, de Lavilleon et al. (2015) stimulated dopamine neurons
every time a specific place cell was active during sleep SWRs and found that rats preferred
to approach that goal the next day.

Sequences seen during theta oscillations, in contrast, represent time-compressed
spatial trajectories that could facilitate spatial navigation and planning (Foster & Wilson,
2007; Wikenheiser & Redish, 2015). Johnson and Redish (2007) found that theta
sequences serially traverse potential routes. Subsequent studies suggest theta sequences
run to the potential goal locations (Gupta et al., 2012; Wikenheiser & Redish, 2015).
Therefore, the activation of these sequences may support different behavioral processes
whether they are active during SWR or theta oscillations.

In 1993, O’Keefe and Recce reported that the relationship between hippocampal cell
firing and the theta rhythm changed as an animal passed through the place fielddwith
spiking beginning at the end of each theta cycle on entry and precessing earlier and earlier
as the animal passed through the field. This phenomenon, termed phase precession, because
the phase of firing precesses as the animal runs through the field, has been robustly repli-
cated by numerous labs (Dragoi & Buzsaki, 2006; Foster & Wilson, 2007; Gupta et al.,
2012). Several labs quickly noted that this phenomenon meant that there was a sequence
within each theta cycle, progressing along the path of the animal ( Jensen & Lisman, 1996;
Skaggs & McNaughton, 1996; Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996).
Two important questions remained: (1) Were the sequences a consequence of phase
precession or vice versa? (2) Were the sequences running from behind the animal to
the location of the animal, from the animal forward, or from behind to in front?

Studies attempting to answer the first question found that in well-learned environ-
ments, sequences better described the data than phase precession. Dragoi and Buzsaki
(2006) found that the timing between pairs of cells better explained the data than the
phase of firing of each of those cells. Other labs looking at learned environments have
found that the sequences can occur without phase precessiondJohnson and Redish
(2007) found that during VTE, sequences alternated between options, even though no
phase precession was occurring. Comparing place field firing on the running wheel

Goal-Directed Sequences in the Hippocampus 135



with and without a goal, phase precession occurred when there was a goal (Pastalkova,
Itskov, Amarasingham, & Buzsaki, 2008), but when there was no goal, the phase of firing
remained constant (Hirase, Czurko, Csicsvari, & Buzsaki, 1999), suggesting that without
a goal, the rat was running the same sequence over and over again (Lisman & Redish,
2009).

Although it would seem that phase precession and theta sequences are two ways of
looking at the same phenomenon, Feng, Silva, and Foster (2015) recently found that
one could get phase precession without sequences. On the first pass through a place field,
cells phase precessed but did not line up into sequences until the second pass, because
while individual cells phase precessed on the first lap, the starting phase shifted from
cell to cell, so they did not start line up to create sequences. Recently, Wang, Roth,
and Pastalkova (2016) examined whether theta sequences are dependent upon internally
generated neural activity or if sensory input is sufficient. Silencing the medial septum,
which provides theta input to the hippocampus, disrupted theta sequences while preser-
ving firing fields. These data suggest that while phase precession could arise from sensory
input, theta sequences are integrally generated by hippocampal network dynamics and
not sensory input. So far, theta sequences have always been observed to follow the
rat’s direction of motion, even when animals move backward. Cei, Girardeau, Drieu,
Kanbi, and Zugaro (2014) geared a car so that when the rat ran forward, the car ran back-
ward. Similarly, Maurer, Lester, Burke, Ferng, and Barnes (2014) trained a rat to actually
walk backward. In both of these cases, both phase precession and theta sequences ran
along the trajectory of the rat (i.e., not the direction the rat was facing), implying that
these sequences are encoding the path of the rat.

An important question about theta sequences is whether they are about the future
path of the rat or about the past path already run. As Skaggs and McNaughton (1996)
noted, this could be determined by where these phase precessions crossed in different
approaches to a place field: If sequences were about the past, place cell firing on two paths
that crossed would cooccur at the start of the place field, while if sequences were about
the future, the two paths that converged would converge at the end of the place field.
Later data definitively proved that multidirectional place fields in open environments
and bidirectional fields in linear tracks converged at the end of the field, implying that
these sequences were running from the animal forward, predicting future paths of the
animal (Battaglia, Sutherland, & McNaughton, 2004; Huxter et al., 2008; see Lisman
& Redish, 2009 for review). Further studies have consistently shown that place fields
align from lap to lap at the end of their place fields, even if the starting point can change
(Wikenheiser & Redish, 2015; Zheng et al., 2016). Newly formed place fields emerge
from back to front, with firing first locked to the end of the place field and later expand-
ing backward to earlier positions with subsequent experience (Bittner et al., 2015; Mehta,
Barnes, & McNaughton, 1997; Monaco, Rao, Roth, & Knierim, 2014).
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However, in more complex mazes, these results were more complicated, with
sequences appearing behind the animal (running from behind to where the animal
was) when the animal approached a goal and sequences appearing in front of the animal
as it left the goal (running from the location of the animal forward to future positions)
(Gupta et al., 2012). Direct examination of these sequences suggested that the sequences
ran to the actual goal of the animal, bypassing earlier potential goals that the rat planned
to skip (Wikenheiser & Redish, 2015).

As mentioned, VTE is believed to behaviorally reflect the neurophysiological gener-
ation and evaluation of future actions. During VTE, place cells transiently “sweep” for-
ward, in a serial manner, spatially representing specific routes to goal locations (Amemiya
& Redish, 2016; Johnson & Redish, 2007; Papale et al., 2016). These sequences are
consistent with the results of Gupta et al. (2012) who found that theta sequences appear
to segment the maze in a task-related manner, representing areas ahead of the animal as it
left maze locations. In contrast to the nonlocal representations seen during SWR, the
sequences seen during VTE occur during strong theta oscillations ( Johnson & Redish,
2007; Papale et al., 2016).

Theta sequences are believed to only represent in a forward direction, unlike SWR
sequences that show representations in both the forward and backward directions. This
suggests that theta sequences may support planning, but their exact role in goal-directed
decision-making is not yet clear. In order to elucidate the role of theta sequences in plan-
ning, Wikenheiser and Redish (2015) trained rats in a foraging task on a circular maze for
food reward. Rats ran in a circle with three evenly dispersed reward sites, each site with a
different fixed-length delay required in order to receive the food reward. The rats
encountered a series of stay/go decisions where the rat could wait out the delay for
the food reward or skip the current reward site and travel to the next reward site. The
rat’s choices could be qualified into three behaviors: one-segment, in which the rat
ran to the next reward site and waited out the delay; two-segment, in which the rat skip-
ped the next reward site but stopped at the second, subsequent reward site to wait out the
delay; and three-segment, in which the rat skipped the next two reward sites, returning to
the original reward site (i.e., running a full lap around the circle) before waiting out the
delay (see Fig. 6.6). This task permitted the authors to examine how theta sequences are
connected to goal-directed decision-making by examining how far theta sequences
“looked ahead” during these one-, two-, and three-segment trials. Theta sequences
were compared on the first segment of all the three trajectory types, which held the
behavior constant and only varied in the goal destination. The distance traveled for
the theta sequences were commensurate with the trajectory length, shortest for one-
segment, longer for two-segment, and longest for three-segment trajectories. In contrast,
when approaching their goal locations, theta sequences were comparable for all three trial
types. Taken together these data suggest that hippocampal theta sequences do facilitate
planning mechanisms for goal-directed decision-making.
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Theta sequences are also necessary for correct performance on hippocampal-
dependent behavioral paradigms. A study by Robbe et al. (2007) measured the
effects of cannabinoids on theta and SWR oscillations, as well as theta sequences.
Cannabinoids impair memory in hippocampal-dependent tasks in humans and rodents
alike (Litchtman, Diemen, & Martin, 1995; Litchman & Martin, 1996; Robbe et al.,
2007). In the Robbe et al. (2007) study, place cells were recorded from CA1 in rats under
the influence of a cannabinoid receptor (CB1) agonist on a hippocampal-dependent
spatial alternation task (Ainge, van der Meer, Langston, & Wood, 2007). In addition
to the decreasing power in the theta and SWR frequencies, CB1 agonists severely
impaired the temporal synchrony of hippocampal pyramidal cells without affecting the
overall population firing rates. In a subsequent study, Robbe and Buzsaki (2009)
replicated the behavioral deficits on the hippocampal-dependent spatial memory task
and temporal organization of cell firing. Interestingly, the rodents showed more VTE
and likely increased indecision. Despite the preserved place field firing characteristics,
coordinated place cell firing and likely theta sequences were disrupted. This study
demonstrated that disrupting the organization of theta sequences increased VTE and
impairs behavioral performance on hippocampal-dependent tasks.

On the flip side, clonidine is an a-adrenergic autoreceptor agonist that decreases tonic
levels of noradrenaline pharmacologically; behaviorally it decreases indecision in humans
(Coull, Middleton, Robbins, & Sahakian, 1995; Jakala et al., 1999), potentially by
limiting mental exploration. Similarly, clonidine in rodents also suppresses VTE behavior
and, therefore, increases decisiveness (Amemiya, Noji, Kubota, Nishijima, & Kita, 2014).
In a subsequent study, Amemiya and Redish (2016) examined whether the reduced VTE
behavior seen in rats given clonidine also resulted in reduced mental exploration. Consis-
tent with other results ( Johnson & Redish, 2007; Papale et al., 2016), theta sequences
represented both the chosen and unchosen paths during VTE under saline but more
often represented the chosen path during non-VTE behavior. Interestingly, clonidine
suppressed theta sequences that represented the unchosen path during VTE, suggesting
that clonidine induced decisiveness resulted from a reduction in mental exploration of
options.

Anatomical and physiological studies support the hypothesis of an inverse relationship
between SWR and theta oscillations. Subcortical inputs to the hippocampus have sup-
pressing effects on CA3 recurrent excitation, thereby suppressing SWR events (Buzsaki,
2015; Buzsaki et al., 1983; Vandecastelle et al., 2014). Numerous studies have shown that
during theta oscillations, SWR are suppressed via presynaptic cholinergic muscarinic re-
ceptors (Hasselmo, 1995, 1999, 2006), cannabinoid CB1 receptors (Robbe et al., 2007),
as well as cholinergic inputs from the medial septum (Vandecastelle et al., 2014). Lesions
that reduce theta oscillations, including lesions to the medial septum, fimbria fornix, and
entorhinal cortex, all increase SWR events (Buzsaki, 2015; Buzsaki et al., 1983).
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OPEN QUESTIONS

There are still many unknowns regarding sequences. Despite the decades of research, we
are still unclear about how sequences are generated. What is the mechanistic relationship
between sequences and phase precession? Are they controlled by the same mechanism?
Do we need sequences for planning?When engaging in episodic future thinking, humans
may mentally travel serially along all the required steps to reach a goal but in other cases
may only mentally travel to the final outcome (Schacter, Benoit, & Szpunar, 2017;
Suddendorft, 2013). How much do sequences help the rodent plan their future paths?
Are there differences between dorsal and ventral hippocampal sequences given that place
field size can vary along the septotemporal axis ( Jung, Wiener, & McNaughton, 1994;
Kjelstrup et al., 2008; Royer, Sirota, Patel, & Buzsaki, 2010), potentially reflecting a
gradient of contextual representation along the dorsaleventral axis (Schmidt, Satvat,
Argraves, Markus, & Marrone, 2012).

How are sequences generated?
Early models suggested that sequences were a passive product of theta phase precession or
at least a product of the same mechanism that generates phase precession (Lisman &
Redish, 2009; Maurer & McNaughton, 2007; O’Keefe & Recce, 1993; Skaggs,
McNaughton, Wilson, & Barnes, 1996). However, sequences can still be seen within
each theta cycle, even when the rat is paused. For example, Johnson and Redish
(2007) found theta sequences occurring while the rat was paused during VTE; although
there were sequences proceeding ahead of the rat within each theta cycle, the cells them-
selves did not phase precess. As mentioned above, Feng et al. (2015) found that theta
sequences and phase precession can be dissociated, at least upon first exposure to an envi-
ronment. Without experience of the maze, place cells did show phase precession, but the
ensemble failed to show sequences; however, one traversal of the track was sufficient to
organize the place cell assembly, so that sequences appeared on the second traversal.

Recently, it has been suggested that theta sequences/phase precession could be gener-
ated by the entorhinal cortex. The entorhinal cortex sends spatial and sensory informa-
tion to the hippocampus. The medial entorhinal cortex has a plethora of spatially firing
cells, including grid cells, border cells, and head direction cells (Hafting, Fyhn, Molden,
Moser, & Moser, 2005; Sargolini et al., 2006; Solstad et al., 2008; Quirk, Muller, Kubie,
& Ranck, 1992). Unlike place cells, which fire in a specific location in the environment,
grid cells in the entorhinal cortex fire in a triangular grid that spans the length of the
environment (Hafting et al., 2005; Sargolini et al., 2006). A computational model by
Jaramillo, Schmidt, and Kempter (2014) suggests that phase precession is generated by
grid cells and then driven onto downstream structures like the hippocampus. This model
is supported by data showing that interfering with grid cells in the entorhinal cortex im-
pairs phase precession and theta sequences in the hippocampus (Schlesiger et al., 2015).
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Sanders, Renno-Costa, Idiart, and Lisman (2015) suggest that the phase precession,
generated in the entorhinal cortex, is imposed upon downstream place cells to produce
sequences that can travel linearly ahead of the animal. In this model, sequences only go
forward, yet sweeps have been found to go around corners (Gupta et al., 2012; Johnson
& Redish, 2007) even in enclosed mazes (Amemiya & Redish, 2016). One possibility is
that sequences going around corners may depend on the cognitive map and the hippo-
campus itself.

How much do sequences improve/increase/predict planning?
Because theta sequences usually represent trajectories in front of the rat, they are believed
to be necessary for planning future paths, instead of replaying the past. Redish et al. have
found that theta sequences occurring during behavioral tasks where the rat is engaged in
more deliberative/planning behaviors subsequently decrease when the behavior auto-
mates (Amemiya & Redish, 2016; Johnson & Redish, 2007; Papale et al., 2016; Regier,
Amemiya, & Redish, 2015). On the multiple T-maze, for example, Johnson and Redish
(2007) found that theta sequences initially go down both arms of the maze, but then, as
the rat proceeds to know its target, the sequences go down only one direction. Further-
more, as the rat starts to automate its behavior, the length of the sequences decreases with
experience. Redish et al. have suggested that this entails three stages: deliberation,
planning, and automation (Redish, 2016; van der Meer, Johnson, Schmitzer-Torbert,
& Redish, 2010).

Though the cumulative data suggest that SWR and theta sequences facilitate planning
and spatial navigation, exactly how much do they improve or predict behavior? Pfeiffer
and Foster (2013) suggest that there is an increase in SWR sequences toward the goal of
the rat just before movement; however, while highly significant, this is a very small
increase of only 3%. Nevertheless, studies do suggest that increased coordination between
cells during SWR predicts improved performance.

Singer et al. (2013) have found increased place cell firing coordination during SWR
on correct trials on a hippocampal-dependent spatial navigation task. As previously
described, the hippocampal-dependent W maze (Kim & Frank, 2009) requires the rat
to alternate between outbound trials (i.e., left armecenter armeright armecenter
arm). The proportion of cells that had coordinated activity during SWR was measured
across learning. During early learning, when the behavioral performance was close to
chance, coordinated activity during SWR failed to predict whether the next trial would
be correct or incorrect (Fig. 6.5). However, when performance was greater than 65%
place cell coordinated firing during SWR was greater preceding correct trials. Further
analyses revealed that coordinated firing could predict correct or incorrect performance
on a trial-by-trial basis, during early learning. Because this was a binary choice, the SWR
activity increased the ability to predict the path of the animal by 10% (60% compared to
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chance of 50%). Once at asymptotic performance firing coordination failed to predict
correct or incorrect trials, thereby suggesting that coordinated firing during SWRs
were no longer necessary once the task was well learned (i.e., the task was potentially
automated).

In a similar unpublished analysis, Wikenheiser and Redish (2015) used linear discrim-
inant analysis on decoded SWR representations to predict which feeder the rat would
run to next on their three-step goal task described earlier. They decoded 200 ms win-
dows centered on SWR events using a standard one-step Bayesian decoding operation
with a uniform prior (Zhang et al., 1998) and then averaged the representation across
space (thereby ignoring any temporal information in the representation). Thus, each
SWR event produced an averaged decoded probability distribution over 100 spatial
bins. For prediction analyses, only SWRs that occurred when the animal’s speed
was <5 cm/s were included. Each decoded distribution was categorized using linear
discriminant analysis. A unique training set was constructed for each event by randomly
drawing a subset of probability distributions, with equal numbers of one-, two-, and
three-step cases. The distribution to be categorized was never included in the training
set. Analysis was performed within each session, with statistics across sessions. To generate
shuffled distributions, they followed the same classification procedure, as described
above, except the identity of the training set that was randomized. They found an
increase in prediction of the outbound target (where the rat was going to go on the
next trial) of approximately 12% (45% relative to chance of 33%); shuffled data came
out as chance (Fig. 6.6). Interestingly, it was also possible to predict the previous goal
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Figure 6.5 Pairwise spiking activity during SWRs accurately predict subsequent trial outcome. The
proportion of coactive cell pairs was predictive of trial-by-trial performance for performance
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(where the rat had just come from) with similar proportions (41% relative to chance of
33%, for an increase of 8%).

Can theta sequences go backward?
Though SWR sequences have been observed to proceed in both forward (along the
experienced path of the rat) and backward (against that experienced path) directions
(Davidson et al., 2009; Foster & Wilson, 2007; Gupta et al., 2010), theta sequences
seem to only go forward, consistent with a role in planning. Are theta sequences capable
of going backward? As noted above, both Cei et al. (2014) andMaurer et al. (2014) found
that theta sequences proceeded along the trajectory of the rat, even when that trajectory
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142 Goal-Directed Decision Making



was opposite to the head direction of the rat. That is, both of these studies found that
when the rat ran backward, the theta sequences proceeded along the experienced trajec-
tory of the rat. Taken together these studies imply that theta sequences reflect the future
path of the rat, not the direction the rat is facing.

CONCLUDING THOUGHTS

Deliberative decision-making encompasses understanding and exploring the environ-
ment, imagining and predicting possible outcomes, evaluating the outcomes, and then
taking action. During the imagining and planning stage, humans engage in episodic
future thinking, where they project themselves into the future situations (Buckner &
Carroll, 2007). Sequences seen in rodents could facilitate a rodent analogue of episodic
future thinking. Though research suggests that SWR sequences support planning
(Pfeiffer & Foster, 2013), that disrupting them impairs future planning ( Jadhav et al.,
2012), and that SWR sequences provide information about the future goal such that it
is possible to improve one’s prediction of that goal from coactivation within SWRs
(Singer et al., 2013; Wikenheiser & Redish, unpublished data in Fig. 6.6), what role
SWRs play in goal-directed decision-making remains unclear. Similarly, although
research suggests that theta sequences run along the trajectory of the rat (Cei et al.,
2014; Foster & Wilson, 2007; Maurer et al., 2014) to the goal (Amemiya & Redish,
2016; Gupta et al., 2012; Papale et al., 2016; Wikenheiser & Redish, 2015), when the
goal is clear, the specific role of theta sequences is unclear. During VTE (which is essen-
tially an indecision between goals, Redish, 2013, 2016), theta sequences run to alternate
goals, but so far it has not been possible to predict which goal an animal will take during
those indecisive trials (Amemiya & Redish, 2016; Johnson & Redish, 2007; Papale et al.,
2016; Redish, 2016).

Moreover, the distinction between episodic future thinking in humans and sequences
in rodents should not go unnoticed. Though sequences appear to traverse a traditional
series of events (Gupta et al., 2012), episodic future thinking in humans rarely progresses
through the entire series of events to reach the end goal. Humans typically project
directly to the end goal and after evaluating their respective outcomes, then consider
the series of steps required to accomplish that outcome (Newell, Shaw, & Simon,
1959; Kurth-Nelson et al., 2012; Suddendorft, 2013).
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CHAPTER 7

Competition and Cooperation
Between Multiple Reinforcement
Learning Systems
Wouter Kool1, Fiery A. Cushman1, Samuel J. Gershman1,2
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University, Cambridge, MA, United States

INTRODUCTION

As you leave work each day, how do you choose a route home? Prominent dual-system ac-
counts posit two distinct cognitive systems that solve this task in different ways (Balleine &
O’Doherty, 2009; Dickinson, 1985; Fudenberg & Levine, 2006; Kahneman, 1973; Slo-
man, 1996). On the one hand, you could decide your route home by relying on habit.
Since you have successfully taken one particular route to your house many times, this route
has been ingrained into your motor system and can be executed quickly and automatically.
Habits are useful because they make often-repeated behavior efficient and automatized;
however, they are also inflexible and therefore more likely to produce errors. For example,
consider the case where your significant other asked you to buy some toilet paper on your
way back home. In this case, it would be better to suppress the habitual route and engage in
goal-directed control. This involves the recall of the alternate goal (picking up toilet paper),
and planning a new route that goes past the convenience store, using an internal model
(“cognitive map”) of the environment. Goal-directed planning is useful because it is
more flexible and consequently more accurate than relying on habit. However, it also
carries significant computational costs (Gershman & Daw, 2012).

These two systems are typically theorized as competitors, vying for control of behavior.
A major goal of modern decision research is understanding how control is allocated be-
tween the two systems. We will attempt to summarize and extend this line of research.

Yet, the two systems may also interact cooperatively. For example, you might learn a
habit to check traffic reports before you leave work because this facilitates planning an
optimal route. Moreover, the act of “checking” could involve elements of goal-
directed planningdfor instance, searching for radio stationsdeven if initiated out of
habit. These illustrate just two forms of cooperation: habitual actions can support effec-
tive goal pursuit and even drive the selection of goals themselves.

Until recently, the computational principles underlying the competition and coop-
eration between habitual and goal-directed systems were poorly understood. Armed
with a new set of sequential decision tasks, researchers are now able to track habitual
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and goal-directed influences on behavior across an experimental session (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Doll, Duncan, Simon, Shohamy, & Daw, 2015;
Keramati, Smittenaar, Dolan, & Dayan, 2016; Kool, Cushman, & Gershman, 2016).
This work has spurred new computational approaches to multisystem reinforcement
learning (RL) and control architectures.

In this chapter, we review recent work on both competition and cooperation. First,
we will provide a short, nontechnical exposition of the computational framework under-
lying this research (see Gershman, 2017 for a technical review). Next, we will discuss
recent work that suggests how competition between habit and planning can be under-
stood as a costebenefit trade-off. Finally, we describe several studies that detail how
the complementary strengths of habitual and goal-directed systems can be combined
cooperatively to achieve both efficiency and accuracy.

MODEL-FREE AND MODEL-BASED CONTROL IN REINFORCEMENT
LEARNING

The core problem in RL is estimating the value (expected discounted return) of statee
action pairs in order to guide action selection. Broadly speaking, there are two strategies
for solving this problem: a model-free strategy that estimates values incrementally from
experience and a model-based strategy that learns a world model (reward and transition
functions), which can then be used to plan an optimal policy. A central tenet of modern
RL theory posits that the model-free strategy is implemented by the habitual system and
the model-based strategy is implemented by the goal-directed system (Daw, Niv, &
Dayan, 2005; Dolan & Dayan, 2013).

Roughly speaking, the model-free strategy is a form of Thorndike’s law of effect,
which states that actions that led to a reward become more likely to be repeated
(Thorndike, 1911). This strategy is referred to as “model-free” because it does not
rely on an internal model of the environment. Instead, values are stored in a cached
format (a look-up table or function approximator), which allows them to be quickly
retrieved. These values can be updated incrementally using simple error-driven learning
rules like the temporal difference learning algorithm (Sutton & Barto, 1998). The main
downside of the model-free strategy is its inflexibility: when a change in the environ-
ment or task occurs, the entire set of cached values needs to be relearned through
experience. This inflexibility, ingrained by repetition, is what makes the model-free
strategy habitual. In summary, the model-free strategy achieves efficiency of learning
and control at the expense of flexibility in the face of change.

The model-based strategy, by contrast, represents its knowledge in the form of an in-
ternal model that can be modified locally when changes occur (e.g., if a particular route is
blocked, only that part of the model is modified). These local changes can then induce
global effects on the value function, which is computed on the fly using planning or dy-
namic programming algorithms. Thus, the model-based strategy, unlike the model-free
strategy, need not cache values. As a consequence, the model-based strategy can flexibly

154 Goal-Directed Decision Making



modify its policy in pursuit of a goal without relearning the entire model. This flexibility
is only available at a computational cost; however, since model-based algorithms are
inevitably more time- and resource-intensive than querying a look-up table of cached
values or function approximator (Daw et al., 2005; Keramati, Dezfouli, & Piray, 2011).

PRINCIPLES OF COMPETITION

Distinguishing habit from planning in humans
A long line of research in psychology and neuroscience has sought empirical evidence for
the distinction between these model-free and model-based RL systems. Early studies
tended to focus on animal models, and this literature has been reviewed extensively else-
where (Dolan & Dayan, 2013; Gershman, 2017), so we will not cover it here. Instead, we
focus on more recent studies with human subjects. We will describe how one particular
experimental paradigm, a sequential decision task, which we will refer to as the “Daw
two-step task” (Daw et al., 2011), has been pivotal in revealing the competition between
model-free and model-based control in humans. We then turn to our main topic of in-
terest in this section: Given that the systems can compete for control, how is this compe-
tition arbitrated?

Many recent studies of model-free and model-based control in humans have used
the Daw two-step (Daw et al., 2011), summarized in Fig. 7.1 (following Decker,
Otto, Daw, & Hartley, 2016, the depicted version of this task features a space travel

Chance to win reward (changing slowly)

70
% 70%

Figure 7.1 Design and state transition structure of Daw two-step task (Daw et al., 2011; Decker et al.,
2016). Each first-stage choice has a high probability (70%) of transitioning to one of two second-stage
states and a low probability of transitioning to the other. Each second-stage choice is associated with
a probability of obtaining a binary reward (between 0.25 and 0.75) that slowly changes across the
duration of the experiment according to a Gaussian random walk with s ¼ 0.025.
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cover story to make it more engaging for participants). The key appeal of this task is that
it can be used to quantitatively distinguish the influence of model-free and model-based
control on choices (see Akam, Costa, & Dayan, 2015). Each trial of the Daw two-step
task starts with a choice between two stimuli (spaceships), which lead probabilistically to
one of two second-stage states (planets). At these second-stage states, the participant
then makes a second choice between two stimuli (aliens) that both offer a chance of
obtaining a monetary reward (space treasure). The reward probabilities for these
second-stage stimuli change slowly and independently throughout the task in order
to encourage continuous learning. The most important feature of the Daw two-step
task is its transition structure from the first-stage stimuli to the second-stage states.
Specifically, each first-stage option leads to one of the second-stage states with a high
probability (a “common” transition), whereas on a minority of the trials they lead to
the other state (a “rare” transition).

Through these low-probability transitions between actions and rewards, the Daw
two-step task can behaviorally distinguish between model-free and model-based choice.
Because the model-free strategy does not have access to the task structure, it will increase
the probability of taking the previous action if it led to reward, regardless of whether this
was obtained through a common or a rare transition. Therefore, choice dictated by a
purely model-free agent looks like a main effect of reward, with increased probability
of repeating the previous action after a reward and with no effect of the previous tran-
sition (Fig. 7.2A). The model-based strategy, on the other hand, computes the first-
stage action values through planning, using the transition structure to compute the
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Figure 7.2 Probability of repeating the first-stage choice for three agents. (A) For model-free agents,
the probability of repeating the previous choice is dependent only on whether a reward was obtained
and not on transition structure. (B) Model-based behavior is reflected in an interaction between pre-
vious transition and outcome, increasing the probability of transitioning to the state where the reward
was obtained. (C) Behavioral performance on this task reflects features of both model-based and
model-free decision-making, the main effect of previous reward and its interaction with the previous
transition. (Reprinted from Kool et al. (2016).)
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expected value at the second stage for either action. Therefore, this system will reduce the
likelihood of repeating the first-stage action after a reward obtained through a rare tran-
sition, since the other first-stage action has a higher likelihood to lead to the previously
rewarded second-stage state. This behavior is reflected as a crossover interaction between
the previous transition type and previous reward on the probability of staying: after rare
transitions, wins predict a switch and losses predict a stay (Fig. 7.2B).

Interestingly, behavioral performance on the Daw two-step task reflects a mixture of
these strategies (Fig. 7.2C). The probability of repeating the previous actions shows both
the model-free main effect of previous reward and the model-based crossover interaction
between previous transition type and previous reward. The relative influence of the
model-based and model-free systems on this task can be estimated by fitting a reinforce-
ment learning model to participants’ behavior. Here, both strategies compute first-stage
action values, which are then combined according to a weight parameter that determines
the relative balance between model-free and model-based control.

The relative balance between model-based and model-free control indexed by this
task has been linked to a broad range of other cognitive, neural, and clinical phenomena.
For example, Decker et al. (2016) showed that children show virtually no signs of model-
based control and that our ability for model-based planning develops through adoles-
cence into adulthood (see Chapter 13 by Hartley). Gillan, Kosinski, Whelan, Phelps,
and Daw (2016) have reported that the degree of model-based control in this task posi-
tively predicts psychiatric symptoms related to compulsive behavior (see Chapter 15 by
de Wit and Chapter 17 by Morris), and others have shown that it also negatively predicts
personality traits such as alcohol dependence (Sebold et al., 2014; see Chapter 16 by Cor-
bit) and extraversion (Skatova, Chan, & Daw, 2015).

In addition to these findings that bolster the applicability of the two-step task to the
broader field of psychology, it can also account for important phenomena in the RL liter-
ature, such as the finding that overtraining of an actionereward association induces
insensitivity to subsequent outcome devaluation (a hallmark feature of habitual control;
Gillan, Otto, Phelps, & Daw, 2015).

Arbitration between habit and planning as a costebenefit trade-off
The finding that people show a balance between model-based and model-free control on
the Daw two-step task raises the question of whether and how people decide, from
moment to moment, which strategy to use. Although there are several theoretical pro-
posals on this topic (Boureau, Sokol-Hessner, & Daw, 2015; Gershman, Horvitz, &
Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 2015; Keramati et al., 2011; Pezzulo,
Rigoli, & Chersi, 2013), it has received surprisingly little empirical focus (but see Daw
et al., 2005; Lee, Shimojo, & O’Doherty, 2014).

Several experimental manipulations have been discovered to alter the balance be-
tween model-free and model-based control, and these provide key clues about the
form and function of arbitration between RL systems. As we review, many of these
implicate some form of executive function or working memory in model-based control.
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In one such case (Otto, Gershman, Markman, & Daw, 2013), participants performed the
Daw two-step task while they were sometimes required to perform a numerical Stroop
task that taxed their working memory and therefore reduced the amount of available
cognitive resources. At the start of those trials, participants kept two numbers of different
value and physical size in working memory. After the reward outcome of the two-step
trial was presented, participants were then prompted to indicate on what side of the
screen the number with larger size or value had appeared. Interestingly, on trials with
this “load” condition, subjects showed a strong reliance on the model-free strategy
and virtually no influence of a model-based strategy (Otto, Gershman, et al., 2013).
This study suggests that the exertion of model-based control relies, at least in part, on ex-
ecutive functioning or cognitive control. This set of cognitive processes, which are
dependent on computations in the frontal cortex, allow us to reconfigure information
processing in order to execute novel and effortful tasks (Miller & Cohen, 2001).

Another clue for the involvement of executive functioning in model-based planning
comes from a study by Smittenaar, FitzGerald, Romei, Wright, and Dolan (2013). In this
experiment, participants performed the Daw two-step task while activity in their right
dorsolateral prefrontal cortex (dlPFC), a region that is critical for the functioning of
cognitive control, was sometimes disrupted using transcranial magnetic stimulation.
Interestingly, performance on the task showed increased reliance on habitual control dur-
ing those trials, indicating a crucial role for the dlPFC and executive functioning in
model-based planning (see also Gl€ascher, Daw, Dayan, & O’Doherty, 2010; Lee et al.,
2014).

Several other reports have yielded consistent evidence, in the form of robust correla-
tions between individual differences in the degree of model-based control used in the
Daw two-step task and measures of cognitive control ability. For example, Otto,
Skatova, Madlon-Kay, and Daw (2015) showed that people with reduced performance
in a response conflict task (such as the Stroop task; Stroop, 1935) also showed reduced
employment of model-based control. In another study, participants with increased work-
ing memory capacity showed a reduced shift toward model-free control under stress
(Otto, Raio, Chiang, Phelps, & Daw, 2013). In addition, Schad et al. (2014) showed
that measures of general intelligence predicted reliance on model-based control. Their
participants completed both the Daw two-step task and also the trail-making task
(Army Individual Test Battery, 1944), in which participants use a pencil to connect
numbers and letters, randomly distributed on a sheet of paper, in ascending order, while
also alternating between numbers and letters (i.e., 1-A-2-B-3-C, etc.). Interestingly, in-
dividuals with increased processing speed on this task, indicating increased ability for
cognitive control in the form of task switching, also showed a greater reliance on
model-based control in the Daw two-step task.

We now address the question of whether, and how, the brain arbitrates between
model-based and model-free control. One potential metacontrol strategy would simply
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be to always use the more accurate model-based system when the necessary cognitive re-
sources are available and only use the habitual system when they are occupied or other-
wise inoperative. Note that, although this would lead to increased average accuracy, such
a model does not describe how its resources should be allocated when they could be
devoted to multiple tasks. In other words, this model does not predict how people allo-
cate control resources when the available tasks together demand more resources than
available.

When aiming to describe such a trade-off, it would be sensible for a model to be sen-
sitive to the elevated computational costs that are associated with model-based control,
since those cognitive resources could be applied to other rewarding tasks. Consequently,
we propose that allocation of control is based on the costs and benefits associated with
each system in a given task. In this case, model-based control would be deployed
when it generates enough of a reward advantage over model-free control to offset its
costs.

Consistent with this possibility, recent experimental evidence suggests that demands
for cognitive control register as intrinsically costly (Kool, McGuire, Rosen, & Botvinick,
2010; Schouppe, Ridderinkhof, Verguts, & Notebaert, 2014; Westbrook, Kester, &
Braver, 2013). For example, in the demand selection task (Kool et al., 2010), participants
freely choose between task options that require different amounts of cognitive control
and subsequently show a strong bias toward the lines of action with the smallest control
demands. The intrinsic cost account predicts, in addition, that this avoidance bias should
be offset by incentives. Indeed, several studies provide evidence for this hypothesis by
showing increased willingness to perform demanding tasks when appropriately rewarded
(Westbrook et al., 2013), even if this commits them to increased time toward goal attain-
ment (Kool et al., 2010).

Based on these, and other, findings (for a review, see Botvinick & Braver, 2015),
recent accounts of executive functioning propose that the exertion of cognitive control
can best be understood as a form of costebenefit decision-making. For example,
Shenhav, Botvinick, and Cohen (2013) have proposed that the brain computes an
“expected value of control” for each actiondthe expected rewarded discounted by
the cost of associated control demandsdand then chooses the action with highest value.
Other researchers have proposed similar accounts (Gershman et al., 2015; Griffiths et al.,
2015), whereby metacontrol between different systems is determined by the “value
of computation,” the expected reward for a given action subtracted by the costs of
computation and time.

An older, but related, account was developed by Payne, Bettman, and Johnson (1988;
1993), who proposed that humans are “adaptive decision-makers,” choosing among
strategies by balancing accuracy against cognitive effort. Finally, a recent model from
Kurzban, Duckworth, Kable, and Myers (2013) addresses the costebenefit trade-off
from a slightly different angle. They argue that the cost of effort, and therefore the
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subsequent implementation of control for a certain action, is dependent on the opportu-
nity costs of the alternatively available actions. This model predicts that subjective
experiences of effort, and subsequent reductions in control, depend on the value of
the next-best line of action. In summary, even though these proposals differ in terms
of how costs influence decision-making, they all center on the idea that the mobilization
of control can best be understood as a form of costebenefit trade-off.

Below we sketch our own recent efforts to combine these insights from RL theory in
generaldand the Daw two-step task, in particulardwith the emerging view of cognitive
control as value-based decision-making. We then review several other related approaches
in the contemporary literature.

Controlereward trade-off in the two-step task
We propose that arbitration between model-based and model-free control is achieved by
integrating the costs and benefits of each system. The rewards obtained by each system
can be calculated by observing the average returns obtained by each control system, inde-
pendently, and conditioned on the present task. Next, the brain uses these resulting
“controller values” to select actions that maximize future cumulative reward. In doing
so, it imposes an intrinsic, subject “cost” on the model-based controller. This cost rep-
resents the foregone reward due to model-based control, for instance due to the poten-
tially longer decision time and due to the foregone opportunity to deploy limited
cognitive control resources on other, concurrent tasks.

A core prediction of this model is that manipulating the rewards available during a
decision-making task should alter the balance between model-free and model-based
control. A natural candidate task to test this prediction is the Daw two-step task. Indeed,
the model-based strategy in this task has been described as “optimal” (e.g., Sebold et al.,
2014). Thus, one would predict that the more money at stake on any given trial of the
task, the more willing the participant should be to pay the intrinsic cost of cognitive con-
trol in order to obtain the benefits of accurate performance.

In practice, however, recent research on this task shows that increased reliance on the
model-based system does not predict increased performance accuracy on the Daw two-
step task (Akam et al., 2015; Kool et al., 2016). To show this, Kool et al. (2016) recorded
the average reward rate of many RL agents that varied across a range from pure model-
free control to pure model-based control (see Fig. 7.3A). These simulations showed no
systematic relationship between reward rate and model-based control for the original
Daw two-step task, or for several related variants of this task (Dezfouli & Balleine,
2013; Doll et al., 2015) across a wide range of RL parameters. Consistent with this simu-
lation result, they also found no correlation between model-based control and average
reward in a subsequent experiment (Fig. 7.3B). The absence of this relation is produced
by the interaction of at least five factors, several of which appear to prevent the model-
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based system from obtaining sufficiently reliable reward estimates (Kool et al., 2016). In
short, the effectiveness of the model-based strategy is weakened on the Daw two-step
task, because the first-stage choices carry relatively decreased importance and because
this strategy does not have access to accurate representations of the second-stage reward
outcomes. The fact that there is no controlereward trade-off in the Daw two-step task
makes it ill-suited to test the costebenefit hypothesis of RL arbitration, for example, by
testing the effect of increased “stakes” on controller selection.

A novel two-step paradigm
In order to gain more experimental and computational traction on a controlereward
trade-off in RL, Kool et al. (2016) developed a novel two-step task that theoretically
and empirically achieves a trade-off between control and reward. The changes in this
new task are based on the factors that were identified to produce the absence of this rela-
tionship in the Daw two-step task. One of the more notable changes to this paradigm is
that it adopts a different task structure (Fig. 7.4; Doll et al., 2015). This task uses two first-
stage states (randomly selected at the start of each trial) that both offer deterministic
choices to one of two second-stage states. In both these second-stage states, the choices
again are associated with a reward outcome that randomly changes across the experi-
mental session. Specifically, the drifting reward probabilities at the second stage are
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Figure 7.3 Controlereward trade-off in the Daw two-step task. (A) The relationship between the de-
gree of model-based control and reward rate across 1000 simulations (with reinforcement learning
parameters mirroring the median fits reported by Daw et al. (2011)). Importantly, these simulation re-
sults show that the task does not embody a trade-off between model-based control and reward. (B)
Relationship between the estimated degree of model-based control and reward rate in the Daw two-
step task (Daw et al., 2011). Consistent with simulation results, there is no correlation between these
variables (n ¼ 197). Dashed lines indicate the 95% confidence interval. (Adapted from Kool et al. (2016).)

Competition and Cooperation Between Multiple Reinforcement Learning Systems 161



replaced with drifting scalar rewards (ranging from a negative to a positive number), so
that the payoff of each action is identical to its value. This change was implemented to
increase the informativeness of each reward outcome and thus to increase model-based
accuracy.

The dissociation between model-free and model-based control in this task follows a
different logic than the Daw two-step task. Since the model-free system only learns
stateeactionereward outcomes, it will not be able to transfer information learned in
one starting state to the other starting state. In other words, rewards that are obtained
in one starting state only increase the likelihood of revisiting that second-stage when
the next trial starts in the same starting state but should not affect subsequent choices
from the other starting state. The model-based system, on the other hand, treats the
two starting states as functionally equivalent because it realizes the implicit equivalence
of their action outcomes. Therefore, it will be able to generalize knowledge across
them. So, reward outcomes at the second-stage should equally affect first-stage choices
in the next trial, independent of whether this trial starts with the same state as the previous
one.

This novel version of the two-step task incorporates many changes that increase the
importance of the first-stage state and the ability of the system to learn the second-stage

Opportunity to obtain reward (changing over time)
Figure 7.4 Design and state transition structure of the novel two-step task. Each first-stage choice
deterministically transitions to one of two second-stage states. Each second-stage choice is associated
with a scalar reward (between 0 and 9), which changes over the duration of the experiment according
to a random Gaussian walk with s ¼ 2.
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action values. Because of this, it achieves a trade-off between control and reward. This
was first demonstrated through the simulation of RL agents performing this novel task
(Kool et al., 2016). These simulations showed that the degree of model-based control
was positively associated with average reward rate on the novel two-step paradigm
(see Fig. 7.5A). A subsequent experiment provided convergent evidence for this theoret-
ical result. Kool et al. (2016) found that, across participants, the degree of model-based
control positively predicted the average reward rate (Fig. 7.5B), and this correlation
was significantly stronger than that in the Daw two-step task.

Interestingly, Kool et al. (2016) also observed that participants spontaneously
increased their rates of model-based control on the novel two-step task compared to
the Daw two-step task. This suggests that the existence of the controledemand trade-
off in the novel paradigm may have triggered a shift toward model-based control.
Note that this result is consistent with the costebenefit hypothesis of arbitration between
habit and planning. However, alternative explanations are possible. For example, it may
be the case that the introduction of negative reward in the novel paradigm triggered a
shift toward model-based control, due to loss aversion. Such a shift would be the result
of a decision heuristic signaling that certain features of the task should lead to increased
model-based control, regardless of whether it actually yield larger overall reward than
model-free control.
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Figure 7.5 Controlereward trade-off in the novel two-step task. (A) The relationship between the de-
gree of model-based control and reward rate across 1000 simulations. In contrast with the Daw two-
step task, these simulation results show that the novel two-step task successfully achieves a trade-off
between model-based control and reward. (B) Relationship between the estimated degree of model-
based control and reward rate in the novel two-step task. Consistent with simulation results, there was
a strong correlation between these variables (n ¼ 184). Dashed lines indicate the 95% confidence in-
terval. ***P < .001. (Adapted from Kool et al. (2016).)
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Testing the costebenefit model of arbitration
To distinguish between these two accounts, Kool, Gershman, and Cushman (2017)
adapted the novel two-step paradigm so that the size of potential reward (the “stakes”)
changes randomly from trial to trial. In this new task, participants are cued about the
size of the stakes at the outset of each trial. The size of the stakes is randomly selected
on each trial, with high stakes calculated as a quintupling of baseline rewards. If behavior
on this task is determined by a costebenefit analysis, then people should employ more
model-based control in the face of increased incentives, since on those trials the coste
benefit trade-off would be most beneficial. The results from this experiment were consis-
tent with this hypothesis. Participants showed increased reliance on model-based control
on high-stakes trials, indicating an increased willingness to engage in effortful planning
(Kool et al., 2017).

Even though this result is consistent with the trade-off hypothesis, it is also consistent
with an account that does not rely on the flexible and adaptive integration of costs and
benefits. Specifically, participants may have simply acted on a decision heuristic, which
reflexively increases model-based control in high-stake situations, regardless of whether
this provides a reward advantage. To test this possibility, Kool et al. (2017) also imple-
mented the stakes manipulation in the Daw two-step paradigm, since in this task there
exists no trade-off between control and reward. If the stakes effect is driven by an incen-
tive heuristic, high stakes should trigger increased model-based control in both tasks.
However, under a costebenefit account, where the brain estimates task-specific
controller values for both systems, model-based control should not increase on high-
stakes trials in the stakes version of the Daw two-step task. The results supported the latter
hypothesis. Participants who completed the original Daw two-step task were insensitive
to reward amplification through the stakes manipulation, in contrast with the increase in
model-based control to reward amplification in the novel paradigm (Kool et al., 2017).

These results provide the first evidence that the brain attaches a cost to the exertion of
model-based control. Furthermore, they provide insight into the way humans arbitrate
between control mechanisms. Rather than relying on a heuristic of increasing model-
based control when presented with larger incentives or other task features, participants
seemed to engage in an adaptive integration of costs and benefits for either strategy in
the current environment. Participants flexibly estimated the expected rewards for each
system and then weighed this against the increased costs of model-based control.

Alternative models of arbitration
The costebenefit account of competition between RL systems is broadly consistent with
two bodies of research. First, the assumption that model-based control carries an intrinsic
effort cost finds resonance in a large literature on the aversive nature of cognitive control
(Botvinick & Braver, 2015; Gershman et al., 2015; Griffiths et al., 2015; Payne et al.,
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1993; Rieskamp & Otto, 2006; Shenhav et al., 2013). This work suggests that the exer-
tion of cognitive control can best be understood as the output of costebenefit analysis.
The comparison of behavior between the novel and Daw two-step tasks described above
indicates that a similar trade-off guides the allocation of model-based control, presumably
because this also requires the exertion of cognitive control (Otto, Gershman, et al., 2013;
Smittenaar et al., 2013).

Second, there are now several other models of arbitration between competing RL
system that are, to varying degrees, compatible with the costebenefit trade-off account,
but which differ in their details (Daw et al., 2005; Keramati et al., 2011; Lee et al., 2014;
Pezzulo et al., 2013). Below, we will describe how these models implement the compe-
tition between model-free and model-based control and contrast them with our coste
benefit account.

According to Daw et al. (2005), arbitration between conflicting systems for behavioral
control is primarily determined on the basis of uncertainty. Specifically, this model esti-
mates each system’s value uncertainty for each stateeaction pair. The model-based sys-
tem has uncertainty due to bounded computational resources, whereas the model-free
system has uncertainty due to limited experience in the environment. These measures
of uncertainty are computed through Bayesian implementations of both RL systems as
the posterior variance of the action values. After estimating these two different forms
of uncertainty, the competition is then resolved by choosing the action value of the sys-
tem with lower uncertainty.

A related metacontrol model uses signals of the systems’ reliability as a means of arbi-
tration (Lee et al., 2014). Here, the measure of reliability for a system is proportional to
the absolute size of their prediction errors, the degree to which the systems predicted
future states or rewards accurately. Similar to the Daw et al. (2005) model, Bayesian esti-
mation of reliability still occurs for the model-based system, while a PearceeHall
associability-like rule is used to estimate the reliability of the model-free system. In addi-
tion, this model also incorporates a “model bias” term, which favors the model-free sys-
tem all else being equal, so as to account for differences in cognitive effort. The resulting
arbitration process transforms these variables into a weighting parameter, which is then
used to compute a weighted combination of action values to guide decision-making.
Note that, in contrast to the Daw et al. (2005) model, the competition is resolved as a
function of the average reliability of the model-based and model-free systems, and not
separately for each action.

These closely related models of metacontrol account for many experimental findings,
such as the finding that as the model-free system becomes more accurate, agents become
increasingly insensitive toward outcome devaluation (since the model-free system needs
to incrementally relearn its actioneoutcome contingencies). Furthermore, the reliability
signals in the Lee et al. (2014) model have been shown to have a neural correlate in the
inferior lateral prefrontal cortex. They cannot, however, explain the observation of
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increased model-based control on high-stakes trials (Kool et al., 2017), since the accuracy
of either system’s prediction does not change as a result of the amplification of reward.
Therefore, these models do not predict an increase in proactive model-based control
in the face of increased reward potential.

Instead, our costebenefit hypothesis and the data described above align more strongly
withmetacontrolmodels that balance accuracy against control costs.One suchmodel is pro-
posed by Keramati et al. (2011). According to this account, the choice between model-
based and model-free control is essentially about maximizing total reward. At each time
point, the decision-maker estimates the expected gain in reward from running a model-
based estimation of action values. This measure, also known as the value of information
(Howard, 1966), was originally developed as a way to negotiate the exploratione
exploitation trade-off in RL. Next, the agent also estimates the cost of running those
simulations. This cost is explicitly formalized as the amount of potential reward that the
model-free system could have accrued while the model-based system is engaged in these
prospective simulations. In other words, the cost of model-based control is explicitly an op-
portunity cost directly proportional to the required processing time. Finally, the costs and
gains are compared against each other, and their relative size determines whether the
model-based system is invoked. If the costs outweigh the gains, the faster the habitual sys-
tem is employed, otherwise the agent engages in slower model-based planning.

Pezzulo et al. (2013) have developed a related value-based account of arbitration be-
tween habit and planning. Similar to the proposal of Keramati et al. (2011), the agent as-
sesses each available action in the current state by first computing the value of information
(Howard, 1966) associated with model-based planning. This variable encompasses both the
uncertainty about the action’s value and also the difference in value between each action
and the best available alternative action. The value of information increases when the un-
certainty about the current action is high and also if the difference between possible action
values is small (that is, if the decision is more difficult). Next, this measure of the expected
gains of model-based control is compared against a fixed threshold that represents the effort
cost (Gershman & Daw, 2012) or time cost associated with planning. Again, if the cost ex-
ceeds the value of information, the agent relies on cached values; otherwise it will employ
model-based simulations over an internal representation of the environment to reduce the
uncertainty about the current action values (Solway & Botvinick, 2012).

Both the Keramati et al. (2011) and Pezzulo et al. (2013) models account for a range of
behavioral findings. The time-based account of Keramati et al. (2011) model accounts for
the increasing insensitivity to outcome devaluation over periods of training. It can also
naturally incorporate the finding that response times increase with the number of options,
especially early in training, since at those moments the model will engage in time-
consuming model-based simulations across the decision tree. Relatedly, Pezzulo et al.
(2013) showed that, in a multistage RL task, their model switches from a large number
of model-based simulations in earlier stages toward more reliance on model-free control
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in later stages. In other words, when the model-free system has generated a sufficiently ac-
curate representation of the world, the agent then prefers to avoid the cost of model-based
control. The Pezzulo et al. (2013) model is also able to flexibly shift between systems. For
example, it shows a rebalancing toward model-based control in response to a change in
reward structure of the environment, i.e., an increase in uncertainty of action outcomes.

However, these models still arbitrate between habit and planning as a function of the
amount of uncertainty about value estimates in the model-free action values: both
models assume an advantage for model-based control when uncertainty about model-
free estimates is high (Keramati et al., 2011; Pezzulo et al., 2013). In doing so, they
are not immediately able to explain the effect of increased stakes on model-based control
(Kool et al., 2017). Those data instead favor a mechanism that directly contrasts the re-
wards obtained by model-based and model-free control, discounted by their respective
cost. Furthermore, the fact that these models require the explicit computation of the ex-
pected gains from model-based simulations (the value of information; Howard, 1966)
creates the problem of infinite regress (Boureau et al., 2015). If the purpose of metacon-
trol is to avoid unnecessary deployment of cognitive control, then this purpose is under-
mined by engaging in an explicit and demanding computation to determine whether
cognitive demands are worthwhile.

Based on the evidence described here, we make two suggestions for new formal
models of arbitration between RL systems. First, they should incorporate a direct contrast
between the costs and benefits of both model-free and model-based learning strategies in
their current environment, perhaps in addition to a drive to increase reliability of
controller predictions. This property should afford flexible adaptive control in response
to the changing potential for reward, such as in the stake size experiment described
above. Second, in order to avoid the issue of infinite regress, the arbitration between
habit and planning should be guided by a process that does not involve control-
demanding computations of reward advantage, such as the value of information
(Howard, 1966). Instead, new models of metacontrol should focus on more heuristic
forms of arbitration. Notably, a system that attaches an intrinsic cost to model-based plan-
ning might guide metacontrol with enhanced efficiency, by circumventing the need for
an explicit computation of those costs in terms of effort, missed opportunities, and time.
In sum, these properties motivate our proposal that a form of model-free RL integrates
the reward history and control costs associated with different control mechanisms. The
resulting “controller values” dictate controller arbitration.

PRINCIPLES OF COOPERATION

While the evidence reviewed in the previous section supports competitive architectures,
recent evidence also suggests a variety of cooperative interactions between model-free
and model-based RL. In this section, we review three different flavors of cooperation.
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Model-based simulation as a source of training data for model-free
learning
One way to think about the trade-off between model-free and model-based algorithms is
in terms of sample complexity and time complexity. Sample complexity refers to the number
of training examples a learning algorithm needs to achieve some level of accuracy. Time
complexity refers to how long an algorithm takes to execute. Intuitively, these corre-
spond to “learning time” and “decision time.”

Model-free algorithms have high sample complexity but low time complexitydin
other words, learning is slow but deciding is fast. Model-based algorithms have the oppo-
site property: relatively low sample complexity, assuming that the model can be learned
efficiently, but high time complexity. Since the amount of data that an agent has access to
is typically fixed (by the world or by the experimenter) and thus beyond algorithmic
improvement, it might seem that this trade-off is inevitable. However, it is possible to
create additional examples simply by simulating from the model and allowing model-
free algorithms to learn from these simulated examples. In this way, the model-based sys-
tem can manufacture an arbitrarily large number of examples. As a consequence, the
model-free system’s sample complexity is no longer tied to its real experience in the
world; model-based simulations, provided they are accurate, are a perfectly good
substitute.

Sutton (1990) proposed a cooperative architecture called Dyna that exploits this idea.
A model-free agent, by imbibing model-based simulations, can become arbitrarily pro-
ficient without increasing either sample complexity or time complexity. The only
requirement is that the agent has sufficient spare time to process these simulations.
Humans and many other animals have long periods of sleep or quiet wakefulness during
which such simulation could plausibly occur. Notably, neurons in the hippocampus
tuned to spatial location (“place cells”) replay sequences of firing patterns during rest
and sleep (see, Carr, Jadhav, & Frank, 2011 for a review), suggesting they might act as
a neural substrate for a Dyna-like simulator ( Johnson & Redish, 2005). Furthermore,
it is well known that motor skills can improve following a rest period without additional
training (Korman, Raz, Flash, & Karni, 2003; Walker, Brakefield, Morgan, Hobson, &
Stickgold, 2002) and reactivating memories during sleep can enhance subsequent task
performance (Oudiette & Paller, 2013). Ludvig, Mirian, Kehoe, and Sutton (2017)
have argued that simulation may underlie a number of animal learning phenomena
(e.g., spontaneous recovery, latent inhibition) that are vexing for classical learning the-
ories (which are essentially variants of model-free algorithms).

A series of experiments reported by Gershman, Markman, and Otto (2014) attempted
to more directly test Dyna as a theory of human RL. The experimental design is summa-
rized in Fig. 7.6A. In Phase 1, subjects learn the structure of a simple two-step sequential
decision problem. In Phase 2, they learn that taking action A in state 1 is superior to
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taking action B. They then learn in Phase 3 that state 3 is superior to state 2. This sets up a
conflict with what they learned in Phase 2 because taking the preferred action A in state 1
will lead them to state 2 (the inferior state). In Phase 4, Gershman et al. (2014) tested
whether they switch their preference for action A following their experience in the
second-step states.

Standard model-free learning algorithms like temporal difference learning do not pre-
dict any revaluation because they rely on unbroken trajectories through the state space in
order to chain together reward predictions. These trajectories were deliberately broken in
the experimental structure so as to handicap model-free learning. Less obviously, standard

Figure 7.6 (A) The sequential decision problem consists of three states (indicated by numbered circles)
and two mutually exclusive actions in each state (indicated by letters). Deterministic transitions be-
tween states conditional upon the chosen action are indicated by arrows. Rewards for each statee
action pair are indicated by amounts (in cents). In Phase 4, reward feedback is delayed until the
end of the phase. (B) Revaluation in load and no load conditions. Revaluation magnitude is measured
as P4(action ¼ Bjstate ¼ 1)dP2(action ¼ Bjstate ¼ 1), where Pi(action ¼ ajstate ¼ s) is the probability
of choosing action a in state s during Phase i. Top: load applied during Phase 3; Bottom: load applied
during Phase 4. (C) A brief rest phase prior to Phase 4 ameliorates the effects of load.
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model-based learning algorithms also predict no revaluation because subjects are explic-
itly instructed in Phase 4 that they are only being rewarded for their actions in the first
state. Thus, the optimal model-based policy should completely ignore information about
the second step. Crucially, Dyna predicts a positive revaluation effect because model-
based simulation can effectively stitch together the state sequences, which were not
explicitly presented to subjects, allowing model-free algorithms to revise the value esti-
mate in state 1 following experience in states 2 and 3.

The experimental results showed clear evidence for a revaluation effect (Fig. 7.6B),
supporting the predictions of Dyna. Additional support came from several other findings.
First, cognitive load during Phase 3 reduced the revaluation effect. This is consistent with
the idea that model-based simulation, like other model-based processes, is computation-
ally intensive and thus susceptible to disruption by competition for resources. Second, the
load effect could be mitigated by increasing the number of trials (i.e., opportunities for
revaluation) during Phase 3. Third, a brief rest (quiet wakefulness) prior to Phase 4
increased revaluation, consistent with the hypothesis of offline simulation driving
model-free learning (Fig. 7.6C). Finally, applying cognitive load during Phase 4 had
no effects on the results, supporting our proposal that performance is driven by
model-free control (recall that cognitive load has a selective, deleterious effect on
model-based control; Otto, Gershman, et al., 2013).

Taken together, these results provide some of the first behavioral evidence for
cooperative interaction between model-based and model-free RL. The same frame-
work may explain the observation that model-based control on the Daw two-step
task becomes resistant to disruption by cognitive load over the course of training
(Economides, Kurth-Nelson, L€ubbert, Guitart-Masip, & Dolan, 2015). If one effect
of training is to inject model-based knowledge into the model-free value function,
then the model-free system will be able to exhibit model-based behavior autono-
mously. Dyna may also shed light on the recent observation that dopamine neurons
signal prediction errors based on inferred (i.e., simulated) values (Doll & Daw, 2016;
Sadacca, Jones, & Schoenbaum, 2016).

Partial evaluation
Keramati et al. (2016) have investigated an alternative way to combine model-based and
model-free systems, which they refer to as “planning-until-habit,” a strategy closely
related to “partial evaluation” in the computer science literature (see Daw & Dayan,
2014). The basic idea, illustrated in Fig. 7.7, is to do limited-depth model-based planning
and then insert cached model-free values at the leaves of the decision tree. The sum of
these two components will equal the full value at the root node. This model nests
pure model-based (infinite depth) and pure model-free (depth 0) algorithms as special
cases. The primary computational virtue of partial evaluation is that it can efficiently
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exploit cached values to augment model-based planning. This will work well when
cached values are accurate in some states but not others (where planning is required).

Keramati et al. (2016) provided behavioral evidence for this proposal using a novel
three-step extension of the Daw two-step task. Using the same logic of analyzing the
interaction between reward outcome and transition probability on subsequent choices,
they found differences in the mixture of model-based and model-free behavior at
different steps of the task. In particular, subjects appeared model-based with respect to
the second step but model-free with respect to the third step, precisely what was pre-
dicted by the partial evaluation strategy. Moreover, putting people under time pressure
shifted them to a pure model-free strategy at both steps, consistent with the idea that the
depth of model-based planning is adaptive and depends on resource availability.

Habitual goal selection
An advantage of model-based control is its capacity to plan toward goals. That is, a
model-based agent can specify any particular state of the world that she wishes to attain
(e.g., being at the dentist’s office at 2 p.m. with a bottle of ibuprofen) and then evaluate
candidate policies against their likelihood of attaining that goal state. In many laboratory
tasks, the number of possible goal states may be very small, or they may be explicitly
stated by the experimenter. For instance, in the classic “two-step” task presented in
Fig. 7.1, there are only six states toward which the agent might plan (two intermediate
states and four terminal states). In the real world, however, the number of possible goal

(A) (B) (C)

Figure 7.7 (A) Pure planning: rewards are mentally accumulated over an infinite horizon. (B) Plan-
until-habit: rewards are partially accumulated and then combined with a cached value function.
(C) Pure habit: actions are evaluated using only cached values, no reward accumulation. (Reprinted
from Keramati et al. (2016).)
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states that we might select at any given moment is very large. Usually, there are no ex-
perimenters restricting this set for you. How do we decide which goals to pursue?

One possibility is exhaustive search, but this is computationally prohibitive. Consider,
for instance, evaluating candidate goals alphabetically: You could set the goal of abscond-
ing with an aardvark, or absconding with an abacus, and so on, until eventually considering
selecting the goal of X-raying with a Xerox. For the same reasondi.e., the large set of
possible goals in most real-world settingsdit is not practical to employ model-based eval-
uation of the rewards of candidate goals in order to decide which goal to select. Is there a
more efficient way to decide which particular goal to pursue from moment to moment?

An obvious alternative is to select goals by model-free methodsdin other words, to
store a state-specific cached value of the likely value of pursuing different goals. Put simply,
an agent might ask himself/herself, “when I’ve been in this situation in the past, what have
been rewarding goals for me to select?”Of course, once a goal is selected, it falls to model-
based processes to plan toward that goal. This entails a cooperative relationship between
the two control mechanisms: Cached, model-free values may be used to decide which
goal to pursue, while model-based planning is used in order to determine how to attain it.

The utility of this approach is best appreciated through a specific example (Cushman
& Morris, 2015). Consider an experienced journalist who sets out to report on different
news events each day. At a high level of abstraction, his/her job is structured around a
regular series of goals to pursue: “Find out what has happened this morning”; “Consult
with my editor”; “Obtain interviews”; “Write a draft,” and so forth. Thus, selecting goals
may be efficiently accomplished by considering their cached value: “Obtaining inter-
views” was a valuable goal yesterday, and it will remain so today. Yet, pursuing any
one of these goals would require flexible model-based planningdfor instance, the ac-
tions necessary to interview the president one day will be different than the actions neces-
sary to interview a political dissident the next day. In sum, then, a favorable architecture
for many tasks would select goals according to model-free value but then attains goals by
model-based planning.

Cushman and Morris (2015) found empirical support for this architecture using
several modified versions of the classic Daw two-step task. An example is illustrated in
Fig. 7.8. The essence of the design is to prompt people to choose an action that reveals
their goal but then occasionally transition them to a nongoal state. If this reinforcement
history affects their subsequent choice despite its low probability, then it can be attributed
to a model-free value update process. Subsequently, participants are tested on different
actions that are associated with common goal states. Influence of reinforcement history
even upon these different actions implies a model-free value assignment not to the action
itself, but rather to the goal state with which it is associated.

Beyond the particular case of goal selection, this research points toward a more gen-
eral form of cooperative interaction between model-free and model-based systems. For
typical real-world problems, full model-based evaluation of all possible action sequences
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will always pose prohibitive computational demands. One solution to this problem is to
use cached, model-free values to weight the probability with which all possible actions
are introduced into the subset of actions that receive further model-based evaluation.
(This subset might be described as the “choice set.”) All else being equal, the higher
the cached value of an action, the more likely that the benefits of a more precise
model-based estimate of its current value will outweigh the computational demands
involved. Investigating this general process of “choice set construction” is an important
direction for future research.

CONCLUSION

Over the last century, the idea that human behavior is controlled by two systems, one
habitual and one goal-directed, has become a cornerstone of psychological and behav-
ioral theories of cognition and decision-making (Dickinson, 1985; Dolan & Dayan,
2013; Fudenberg & Levine, 2006; Kahneman, 1973; Sloman, 1996). Recent RL theory
has brought mathematical precision to this area of research by formalizing this distinction

Figure 7.8 A modified version of the two-step task designed to test a model of habitual goal selec-
tion. (A) At stage 1, participants are presented with two available actions drawn from a set of four (1, 2,
3, and 4). These transitions are with high probability to either a blue or red intermediate state, and
with equal low probability to a green state. (B) On critical trials, the low-probability green-state tran-
sition occurs. The key question is whether the reward obtained following the green state influences
subsequent choice of different actions that share the same goal (e.g., whether a reward following the
sequence 1, green influences the probability of subsequently choosing action 3, which shares the
blue-state goal with action 1). Across several experiments, participants exhibited precisely this effect.
(Reprinted from Cushman and Morris (2015).)
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in terms of model-based and model-free control (Daw et al., 2005, 2011; Gl€ascher et al.,
2010). We have reviewed the surge of empirical and theoretical research emanating from
this formalism.

First, we reviewed work that addresses how the habitual and goal-directed systems are
engaged in a competition for control of behavior. We proposed that this competition is
arbitrated as a trade-off between the costs and benefits of employing each system. At the
core of this proposal is the idea that the exertion of model-based control carries an
intrinsic effort cost associated with the exertion of cognitive control. This account is sup-
ported by the findings that model-based planning is dependent on cognitive resources
(Otto, Gershman, et al., 2013; Otto, Raio, et al., 2013; Otto et al., 2015; Schad et al.,
2014) and that humans attach intrinsic disutility to the exertion of cognitive control
(Kool et al., 2010; Westbrook et al., 2013). Current research indicates that model-
based control is spontaneously increased in response to reward amplification, but only
when the model-based system is associated with increased accuracy (Kool et al., 2016,
2017). Together, these findings suggest that the brain estimates values for each system,
integrating their costs and benefits into a single metacontrol value that it uses to guide
controller arbitration.

Second, we reviewed a new line of research that focuses on the ways inwhich habit and
planning act in a cooperative fashion to achieve both efficiency and accuracy. Evidence
suggests a plethora of cooperative strategies: the model-free system can learn from data
simulated from the model-based system (Gershman et al., 2014), can truncate model-
based planning (Keramati et al., 2016), or can facilitate the selection of rewarding goals
(Cushman & Morris, 2015). At present, it is unclear whether these different strategies
occur simultaneously or are adaptively invoked much like in the controller arbitration
problem.

In the work described here, the idea of an intrinsic effort cost for model-based control
has only come to the fore in the research on the competitive interaction between habit
and planning. However, given the ubiquitous nature of the cost for cognitive control
(Botvinick & Braver, 2015; Westbrook & Braver, 2015), such a cost is likely to also
play a role in the collaborative interactions between these two systems. From this
perspective, several intriguing questions arise.

Some of these questions concern the basic algorithmic approach that the brain takes to
decision-making. For instance, is habitual goal selection (Cushman &Morris, 2015) more
prevalent for people who attach a higher intrinsic cost to model-based planning? Does
the intrinsic cost of cognitive control establish the threshold at which estimation of action
values switches from planning to habit in the situations described by Keramati et al.
(2016)? In light of our costebenefit theory of controller arbitration, one may view the
cooperative interaction between habit and planning as a case of bounded rationality
(Gigerenzer & Goldstein, 1996). From this perspective, costly cognitive resources would
be deployed to maximize accuracy among a restricted region of the action space while
preserving a net gain in value, and habit would provide complementary assistance for
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those actions not analyzed through model-based control. Note that this framework pre-
dicts that increased potential incentives (as used in Kool et al., 2017) will lead to deeper
planning in the Keramati et al. (2016) task and a reduced reliance on habitual goal selec-
tion in the Cushman and Morris (2015) task.

Other questions involve neural implementation. Ever since the recent resurgence of
RL theory in modern psychological research, the neuromodulator dopamine has come to
the fore as playing a key role. Most famously, Schultz, Dayan, and Montague (1997)
showed that reward prediction errors, the signals that drive learning of actioneoutcome
contingencies, are encoded by the phasic firing of dopamine neurons that project to the
ventral striatum in the basal ganglia. More important for the current purpose, it has been
suggested that tonic levels of dopamine encode an average reward signal that determines
response vigor in operant conditioning tasks (Hamid et al., 2016; Niv, Daw, & Dayan,
2006), so higher dopamine levels yield increased responding on free-operant condition-
ing tasks. Based on these and related results, Salamone and colleagues (Salamone &
Correa, 2012; Salamone, Correa, Farrar, Nunes, & Pardo, 2009) have proposed that
baseline levels of dopamine in the basal ganglia may actually serve to discount the
perceived costs of physical effort. For example, rats in an effort-based decision-making
task show reduced willingness to climb over barriers to obtain rewards after depletion
of dopamine in the nucleus accumbens (Cousins, Atherton, Turner, & Salamone,
1996). Westbrook and Braver (2016) have proposed a very similar view for the case of
mental effort. According to this account, increases in baseline dopamine levels in response
to high-reward situations facilitate subsequent cognitive processing by enhancing stability
of working memory representations in the prefrontal cortex. Intriguingly, recent exper-
iments indicate that baseline dopamine levels in the ventral striatum correlated positively
with a bias toward more model-based control (Deserno et al., 2015) and that experimen-
tally induced increases in dopamine increase the degree of model-based control in the
Daw two-step task (Sharp, Foerde, Daw, & Shohamy, 2015; Wunderlich, Smittenaar,
& Dolan, 2012; see Chapter 11 by Sharpe and Schoenbaum). Together, these insights
hint at the intriguing possibility that this effect of dopamine on model-based control
may be viewed as the result of an alteration of the variables that enter the costebenefit
trade-off at the algorithmic level.

While the work we have reviewed in this chapter suggests a rich space of competition
and cooperation between RL systems, we have in fact only skimmed the surface. New
research suggests separate but interacting systems for Pavlovian (Dayan & Berridge, 2014)
and episodic (Gershman & Daw, 2017) RL. One may reasonably worry that theorists are
gleefully manufacturing theories to accommodate each new piece of data, without
addressing how the systems act in concert as part of a larger cognitive architecture.
What is needed is a theory of metacontrol that encompasses all of these systems. The
development of such a theory will be a central project for the next generation of RL
research.
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CHAPTER 8

Cortical Determinants of Goal-Directed
Behavior
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INTRODUCTION

Appropriate decision-making is critical for adapting to a changing environment. Every
day, we must make decisions based on internal goals, and the expectation that a given
action will lead to goal achievement. Such decisions are experimentally defined as
“goal-directed.” Several regions of the mammalian cortex are involved in the integration
of sensory, affective, and cognitive information to guide flexible choice between
competing actions. Current evidence indicates that, in the rat, these regions principally
involve the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and insular
cortex (IC). Importantly, the emerging view is that each of these areas provides a distinct
contribution to goal-directed behavior. Cortical coordination may therefore prove
essential to flexible action control. This chapter outlines what we know about the
involvement of these cortices in goal-directed behavior and proposes avenues for future
research in the cortical control of choice.

We have focused our review on studies using free operant tasks (rather than stimulus-
guided tasks) and causal interventions. However, it should be noted that much research
exists on the responses of cortical neurons during goal-directed tasks (e.g., Furuyashiki,
Holland, & Gallagher, 2008; Schoenbaum, Chiba, & Gallagher, 1998; Simon, Wood,
& Moghaddam, 2015; Whitaker et al., 2017) and, while these studies are not reviewed
here, correlational data from electrophysiological recordings and ex vivo imaging largely
support our conclusions. The majority of the studies discussed in this chapter use the
instrumental outcome devaluation paradigm (e.g., Adams & Dickinson, 1981; Colwill
& Rescorla, 1985). This paradigm represents a powerful tool in the study of goal-
directed behavior and is widely used across species. The reason for this is twofold. First,
the paradigm offers a detailed behavioral analysis. It allows an experimental decomposi-
tion of action selection into its associative learning processes, including contingency
learning (between actions and their consequences), learning the value of those conse-
quences (in accord with one’s motivational state, i.e., incentive learning) and, finally,
integrating this information to guide choice. Second, our strong understanding of the
associative learning processes involved in this task makes it amenable to stringent
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neurobiological analyses. That is, a thorough understanding of the behavior can drive in-
vestigations into the brain regions and circuits underlying action control.

MEDIAL PREFRONTAL CORTEX

Anatomical considerations
The mPFC corresponds to the major portion of the medial wall of the anterior hemi-
sphere and is dorsal to the genu of the corpus callosum. In rodents, this region has
been traditionally divided into four distinct areas: the medial precentral (PrCm) or area
Fr2, the anterior cingulate, the prelimbic (PL), and the infralimbic (IL) area. These latter
two regions of the prefrontal cortex have a well-established role in instrumental behavior,
and a number of elegant studies have described their distinct contribution to goal-
directed action and choice.

Medial prefrontal cortex and goal-directed behavior
The anatomical heterogeneity of mPFC is reflected in the coordination of goal-directed
and habitual responding. Rats with pretraining lesions or pharmacological inactivation
affecting IL cortex maintain goal-directed responding under overtraining conditions
that normally promote habit (stimulus-response) responding (Coutureau & Killcross,
2003; Killcross & Coutureau, 2003). By contrast, lesions of PL cortex result in perfor-
mance that is insensitive to outcome devaluation under conditions that should support
goal-directed (actioneoutcome) responding (Balleine & Dickinson, 1998; Corbit &
Balleine, 2003; Coutureau, Marchand, & Di Scala, 2009; Killcross & Coutureau, 2003).
Chronic stress also renders instrumental responding insensitive to outcome devaluation
in mice, which might result from profound structural changes in the PL (Dias-Ferreira
et al., 2009). The role of the PL in goal-directed behavior is also reflected at the cellular
level since inhibition of Rho kinase in PL following actioneoutcome training maintains
goal-directed control under training conditions known to produce habitual control
(Swanson, DePoy, & Gourley, 2017).

Damage to mPFC also alters adaptation to changes in instrumental contingencies
(Balleine & Dickinson, 1998; Corbit & Balleine, 2003; Swanson et al., 2017) but only
under some circumstances. Indeed, whereas mPFC-lesioned (damage to dorsal and
ventral regions) rats remain able to learn a shift to a negative contingency, they appear
unable to correctly detect changes when the contingency is shifted to a null contingency
(Coutureau, Esclassan, Di Scala, & Marchand, 2012). Importantly, this deficit does not
reflect a different perception of the temporal relationship between the response and
the outcome since mPFC-lesioned rats demonstrate normal sensitivity to changes in con-
tiguity under delayed reward conditions (Coutureau et al., 2012). That is, both sham-
and mPFC-lesioned rats maintain instrumental responding when rewards are immediate,
but response rates in both groups decrease with increasing delays. Rats with lesions of
the mPFC are therefore capable of some adaptation to shifts in instrumental contingency
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or contiguity, yet these rats have difficulty evaluating the balance between contingent
and noncontingent reinforcement, as is the case in contingency degradation.

Follow-up studies have demonstrated that the role of PL in goal-directed action con-
trol is transient. It is required for the early stages of acquisition but not for the expression
of goal-directed behavior (Ostlund & Balleine, 2005; Tran-Tu-Yen, Marchand, Pape, Di
Scala, & Coutureau, 2009). Therefore, this brain region is selectively involved in the for-
mation of actioneoutcome associations, but expression or storage of those associations
occurs elsewhere. A key target of PL is the posterior dorsomedial striatum (pDMS).
Disruption of pDMS function either pre- or posttraining impairs instrumental outcome
devaluation and contingency degradation (Yin, Knowlton, & Balleine, 2005; Yin,
Ostlund, Knowlton, & Balleine, 2005), thus suggesting that this region is critical for
both the acquisition and performance of goal-directed actions and might be specifically
involved in the storage of actioneoutcome learning (Shiflett & Balleine, 2011; Shiflett,
Brown, & Balleine, 2010). The hypothesis that goal-directed behavior arises from func-
tional interaction between PL and pDMS has received recent support. Increased MAPK/
ERK phosphorylation (pERK), a marker of learning and memory, was revealed in
distinct layers of posterior PL shortly after an instrumental training session, and this in-
crease in neuronal activity was specific to prefrontal neurons projecting to pDMS
(Hart & Balleine, 2016). In addition, bilateral disconnection of PL and pDMS impairs
the acquisition of goal-directed actions (Hart & Balleine, 2018).

Medial prefrontal cortex summary
Current evidence indicates that mPFC plays a crucial role in the coordination of goal-
directed and habitual responding. The anatomical characteristics of this brain region are
critical for understanding its function; the dorsal portion of mPFC, including PL, appears
specifically involved in learning goal-directed behaviorwhile the ventral portion, including
IL, mediates habit learning. Inputs from PL to pDMS are likely crucial for the striatal
plasticity underlying goal-directed learning to occur (Hart & Balleine, 2016; Xiong,
Znamenskiy, & Zador, 2015). The learning of habitual responding by ventral mPFC is
far less understood but possibly results from complex interactions either within mPFC
or with dorsolateral striatum, given that this region has repeatedly been reported tomediate
habit learning (Quinn, Pittenger, Lee, Pierson, & Taylor, 2013; Shan, Christie, & Balleine,
2015; Tricomi, Balleine, & O’Doherty, 2009; Yin, Knowlton, & Balleine, 2004).

ORBITOFRONTAL CORTEX

Anatomical considerations
The OFC is situated rostral to the IC in the dorsal bank of the rhinal sulcus. Composed
exclusively of agranular cortical areas, OFC receives sensory inputs from olfactory, gus-
tatory, somatosensory, and visual areas and participates in high-level cognitive processes
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(Ongur & Price, 2000). Several cytological divisions have been delineated, including
ventral (VO), lateral (LO), and dorsolateral subregions as well as a medial area (MO)
that is located in mPFC, below cingulate area 32 or IL (Paxinos &Watson, 2014). A spe-
cific ventrolateral region has also been defined (Van De Werd & Uylings, 2008) that re-
ceives dense innervation from the submedius nucleus in the medial thalamus (Reep,
Corwin, & King, 1996; Tang, Qu, & Huo, 2009; Yoshida, Dostrovsky, & Chiang,
1992). Here, we will review evidence on the involvement of medial versus ventral
and lateral areas in goal-directed behavior.

Orbitofrontal cortex and goal-directed behavior
The involvement of OFC in goal-directed behavior is a matter of debate. Much of this
debate centers on the distinction between stimulus-guided versus outcome-guided
behavior. One view is that VO and LO are involved in the former (Gallagher, McMahan,
& Schoenbaum, 1999; Izquierdo & Murray, 2004, 2010; Izquierdo, Suda, & Murray,
2004; Machado & Bachevalier, 2007; Ostlund & Balleine, 2007b; Pickens, Saddoris,
Gallagher, & Holland, 2005; Pickens et al., 2003; West, DesJardin, Gale, & Malkova,
2011) but not the latter (Balleine, Leung, & Ostlund, 2011; Fellows, 2011; Luk &Wallis,
2013; Ostlund & Balleine, 2007a, 2007b; Roberts, 2006; Rudebeck et al., 2008). For
instance, in rats, lesions of VO and LO cause impairments in Pavlovian reinforcer deval-
uation (Gallagher et al., 1999) and specific Pavlovian-to-instrumental transfer (PIT) but
leave sensitivity to instrumental outcome devaluation intact (Ostlund & Balleine, 2007b;
Parkes et al., 2017).

However, emerging reports show that, in some instances, inhibition of VO and LO
impairs instrumental outcome devaluation in both rodents and primates (Fiuzat, Rhodes,
& Murray, 2017; Gremel & Costa, 2013; Gremel et al., 2016; Rhodes & Murray, 2013;
Zimmermann, Yamin, Rainnie, Ressler, & Gourley, 2017), and we recently proposed
that VO and LO subregions are recruited to resolve ambiguity in actioneoutcome asso-
ciations (Parkes et al., 2017). Consistent with this suggestion, inhibition of VO and LO
impairs goal-directed behavior when the subject is required to update previously estab-
lished instrumental associations (Parkes et al., 2017) or when the performance of the same
instrumental response differs depending on the context in which it is tested (Gremel &
Costa, 2013; Gremel et al., 2016). These results suggest that VO and LO play a critical
role in the online tracking of the current relationships between actions and their specific
consequences and may help resolve the apparent inconsistencies in the literature
regarding the role of VO and LO in goal-directed behavior.

By contrast, others have argued that it is MO, not VO and LO, which regulates goal-
directed action (Bradfield, Dezfouli, van Holstein, Chieng, & Balleine, 2015; Gourley,
Zimmermann, Allen, & Taylor, 2016). Lesions restricted to MO have been reported
to produce deficits in instrumental tasks that rely on retrieving a representation of the
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outcome, including specific PIT and outcome devaluation (under extinction conditions),
but lesions have no effect on outcome-selective reinstatement, contingency degradation,
or outcome devaluation under rewarded conditions (Bradfield et al., 2015). However,
using similar procedures, others have reported no effect of MO lesions on outcome
devaluation (Gourley, Lee, Howell, Pittenger, & Taylor, 2010; Munster & Hauber,
2017) or specific PIT (Munster & Hauber, 2017). Nevertheless, a segregated view of
OFC function has been proposed by some, which supports dissociable contributions
of MO and VO/LO to reward-guided behavior; MO for action-dependent outcome
retrieval and VO/LO for stimulus-dependent outcome retrieval (Bradfield et al., 2015;
Rudebeck & Murray, 2011).

Our recent results provide clear evidence against this simple distinction and suggest a
specific role for VO/LO in action-guided behavior but only when expectations are
violated (Parkes et al., 2017). This is consistent with the view that behaviors relying
on the explicit use of learned associations may be independent of VO and LO function
(Schoenbaum & Roesch, 2005). Indeed, while VO and LO are not required for goal-
directed behavior when instrumental contingencies remain stable (Ostlund & Balleine,
2007b; Parkes et al., 2017), this region is required for behavioral tasks that generate
ambiguity, including Pavlovian reversal learning (Chudasama & Robbins, 2003; Dias,
Robbins, & Roberts, 1997; Jones & Mishkin, 1972; Rudebeck & Murray, 2008;
Schoenbaum, Nugent, Saddoris, & Setlow, 2002), contingency degradation (Alcaraz
et al., 2015; Ostlund & Balleine, 2007b) and choice guided by learned taste aversions
(Ramirez-Lugo, Penas-Rincon, Angeles-Duran, & Sotres-Bayon, 2016). It has also
been recently proposed that more medial areas of OFC are involved in value-based pro-
cessing, whereas the more lateral regions are critical for sensory processing of both condi-
tioned and unconditioned stimuli (Izquierdo, 2017). This is largely consistent with the
current literature including electrophysiological reports of MO neurons signaling value
and the numerous studies illustrating impaired reversal learning in rats with VO and
LO lesions (see Izquierdo, 2017 for a comprehensive review).

Finally, MO and VO/LO share distinct connections with other cortical areas and
limbic regions, including the striatum (Hoover & Vertes, 2011). Neurons in both MO
and VO/LO send projections to dorsal and ventral striatum; however, VO neurons do
not project to nucleus accumbens (Hoover & Vertes, 2011). Indeed, chemogenetic-
induced inhibition of the VO/LO to dorsal striatal pathway in mice abolishes
instrumental outcome devaluation (Gremel et al., 2016), suggesting that activation of
dorsal striatum-projecting vlOFC neurons is necessary for goal-directed control. The
involvement of MO projections to striatum in action selection remains to be investigated.

Orbitofrontal cortex summary
In our view, there is clear evidence that both MO and VO/LO coordinate aspects of
goal-directed action control. The distinction drawn between MO and VO/LO in the
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regulation of stimulus-dependent versus action-dependent outcome retrieval appears
overly simplified. Indeed, a number of studies now implicate VO and LO in action-
dependent tasks (Fiuzat et al., 2017; Gremel & Costa, 2013; Gremel et al., 2016; Zim-
mermann et al., 2017), particularly, in tracking the current relationship between actions
and their consequences (Parkes et al., 2017). It should be noted that the aforementioned
studies indiscriminately targeted both VO and LO subregions of OFC, but these regions
might form a part of different anatomical and functional networks (Ongur & Price, 2000;
Price, 2007). As such, manipulations that selectively manipulate VO versus LOwill prove
worthwhile to our understanding of OFC’s involvement in goal-directed behavior
(Izquierdo, 2017).

INSULAR CORTEX

Anatomical considerations
The rat IC is a longitudinal strip, occupying the dorsal bank of the rhinal sulcus. It extends
ventrally to the piriform cortex and dorsally to the somatosensory cortex. In the rostro-
caudal direction, IC spans from lateral OFC to perirhinal cortex (Saper, 1982). Its most
rostral regions (termed here “anterior IC”) are generally considered to represent the
lateral prefrontal cortex. The insular region located caudal to the lateral prefrontal cortex
contains gustatory, visceral, and somatosensory representations. Extensive cross talk exists
in the rostrocaudal axis as well as between the distinct layers of IC (granular, dysgranular,
and agranular) along the dorsoventral axis and, as such, the layers are typically not consid-
ered to be independent (Fujita, Adachi, Koshikawa, & Kobayashi, 2010; Fujita,
Koshikawa, & Kobayashi, 2011; Mizoguchi, Fujita, Koshikawa, & Kobayashi, 2011).
A myriad of approaches including electrophysiology (Kosar, Grill, & Norgren, 1986),
anatomy (Krettek & Price, 1977; Saper, 1982; Shi & Cassell, 1998), and behavior
(Accolla, Bathellier, Petersen, & Carleton, 2007; Nerad, Ramirez-Amaya, Ormsby, &
Bermudez-Rattoni, 1996; Saddoris, Holland, & Gallagher, 2009) have localized a region
of IC that is critical for encoding taste-related information, the so-called gustatory cortex
(GC), which occupies approximately 15% of the total area of IC (Kosar et al., 1986;
Yamamoto, Matsuo, & Kawamura, 1980). Neuroanatomical tracing studies show that
GC is reciprocally connected to limbic structures involved in affective processing,
including the prefrontal cortex, amygdala, and ventral striatum (Allen, Saper, Hurley,
& Cechetto, 1991; Gabbott, Warner, Jays, & Bacon, 2003) making this region an ideal
candidate to modulate goal-directed behavior.

Insular cortex and goal-directed behavior
Taste processing is arguably GC’s most recognized function. The GC receives taste-
related and visceral information via the thalamus and the parabrachial nucleus
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(Allen et al., 1991; Cechetto & Saper, 1987), tactile information about the mouth and
tongue from the somatosensory cortex and sensory information related to other modal-
ities including olfaction and audition (for a review see Maffei, Haley, & Fontanini, 2012).
However, beyond these sensory inputs, GC receives affective, anticipatory, and
reward-related information from limbic areas including the mediodorsal thalamus, pre-
frontal cortex, and amygdala (Allen et al., 1991; Hoover & Vertes, 2011; Shi & Cassell,
1998).

In 2000, Balleine and Dickinson provided the first evidence that GC modulates goal-
directed behavior for a food reward. Rats with pretraining excitotoxic lesions of GC
showed impaired satiety-induced instrumental outcome devaluation when tested under
unrewarded conditions. However, in a subsequent rewarded test, where performance on
the actions delivered their associated outcomes, both sham- and GC-lesioned rats showed
selective outcome devaluation and successfully biased their choice toward the lever asso-
ciated with the valued outcome. GC lesions therefore induce a deficit in the ability to
recall the representation of the devalued food and not a deficit in the detection of the
primary taste itself or the assignment of incentive value to the taste (Balleine & Dickinson,
2000). More recent studies using temporary perturbation of GC function have confirmed
its role in the retrieval of outcome value to guide choice. Outcome devaluation is
impaired by pharmacological (Parkes & Balleine, 2013) or chemogenetic (Parkes et al.,
2017) disruption of GC during a choice extinction test. By contrast, similar manipulations
during the acquisition phase have no effect on instrumental learning per se (Parkes,
Ferreira, & Coutureau, 2016; Parkes et al., 2017), and pretraining lesions leave contin-
gency degradation intact (Balleine & Dickinson, 2000). Taken together, these studies
provide clear evidence that GC is necessary to recall the current incentive value of
food rewards, but it is not required to learn the association between actions and their
corresponding outcomes.

GC likely achieves this behavioral modulation via its connections with the basolateral
amygdala (BLA) (Parkes & Balleine, 2013) and the ventral striatum, particularly the core
region of the nucleus accumbens (NAc) (Allen et al., 1991; Parkes, Bradfield, & Balleine,
2015), both of which have been implicated in goal-directed behavior. Using a sequential
disconnection procedure, it was revealed that communication between the BLA and GC
mediates the encoding and retrieval of outcome value (Parkes & Balleine, 2013). By
contrast, interactions between GC and NAc core appear to mediate the effect of outcome
value on the choice between actions. Indeed, outcome devaluation is attenuated
following pretraining disconnection of GC and NAc core via asymmetrical excitotoxic
lesions or by temporary, pharmacological disconnection during the choice test (Parkes
et al., 2015). Therefore, the BLA-GC pathway mediates the encoding and retrieval of
outcome value, whereas the GC-core pathway is involved in the retrieval of current
outcome value and subsequent performance based on that value.
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Insular cortex summary
The gustatory portion of IC (GC) plays a general role in guiding behavior based on the
motivational value of expected food outcomes. GC modulates goal-directed behavior
not by encoding the relationship between an action and its outcome but rather by recall-
ing the current value of a specific sensory outcome to guide adaptive choice. It must be
noted that the involvement of GC in goal-directed behavior may be limited to situations
where the “goal” is a taste- or food-related reward. It is perhaps unlikely that the GC
would recall the value of sexual or thermoregulatory rewards, for example, but another
region of IC could be involved (Karama et al., 2002). At present, it is not clear if other
regions of IC (particularly, anterior IC) are also involved in action selection but, given the
existence of intrainsular connections, this requires attention.

FUTURE DIRECTIONS

Corticoecortical interactions
Over the past few decades, investigations into the neural substrates of goal-directed
behavior have revealed a crucial role for corticoesubcortical interactions, including cor-
ticostriatal and thalamocortical pathways (Balleine & O’Doherty, 2010; Hart, Leung, &
Balleine, 2014; Jin & Costa, 2015). However, we do not yet understand how cortical re-
gions might communicate to support complex cognitive functions, including action se-
lection. While little causal research has examined the role of corticoecortical pathways in
choice, imaging studies in humans have revealed parallel phasic activation of mPFC and
OFC during Pavlovian modulation of choice (Homayoun & Moghaddam, 2009) and
corticoecortical interactions appear to underlie adverse decision-making in human pa-
tients with obsessive compulsive disorder (Schlosser et al., 2010).

Rodent mPFC, OFC, and IC share a high degree of interconnectivity. Both dorsal
and ventral mPFC send projections throughout IC, and regions of IC project back to
mPFC, although direct connections from GC to mPFC have not been well studied
(Allen et al., 1991; Gabbott et al., 2003). mPFC (dorsal and ventral subregions) and
OFC (medial, ventral, and lateral subregions) are also reciprocally connected (Hoover
& Vertes, 2011; Vertes, 2004) as are IC and OFC (Fujita et al., 2010; Hoover & Vertes,
2011; Shi & Cassell, 1998). These intrinsic corticoecortical connections may play a crit-
ical role in choice behavior, but this remains to be investigated. For instance, given the
strong intrainsular connections (Fujita et al., 2010) and the reciprocal projections be-
tween OFC and IC (Fujita et al., 2010; Hoover & Vertes, 2011; Shi & Cassell, 1998),
communication between OFC and IC may be required to integrate knowledge about
current actioneoutcome contingencies with goal value to guide action selection.

Direct corticoecortical projections are often paralleled by transthalamic routes
(Sherman, 2016; Theyel, Llano, & Sherman, 2010). Information can therefore be relayed
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directly between cortices or via connections with the various thalamic nuclei. Transtha-
lamic pathways may allow information to be modulated by thalamic circuits and to be
shared with subcortical sites; neither of which is possible via direct corticoecortical
communication (Sherman, 2016). Recently, the mediodorsal thalamic nucleus (MD)
has been investigated as a critical site for goal-directed action control (Balleine, Morris,
& Leung, 2015; Bradfield, Bertran-Gonzalez, Chieng, & Balleine, 2013; Parnaudeau
et al., 2015). MD projects throughout prefrontal cortex, yet recent evidence indicates
that highly segregated populations of MD neurons project to either mPFC or OFC
(Alcaraz, Marchand, Courtand, Coutureau, & Wolff, 2016). Indeed, disconnection of
MD and the dorsal region of mPFC by lesion or chemogenetics impairs the acquisition
of goal-directed actions (Bradfield, Hart, & Balleine, 2013; Alcaraz et al., 2018). The role
of these distinct projections in goal-directed behavior warrants further investigation.

Neuromodulatory systems
Thus far, we have focused our analysis on circuits of goal-directed behavior, without
mentioning that these circuits are regulated by themajor neuromodulatory systems.Dopa-
minergic modulation of the prefrontal cortex has long been shown to influence decision-
making processes (Boureau & Dayan, 2011; Costa, 2007; Daw, Kakade, & Dayan, 2002;
Dayan & Balleine, 2002; Floresco, 2007; Niv & Schoenbaum, 2008; Palmiter, 2008;
Rutledge, Skandali, Dayan, & Dolan, 2015; Schultz, 2010; Wickens, Horvitz, Costa,
& Killcross, 2007). In rodents, strong dopaminergic input from ventral tegmental area
is observed throughout mPFC and in some regions of OFC, including medial OFC
(Berger, Thierry, Tassin, & Moyne, 1976; Uylings, Groenewegen, & Kolb, 2003; Van
De Werd & Uylings, 2008). The involvement of dopaminergic innervation of mPFC
in goal-directed control has been clearly demonstrated. Using 6-OHDA lesions, it was
shown that the loss of dopaminergic signaling in PL, but not IL, abolished the sensitivity
of an instrumental response to contingency degradation, an effect replicated by the
blockade of dopamine D1/D2 receptor at the time of contingency degradation (Naneix,
Marchand, Di Scala, Pape, & Coutureau, 2009; but see; Lex & Hauber, 2010).

Follow-up studies have shown a time-dependent parallel maturation of the mesocort-
ical dopaminergic system and goal-directed control throughout adolescence (Naneix,
Marchand, Di Scala, Pape, & Coutureau, 2012) as well as a causal relationship between
the two processes (Naneix, Marchand, Pichon, Pape, & Coutureau, 2013). Notably, the
modulatory role of dopamine is not restricted to PL since microinfusion of dopamine
directly into IL promotes the expression of goal-directed responding in conditions under
which performance is normally habitual (Hitchcott, Quinn, & Taylor, 2007). The IC also
receives dopaminergic input (Van DeWerd & Uylings, 2008), and, given its role in goal-
directed performance, the involvement of these inputs may also be functionally
important.
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The role of the other major neuromodulatory systems in the control of goal-directed
behavior has received far less attention. However, noradrenergic inputs arising from locus
coeruleus have long been thought to modulate the function of the prefrontal cortex,
typically through attention or sensory gating (Nutt, Lalies, Lione, & Hudson, 1997),
and this modulatory role has been integrated in recent theories of prefrontal function.
More precisely, current models of OFC and the noradrenergic system (Sadacca,
Wikenheiser, & Schoenbaum, 2017; Sara, 2016) suggest that both play a role in respond-
ing to environmental change, when flexibility and updating previous knowledge without
unlearning is required in the face of a changing environment. Future research is therefore
needed to understand the role of noradrenergic inputs to the prefrontal cortex in goal-
directed behavior.

Homologous regions in rat and primate
We have limited our discussion to the involvement of rodent mPFC, OFC, and IC in
goal-directed behavior. While an extensive comparative analysis is beyond the scope
of this chapter, it should be noted that a wealth of research is aimed at understanding
the degree of homology between rodent and primate cortices; a topic that remains the
focus of intense discussion. Based on anatomical connectivity, density of connections,
neurotransmitter types, embryological development, and cytoarchitectonics, it appears
that a functional similarity exists between rodent mPFC and human ventromedial
prefrontalemedial orbital cortex (Brown & Bowman, 2002; Uylings et al., 2003).
Most notably, in the context of the present chapter, functional imaging studies using
structurally similar tasks (see de Wit & Dickinson, 2009) indicate a considerable overlap
in mPFC determinants of goal-directed actions in humans and rodents (Balleine &
O’Doherty, 2010; O’Doherty, Cockburn, & Pauli, 2017). Importantly, current in-
depth analyses of the cytoarchitectonic features of rodent mPFC propose a delineation
based on cingulate areas rather than a distinction between PL and IL (Vogt, 2016).
Consistent with this, the current edition of the widely used Rat Brain Atlas in Stereotaxic
Coordinates (Paxinos & Watson, 2014) outlines a main subdivision of mPFC into a dorsal
component, termed cingulate area 32 dorsal (A32D), which encompasses the FR2, dorsal
anterior cingulate areas, and the dorsal part of PL, and a ventral component, termed
cingulate area 32 ventral (A32V) that includes the ventral PL, IL, and some medial orbital
areas (Paxinos & Watson, 2014; Vogt & Paxinos, 2014; Vogt et al., 2013). It is proposed
that this dissociation (based on cingulate terminology) may prove more useful in tracking
functional homologies between rodents and primates (Vogt, 2016).

Primate OFC has also been implicated in value-based behaviors. While there is some
concern as to whether the rodent OFC (composed exclusively of agranular cortical areas)
is homologous to the larger, granular OFC in primates (Preuss, 1995; Wise, 2008), equiv-
alent areas have been identified on the basis of structural similarities as well as
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corticothalamic and corticostriatal connections (Price, 2007; Uylings et al., 2003). As in
the rodent, functional differences within the primate OFC have been identified in both
the mediolateral (Bouret & Richmond, 2010; Noonan et al., 2010; Rudebeck &Murray,
2011) and rostrocaudal axes (Murray, Moylan, Saleem, Basile, & Turchi, 2015). For
example, in a particularly elegant outcome devaluation study in macaques, Murray
and colleagues illustrated a dissociable role for anterior (area 11) versus posterior (area
13) OFC in action selection, with the former required for the choice between actions
and the latter for encoding changes in outcome value (Murray et al., 2015).

Beyond the prefrontal cortex, similarities also exist between rodent and primate IC.
The taste-processing cortical region in primates is also located in IC and receives afferents
from the thalamus and several sensory cortices, is reciprocally connected with the amyg-
dala, and projects to the ventral striatum (Gallay, Gallay, Jeanmonod, Rouiller, & Morel,
2012; Small, 2010). Functionally, neural activity in human insular GC reflects both the
basic features of taste and valuation of taste-related rewards (Small, 2010). For example,
human IC is more active during water intake when a subject is thirsty than when they are
sated (de Araujo, Kringelbach, Rolls, & McGlone, 2003).

Figure 8.1 This schematic provides a simplified overview of the anatomical considerations and func-
tional contribution of the three cortices to goal-directed behavior. The medial prefrontal cortex
(mPFC), including dorsal (dmPFC) and ventral (vmPFC) subregions, is critical for actioneoutcome
(A-O) encoding and the balance of action and habits. The orbitofrontal cortex (OFC) comprises a num-
ber of functionally distinct areas; namely, medial (MO), ventral (VO), and lateral (LO) areas, each of
which plays a role in goal-directed behavior. Finally, IC, specifically the gustatory region (GC), is
required for the retrieval of outcome value to guide choice. IC is composed of four layers that repre-
sented the gradual disappearance of the granular layer: granular (GI), dysgranular (DI), agranular dor-
sal (AId), and agranular ventral (AIv).
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CONCLUSIONS

Distinct cortical regions are required for goal-directed behavior (see Fig. 8.1). While
mPFC has traditionally been the focus of investigation, more recent studies have impli-
cated both OFC and IC in the regulation of choice. Critically, different functional con-
tributions within each cortex have also been identified. As previously mentioned, we
have limited our discussion to studies using rodents. An important consideration is the
extent to which these studies can be applied to other species. Evidence from other spe-
cies, including humans and nonhuman primates, is generally supportive of the ideas dis-
cussed earlier, particularly insofar as acknowledging the distinct cortical contributions to
goal-directed behavior (Balleine & O’Doherty, 2010; Rhodes & Murray, 2013;
Rudebeck et al., 2008). We must therefore continue to investigate how the cortex
modulates goal-directed control and the specific involvement of corticoecortical inter-
actions in this behavior.
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CHAPTER 9

Distinct Functional Microcircuits in
the Nucleus Accumbens Underlying
Goal-Directed Decision-Making
Elizabeth A. West, Travis M. Moschak, Regina M. Carelli
Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States

INTRODUCTION

Animals depend on the ability to learn about their environment in order to seek out the
outcomes necessary for survival (e.g., food, drink, sex). This ability requires learning about
predictive stimuli and the actions needed to achieve a desired goal, in addition to judging
outcome and cost to direct future actions toward that goal. Furthermore, the ability to
modify actions in response to environmental changes is critical to ensure access to necessary
resources. Importantly, in humans, certain psychiatric disorders (e.g., drug addiction) are
characterized by a disruption of goal-directed decision-making (Lubman, Yucel, & Pantelis,
2004; see also Morris, Chapter 17), which results in a decreased ability to change
behaviors associated with long-term negative consequences. Therefore, understanding
and characterizing the underlying neural circuits that control goal-directed decision-
making is critical to understanding and treating psychiatric disorders.

Although numerous brain regions are involved in goal-directed decision-making,
the nucleus accumbens (NAc) is well situated to play a role in this process. The NAc
is postulated to function as a limbicemotor interface (Mogenson, Jones, & Yim,
1980), receiving afferent information from limbic (and prefrontal) structures involved
in memory, drive, and motivation and projecting to motor regions to guide behavior.
Therefore, the NAc likely plays a major role in integrating information about goals and
predictive cues and guiding goal-directed behaviors. Further, its primary subregions,
the core and shell, appear to play unique, but complimentary roles in guiding goal-
directed behavior. Specifically, the core appears involved in learning and action during
goal-directed behavior (Carelli, 2004; Saddoris, Sugam, Cacciapaglia, & Carelli, 2013),
while the shell processes hedonic or motivational value (Castro, Cole, & Berridge,
2015; Kelley, 2004; Saddoris, Cacciapaglia, Wightman, & Carelli, 2015). Both
computational processes are critical for appropriate goal-directed decision-making.
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ANATOMICAL ORGANIZATION OF THE NUCLEUS ACCUMBENS CORE
AND SHELL

Both the NAc core and shell consist predominantly (>95%) of medium spiny neurons.
However, there are distinct morphological and anatomical connectivity differences
between the two subregions that may contribute to their unique functional
properties (discussed elsewhere, see Meredith, Baldo, Andrezjewski, & Kelley, 2008).
Morphologically, the NAc core has a denser distribution of spines than the NAc
shell. In addition, dopaminergic inputs, which are necessary for glutamatergic activity-
dependent plasticity (Wolf, Mangiavacchi, & Sun, 2003), are predominately found on
spines in the core (Zahm, 1992). Conversely, these inputs are found in dendrites instead
of spines in the shell (Hara & Pickel, 2005). Thus, core neurons seem more amenable to
activity-dependent synaptic plasticity, the basis for learning and memory, than shell
neurons.

Despite similarities in afferent and efferent projections of the core and shell, there are
some notable differences that may account, in part, for their distinct behavioral functions.
For example, the ventral subiculum of the hippocampus projects predominately to the
shell, while the dorsal subiculum projects mainly to the core (reviewed in Kelley,
2004). The ventral subiculum plays a stronger role in drug seeking and anxiety while
the dorsal hippocampus is more involved in memory and spatial navigation (Fanselow
& Dong, 2010; Sun & Rebec, 2003). In the rat, the medial prefrontal cortex (mPFC)
is comprised of dorsal (prelimbic; PrL) and ventral (infralimbic; IL) areas (Heidbreder
& Groenewegen, 2003; Ongur & Price, 2000) that selectively project to the NAc
core and shell, respectively. Importantly, these two mPFC subregions are involved in
goal-directed behavior (more PrL) and extinction and habitlike behavior (more IL;
Gourley & Taylor, 2016). The basolateral amygdala (BLA), known for its involvement
in associative learning, sends projections to both the core and shell, but those
projections diverge from its anterior (core) and posterior (shell) parts, respectively
(Brog, Salyapongse, Deutch, & Zahm, 1993; Wright, Beijer, & Groenewegen, 1996).
In addition, the shell, but not the core, receives direct reciprocal projections from
the lateral hypothalamus (LH) (Heimer, Zahm, Churchill, Kalivas, & Wohltmann,
1991), thus receiving important information about homeostatic satiety levels.

In addition to distinct afferent inputs to the NAc core and shell, their efferent
projections also differ. For example, the NAc core sends projections predominantly to
the motor regions important in executing action, such as the ventral pallidum and
subthalamic nucleus (Heimer et al., 1991; Mogenson et al., 1980; Zahm, 1999). The
shell, however, predominantly sends projections to limbic areas such as the LH, bed
nucleus stria terminalis, central amygdala, and ventromedial ventral pallidum (Heimer
et al., 1991; Kelley, 2004). As such, the core has been proposed to have greater
involvement in goal-directed actions (e.g., necessary for learning about the environment)

200 Goal-Directed Decision Making



while the shell has been proposed to have greater involvement with emotionally relevant
information necessary for encoding the value of stimuli in the environment. Critically, it
is these differences in the morphology and anatomy that may account for the distinct
functional properties of core and shell in goal-directed decision-making.

DISTINCT FUNCTIONAL ROLES OF THE NUCLEUS ACCUMBENS CORE
VERSUS SHELL IN GOAL-DIRECTED BEHAVIOR

In support, early studies demonstrated differing functional properties for the core
and shell. For example, NMDA receptor blockade in the core reduced locomotor
activity and novel object exploration (Maldonado-Irizarry & Kelley, 1994), while
similar injections in the shell had no effect. In contrast, blockade of non-NMDA
glutamate receptors in the shell (but not core) produced increased feeding behavior
(Maldonado-Irizarry, Swanson, & Kelley, 1995). These early findings support the view
that the shell is more involved in hedonic processing while the core is more involved
in goal-directed exploratory activity. In Table 9.1, we have outlined studies that
determine whether the core or shell is necessary for particular behaviors. Critically, a
lack of necessity of a subregion in a behavioral task does not preclude the neurons or
dopamine (DA) release in the subregion from tracking this information during behavior.

Table 9.1 The involvement in core or shell across behavioral tasks.
Core Shell

Reinforcement learning C Parkinson et al. (2000) and
Hernandez et al. (2005)

X Parkinson et al. (2000) and
Hernandez et al. (2005)

Feeding behavior X Kelley and Swanson (1997)
and Stratford and Kelley
(1997)

C Kelley and Swanson (1997)
and Stratford and Kelley
(1997)

Reinforcer devaluation
Pavlovian C Singh et al. (2010) C Singh et al. (2010)
Instrumental x Corbit et al. (2001) X Corbit et al. (2001)

Reversal learning X Schoenbaum and Setlow
(2003) and Dalton et al.
(2014)

X Dalton et al. (2014)

Set-shifting C Floresco et al. (2006) X Floresco et al. (2006)
Delay discounting C Cardinal et al. (2001) and

Pothuizen et al. (2005)
x Pothuizen et al. (2005) and

Feja et al. (2014)
Effort discounting C Bezzina et al. (2008) and

Ghods-Sharifi and
Floresco (2010)

x Day et al. (2011)

Risk (probabilistic)
discounting

xCardinal and Howes (2005)
and Yang and Liao (2015)

C Dalton et al. (2014) and
Stopper and Floresco
(2011)

X, not required; C, required/involved; x, potentially required/involved (see text for more information).
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Nucleus accumbens involvement in hedonic processing
Both NAc core and NAc shell neurons respond to tastes with specific hedonic value. For
example, neurons in both subregions show differential firing patterns to appetitive and
aversive taste stimuli (Roitman, Wheeler, & Carelli, 2005). Furthermore, both core
and shell neurons encode the devaluation of natural reinforcers following conditioned
taste aversion (Roitman, Wheeler, Tiesinga, Roitman, & Carelli, 2010) and delayed
cocaine access (Wheeler et al., 2008) that reflect the change in hedonic value from
positive to negative.

However, while both regions play a role in hedonic processing, evidence suggests a
stronger role for the NAc shell. Critically, shell neurons, but not core, specifically track
the motivational value of a reward depending on physiological state (Loriaux, Roitman,
& Roitman, 2011). In addition, NAc shell DA, but not core DA, tracks the devaluation
of a natural reward by delayed, but impending cocaine (Roitman, Wheeler, Wightman,
& Carelli, 2008; Wheeler et al., 2011). Furthermore, DA in the shell, but not core,
encodes the relative value of appetitive rewards such as one versus two sucrose pellets
(Sackett, Saddoris, & Carelli, 2017; Saddoris, Sugam, & Carelli, 2017). In addition,
NAc shell DA tracks cues signaling different reward magnitudes (Beyene, Carelli, &
Wightman, 2010; Sackett et al., 2017), and NAc shell inactivation disrupts the ability
of rats to judge reward magnitude options (Stopper & Floresco, 2011). These findings
are consistent with earlier work demonstrating that pharmacological inactivation (either
AMPA glutamate blockade or stimulation of GABA) of the shell (but not the core)
induces feeding behavior (Kelley & Swanson, 1997; Stratford & Kelley, 1997), suggesting
an involvement of the shell in hedonic value and homeostatic regulation.

Interestingly, the NAc shell is a heterogeneous structure that differs in function
along its rostralecaudal axis with respect to hedonic value processing. For example,
pharmacological inactivation in the rostral shell promotes appetitive responses, but in
the caudal shell yields aversive taste behaviors (Berridge & Kringelbach, 2015; Castro
et al., 2015). These findings led to the idea that an “affective keyboard” exists along
the rostralecaudal NAc shell; the rostral shell promotes appetitive, positive value states
while the caudal shell elicits aversive, negative value states (Berridge & Kringelbach,
2015). In addition, optical stimulation of DA terminals in the rostral shell prevented
cocaine-induced devaluation of reward, while activation of terminals in the caudal shell
elicited a pronounced enhancement of the devaluation (Hurley, West, & Carelli, 2017).
Thus, the shell seems to be involved in processing hedonic value with the rostralecaudal
axis playing distinct roles in the particular valence (appetitive vs. aversive).

Nucleus accumbens involvement in reward learning
Both the NAc core and shell play a role in reward learning. Similar to reward
processing, core and shell neurons both encode associative information about outcome-
predictive cues (Carelli, 2000, 2004; Day, Roitman, Wightman, & Carelli, 2007;
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Day, Wheeler, Roitman, & Carelli, 2006) and actions (Carelli & Ijames, 2000; Hollander,
Ijames, Roop, & Carelli, 2002). Specifically, NAc (core and shell) neurons show distinct
patterned discharges (either an increase or decrease in cell firing) at the onset of a salient
event (e.g., a reward-predictive cue) termed “phasic” activity. Indeed, neurons in both
subregions show phasic responsiveness to cues paired with food rewards such as sucrose
( Jones, Day, Wheeler, & Carelli, 2010; Saddoris & Carelli, 2014; Saddoris, Stamatakis,
& Carelli, 2011; Setlow, Schoenbaum, & Gallagher, 2003) or drug rewards such as cocaine
(Hollander & Carelli, 2007), ethanol (Robinson & Carelli, 2008), and heroin (Chang,
Janak, & Woodward, 1998), as well as responses to the food and drugs themselves
(Hollander & Carelli, 2007; Saddoris et al., 2011; Stuber, Roitman, Phillips, Carelli, &
Wightman, 2005). In addition, elevated rapid DA signaling is also observed in the core
and shell to predictive cues and their respective rewards (Day et al., 2007; Owesson-
White, Cheer, Beyene, Carelli, & Wightman, 2008; Roitman, Stuber, Phillips,
Wightman, & Carelli, 2004; Stuber et al., 2005).

Even though both the core and shell encode information about reward-predictive
cues, evidence suggests a stronger role for the core in this process. Indeed, early work
showed that the NAc core, not shell, is necessary for the development and expression
of a conditioned response to reward-predictive cues (Parkinson et al., 2000). Glutamate
receptor blockade, disruption of protein synthesis, or D1 antagonism in the core (but not
shell) impairs operant conditioning during acquisition, but not after the learning has
already occurred (Hernandez, Andrzejewski, Sadeghian, Panksepp, & Kelley, 2005;
Hernandez, Sadeghian, & Kelley, 2002). Additionally, core neurons are more likely to
selectively encode either the cue or the response in a cue-guided operant task, while shell
neurons are more likely to respond to both the cue and the response (Cacciapaglia,
Saddoris, Wightman, & Carelli, 2012). Similarly, we have observed that core DA elevates
specifically to the most proximal reward-predictive action after learning a chain schedule
(Saddoris, Sugam, et al., 2015), similar to prediction error signals in putative DA neurons
in the ventral tegmental area (VTA) (Mirenowicz & Schultz, 1996). In contrast, the shell
shows elevated DA to all predictive actions and the outcomes (Saddoris, Cacciapaglia,
et al., 2015). Thus, although rapid DA signaling in both the core and shell respond to
rewards and their predictors, recent evidence suggests that these subregions contribute
distinct but complementary roles in motivated behaviors. One view we postulated is
that DA signaling in the NAc core shows more prediction errorlike encoding, while
the shell reflects more incentive salience (i.e., motivational aspects of the task; Saddoris,
Cacciapaglia, et al., 2015). These circuits work in parallel, thus helping animals optimize
their goal-directed behaviors.

Nucleus accumbens in flexible goal-directed behavior
While survival depends on the ability to engage in optimal goal-directed behaviors,
animals also depend on the ability to flexibly alter their behavior in the face of
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changing consequences. A behavior that at one time produced a positive outcome can at
a later time produce a neutral or even negative outcome, making it important to adjust
behavior in a changing environment. Many different laboratory tasks can be used to
measure the different roles of the NAc core and shell in behavioral flexibility
including reversal learning, set-shifting, and reinforcer devaluation.

One measure of behavioral flexibility is reversal learning, the ability to learn that a
previously unrewarded stimulus or action now predicts reward (or, conversely, that a
previously rewarded stimulus no longer predicts reward). Neither subregion of the
NAc is necessary for simple reversal learning (Dalton, Phillips, & Floresco, 2014;
Schoenbaum & Setlow, 2003). Nonetheless, NAc core activity (shell unknown) tracks
cueeoutcome associations as they change during reversal learning (Setlow et al.,
2003). Specifically, a neuron that responded to a cue that predicted sucrose no longer
responds once the contingencies change (e.g., when the cue predicts quinine instead
of sucrose). Furthermore, DA D1 or D2 antagonism in the NAc does not impair reversal
learning (Calaminus & Hauber, 2007), even though NAc core DA tracks the switching
contingencies of cueeoutcome associations during reversal learning (Klanker et al., 2015)
similar to NAc core neurons. These findings suggest that the subpopulation of NAc core
neurons that track reversal learning is not critical to the ability of the rat to select the
appropriate response, and other brain systems most likely compensate for the loss of
the NAc in reversal learning (e.g., BLA). Nonetheless, these cueeoutcome associations
formed in the core can greatly impact behavioral flexibility, discussed below.

Another measure of behavioral flexibility, attentional set-shifting, measures an
animal’s ability to update a stimuluseactioneoutcome association following a shift in
the modality of the stimulus. In contrast to reversal learning, the core (but not shell)
is necessary for set-shifting (Floresco, Ghods-Sharifi, Vexelman, & Magyar, 2006).
Furthermore, disruption of this task by core lesions is not due to perseverative errors,
but rather to a disruption of the acquisition and maintenance of a new behavior strategy
(i.e., relearning). One possible explanation for the different role of the core in reversal
learning and set-shifting is that set-shifting may be a more challenging task than reversal
learning. Thus, other brain regions may take over control in the absence of the NAc to
perform reversal learning that cannot do so for set-shifting. Unlike the core, the NAc
shell does not appear to be involved in either of these tasks and only becomes necessary
under conditions of ambiguity (i.e., probability/risk, discussed below).

Finally, the canonical test for determining whether behavior is goal-directed
(vs. a habitual stimuluseresponse strategy) is the reinforcer devaluation task (Adams &
Dickinson, 1981; Dickinson, 2012; see also Dickinson, Chapter 1). In this task, animals
(1) form an association between a cue/action and an outcome, (2) register the decrease in
value of the reinforcer after its devaluation, and (3) integrate the learned cue/actione
outcome association with the decreased outcome value to direct behavior. Testing is
performed under extinction; thus, rats must use an internal representation of the
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previously learned association and alter behavior based on the newly computed expected
outcome value (Lucantonio, Caprioli, & Schoenbaum, 2014). Critically, core or shell
lesions, or core DA depletion (DA shell depletion is unknown) disrupts performance
in reinforcer devaluation tasks when rats learn to make associations between Pavlovian
cues and rewards (Lex & Hauber, 2010; Singh, McDannald, Haney, Cerri, &
Schoenbaum, 2010). A similarly clear role is not well established for instrumental
devaluation tasks. NAc core lesions or DA depletion induce a general reduction in
responding in these tasks (Corbit, Muir, & Balleine, 2001; Lex & Hauber, 2010). As these
tasks use variable or random ratio schedules of reinforcement, which necessitate a fair
degree of effort, this reduction in response may be due to the critical role the NAc
core plays in effortful responding (discussed below), thus making it difficult to determine
the core’s role in instrumental reinforcer devaluation. However, lesion of the NAc shell
does not have such profound effects on effortful responding, and studies have been able
to clearly demonstrate that it is not necessary for instrumental reinforcer devaluation tasks
(Corbit et al., 2001). Thus, the role of the NAc in reinforcer devaluation may depend on
the method by which it is assessed (Pavlovian or instrumental).

A number of studies have shed light on how the NAc may be acting to influence
reinforcer devaluation with cues. As mentioned earlier, both core and shell neurons
encode information regarding relative outcome values and behavioral responses (Day,
Jones, & Carelli, 2011; Roesch, Singh, Brown, Mullins, & Schoenbaum, 2009; Sugam,
Saddoris, & Carelli, 2014). Furthermore, when the outcome value of a predictive cue
changes from appetitive (e.g., sucrose) to aversive (e.g., quinine) following reversal
learning, NAc neurons dynamically switch responding to reflect the newly learned cuee
outcome associations (Setlow et al., 2003). In addition, core neurons encode information
across different aspects of choice behavior (proximity to lever, reward magnitude, and
effort) but rarely encode integration of expected outcome value (Morrison & Nicola,
2014). Our lab recently examined the differing roles of the core and shell during both
initial learning of the cueeoutcome association and during behavior following reinforcer
devaluation. We found that the degree to which core cells encoded reward-associated
cues during training reliably predicted the ability of rats to later suppress responding
for devalued outcomes (West & Carelli, 2016). This finding may suggest that the
animals that formed the strongest cueeoutcome association during training used those
associations to improve performance. Although we found that core encoding during
training predicted performance after devaluation, the core did not encode the shift in
outcome value itself, consistent with the idea that core does not encode expected
outcome.

In contrast to the NAc core, we found that the shell neurons exhibited no relationship
between neural encoding during training and subsequent devaluation. However, there
were significantly fewer cue-encoding cells in the shell following reinforcer devaluation
(West & Carelli, 2016). This suggests that, unlike the core, the NAc shell does encode
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devaluation and therefore likely tracks reward-predictive cues relative to the expected
outcome. Indeed, the shell (but not core) is necessary for outcome-specific enhancement
of goal-directed behavior by Pavlovian cues, suggesting that the shell may be processing
information about specific outcomes (Corbit & Balleine, 2011). Furthermore, the shell is
more involved than the core in motivationally potentiated behavior in a Pavlovian-to-
instrumental-transfer task (Saddoris et al., 2011). In addition, c-fos activity in the shell
(but not core) was increased following exposure to the reward-predictive cue after
outcome devaluation (Kerfoot, Agarwal, Lee, & Holland, 2007). These findings suggest
that the NAc shell (but not core) dynamically encodes outcome-selective information
about predictive cues based on the current value of that reward relative to the animal’s
motivational state (Saddoris, Cacciapaglia, et al., 2015).

Nucleus accumbens in decision-making
In order to navigate the real world, animals often need to make decisions that not only
require value encoding, learning, and flexible behaviors but also require integrating
additional aspects of their environment such as cost, risk, or changing outcome values.
Animals prefer reward options that require lower cost and risk and that are acquired
immediately. However, ideal options do not always exist, and organisms often need to
weigh all of these different components to pick the best outcome. In the laboratory,
we can measure some of these different components by manipulating delay, effort,
willingness to take risks, and probability of reward.

To investigate the impact of delay on reward processing, animals are often tested for
their willingness to wait for a reward. This test is presented as a choice: The animal can
choose to wait for a large reward or choose a small reward that is delivered immediately.
These procedures are known as delay discounting tasks because the animal “discounts”,
or lowers, the subjective value of the larger reward as a result of the delay. Animals for
which the subjective value of reward is strongly decreased by delay are said to have
high levels of delay discounting and are considered to be more impulsive. NAc core
lesions or pharmacological inactivation increase preference for the immediate lower
magnitude option more than control animals (i.e., lesioned animals are not willing to
wait for the more valuable option), suggesting an increase in impulsivity (Bezzina
et al., 2008; Cardinal, Pennicott, Sugathapala, Robbins, & Everitt, 2001; Feja, Hayn,
& Koch, 2014; Galtress & Kirkpatrick, 2010; Pothuizen, Jongen-Relo, Feldon, &
Yee, 2005; but see; Acheson et al., 2006; Moschak & Mitchell, 2014). Few studies
have examined the NAc shell’s role in delay discounting, and the findings are mixed.
One study found that shell inactivation led to increased impulsivity (i.e., animals did
not want to wait for the delayed more-valued option); however, this effect was not as
strong as core inactivation (Feja et al., 2014). Another study found no effect of shell le-
sions at all (Pothuizen et al., 2005). Thus, the evidence suggests that the NAc core plays a
greater role in delay discounting than the shell.
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Although the role of the NAc core in delay discounting seems to be larger than the
shell, both the shell and the core encode neural activity to delay and magnitude cues (Day
et al., 2011; Roesch et al., 2009). Similarly, in vivo phasic DA release in the NAc core
also tracks delay and magnitude cues (Day, Jones, Wightman, & Carelli, 2010; Saddoris,
Sugam, et al., 2015). Indeed, animals that are classified as high discounters (i.e., animals
that select the immediate reward more rapidly) show blunted NAc DA release induced
by stimulation (shell and core), drugs (shell and core), or cues (only core tested)
(Diergaarde et al., 2008; Moschak & Carelli, 2017; Zeeb, Soko, Ji, & Fletcher, 2016),
even though there are no differences in DA-related proteins in either subregion in
animals that are classified as either high (more impulsive) or low discounters (less
impulsive) (Loos et al., 2010; Simon et al., 2013). In spite of these findings, DA in the
NAc as a whole is not necessary for delay discounting (Winstanley, Theobald, Dalley,
& Robbins, 2005), suggesting it has a modulatory role in this process. However, although
NAc DA is not necessary for delay discounting, enhancing DA release in the NAc as a
whole using optogenetic manipulations alters delay sensitivity (Saddoris, Sugam, et al.,
2015), specifically shifting rats’ preferences to select the delay option more than controls.
It remains to be seen if manipulating DA specifically in either the core or shell alone has a
unique effect on delay discounting. In total, the core and shell show similar neural and
DA responses during delay discounting, but the core appears more critically involved
based on lesion/inactivation studies.

In addition to delay sensitivity, the NAc also plays a role in the amount of effort
animals are willing to exert to receive a reward. Indeed, the role of the core and shell
in effortful decision-making is similar to that seen in delay discounting. Core, but not
shell, lesions or inactivation renders animals less willing to expend effort to receive a
reward (Bezzina et al., 2008; Ghods-Sharifi & Floresco, 2010; Hauber & Sommer,
2009). Importantly, NAc DA is necessary for effortful decision-making, as loss of this
DA greatly decreases choice of a highly palatable, high-effort reward in favor of a
low-palatable, low-effort reward (Aberman & Salamone, 1999; Salamone, Wisniecki,
Carlson, & Correa, 2001). Critically, this effect seems to be subregion-specific, since
DA depletion in the core (Mai, Sommer, & Hauber, 2012), but not the shell (Sokolowski
& Salamone, 1998), is necessary for effortful decision-making. Additionally, D1 or D2
antagonism in the core decreases effortful responding; this effect is weakened or
absent in the shell (Bari & Pierce, 2005; Nowend, Arizzi, Carlson, & Salamone,
2001). Furthermore, phasic NAc core DA tracks the value of the cue based on the animals
preferred reward option (i.e., less effort), but again this effect is weaker (only a trend) in
the shell (Day et al., 2010). Similarly, changes in tonic DA in the core correlate with
required effort; a similar but weaker and nonsignificant correlation was seen in the shell
(Ostlund, Wassum, Murphy, Balleine, & Maidment, 2011). Together, these findings
suggest that the DA in the core (both tonic and phasic) tracks effort decision-making.
Interestingly, high-effort responders exhibit more DA-related signal transduction in
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the core but not in the shell (Randall et al., 2012), suggesting that DA in the core may
also modulate individual differences in willingness to work toward a reward. Unlike DA,
neural activity tracks effortful responding/cues equally in both the core and the shell (Day
et al., 2011). Nonetheless, the data suggest that the NAc core, and especially core DA, is
critical for effortful responding, while the shell has a lesser role.

The aforementioned literature suggests that the NAc core is more involved than the
shell in decision-making processes that involve a cost, such as effort or delay. However,
the role of the NAc in risky decision-making is more complicated. In these types of tasks,
animals are often asked to decide between a safe option (e.g., one pellet delivered 100%
of the time) and a “risky” option (e.g., two pellets delivered 50% of the time). This type
of decision-making does not entail a cost per se, but rather an individual’s subjective
preference to incur a risk. Lesion of the core makes rats more risk-averse, selecting the
safe option more than controls (Cardinal & Howes, 2005; Yang & Liao, 2015); although
lesion of the entire NAc (i.e., core and shell) has no effect (Acheson et al., 2006) and the
effect of lesioning the shell alone is unknown. However, pharmacological inactivation of
the shell also makes rats more risk-averse and disrupts learning in risky decision-making
tasks based on probability; surprisingly, inactivation of the core has no effect (Dalton
et al., 2014; Stopper & Floresco, 2011). The differences seen in core and shell with regard
to the lesion and inactivation studies could be due to the different methods used. With
lesions, the brain is allowed time to compensate for the loss of the neural structure; as
such, a different region could serve the particular functions of the lesioned region.

The shell and core also exhibit differences in neural firing during risky decision-
making, as the shell, but not the core, encodes the preferred option during forced-
choice trials, while shell and core both encode the preferred option during free-choice
trials (Sugam et al., 2014). Furthermore, the core and shell have opposite patterns of
encoding omissions of reward as a function of risk preference. Specifically, in more
risk-preferring rats, the core is predominantly excited by omissions, while the shell is
predominantly inhibited by omissions (Sugam et al., 2014). Phasic DA tracks value in
the core but not the shell during risky decision-making (Sugam, Day, Wightman, &
Carelli, 2012), although tonic shell DA does track value over the course of a session
(St Onge, Ahn, Phillips, & Floresco, 2012). Similar to that observed with delay
discounting, DA in the core and shell is not necessary for risky decision-making (Mai,
Sommer, & Hauber, 2015; Mai et al., 2012). However, DA has been shown to modulate
this behavior. Specifically, antagonism of D1 receptors in the NAc (core and shell
together) made rats risk-averse, D1 agonists optimized risky behavior to maximize
reward, and D2 manipulation was without effect (Stopper, Khayambashi, & Floresco,
2013). Furthermore, a combined D1/D2 antagonist in the NAc shell made rats
risk-averse, but the same compound had no effect in the NAc core (Mai et al., 2015).
A few studies have found relationships with risky preference and DA receptor expression
in the shell, although the findings are complex. Specifically, one study found that
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expression of D1 mRNA in the shell predicted risky choice (no relationships with D2;
Simon et al., 2011), but a separate study found a relationship with D2 mRNA and risky
preference in the shell, but not D1 mRNA (Mitchell et al., 2014); notably, neither study
found any relationships with core mRNA. However, the authors noted that the first
study was done in adults while the second study was performed in adolescents. Thus,
the different findings could reflect a developmental shift in DA from adolescence to
adulthood. Generally, these studies support a slightly stronger role for the shell than
the core in risky decision-making, although the literature is mixed and likely suggests
a complicated relationship.

PSYCHOSTIMULANT EFFECTS ON NUCLEUS ACCUMBENS
PROCESSING AND BEHAVIOR

Substance abuse disorders are characterized by an inability to stop drug seeking despite
maladaptive negative consequences (see also Corbit, Chapter 16). As such, impairments
in goal-directed behavior often accompany this disorder, with an overreliance on drug-
directed behavior at the expense of behavior toward other goals. Indeed, patients
suffering from addiction have altered reward processing and altered brain circuitry,
including the NAc (Volkow, Fowler, Wang, & Goldstein, 2002).

The NAc is critically involved in psychostimulant-related learning and behavior.
Both core and shell neurons and DA signaling respond to lever pressing for intravenous
cocaine and to drug-associated cues (Carelli & Ijames, 2000; Phillips, Stuber, Heien,
Wightman, & Carelli, 2003). Interestingly, tonic core DA (but not shell) responds to
cues that predict cocaine (Ito, Dalley, Howes, Robbins, & Everitt, 2000). In addition,
the core, but not the shell, is necessary for autoshaping and conditioned reinforcement
for drug reinforcers (Everitt et al., 1999). In contrast, the shell, but not core, is necessary
for amphetamine-induced enhancement of conditioned responding (Ito, Robbins,
& Everitt, 2004). In addition, the shell is necessary for the rewarding effects of
psychostimulant (measured by conditioned place preference), whereas the NAc core
contributes to enhanced locomotor activity following psychostimulant treatment (Ito
et al., 2004; Sellings & Clarke, 2003). These findings suggest that the rewarding and
locomotor-stimulating effects of the drug are anatomically dissociated in the NAc
subregions; the shell is more involved in rewarding effects, whereas the core is more
involved in behavioral activation. Thus, it seems that the differences in core and shell
function that were noted previously in this chapter also exist for drug rewards, i.e.,
drug-related learning depends on the core, while the shell seems to be involved in the
rewarding (and enhancing) properties of psychostimulants.

While the NAc seems to be involved in reward processing and learning about
drugs of abuse, the drugs themselves also alter NAc core and shell processing
(Dreyer, Vander Weele, Lovic, & Aragona, 2016; Saddoris, 2016) and behavior
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(Saddoris, Wang, Sugam, & Carelli, 2016; Saddoris et al., 2017). A history of cocaine
followed by drug withdrawal and abstinence alters rats’ decision-making strategies.
Indeed, individuals with a history of psychostimulant use have steeper delay discounting
(more impulsivity) than controls (Coffey, Gudleski, Saladin, & Brady, 2003; Hoffman
et al., 2006). In addition, rats with steeper discounting subsequently consume more
drug (Poulos, Le, & Parker, 1995), acquire drug self-administration faster (Anker,
Zlebnik, Gliddon, & Carroll, 2009), and show increased reinstatement for the drug
after a period of abstinence (Broos, Diergaarde, Schoffelmeer, Pattij, & De Vries,
2012; Diergaarde et al., 2008). Finally, both experimenter-administered and self-
administered cocaine have been shown to increase delay discounting following
withdrawal and abstinence (Hernandez et al., 2014; Mendez et al., 2010; but see; Broos
et al., 2012; Moschak & Carelli, 2017). In addition to delay discounting, it has been
shown that a history of cocaine during withdrawal and abstinence increases risky
decision-making such that animals are more likely to select the risky option over the
safer option (Ferland & Winstanley, 2016; Mitchell et al., 2014).

A history of cocaine also impairs the ability of rats to use previously learned
information to drive new learning and flexible goal-directed behavior. For example,
cocaine-experienced rats have no difficulty learning that a cue or action predicts a
particular reward (Saddoris & Carelli, 2014; Schoenbaum & Setlow, 2005). However,
if these rats are then required to use those learned relationships in more complex
behavior, they show profound deficits. For example, rats with a history of cocaine are
impaired in reversal learning (Schoenbaum, Saddoris, Ramus, Shaham, & Setlow,
2004) and higher-order learning such as second-order conditioning (Saddoris & Carelli,
2014). In addition, a history of psychostimulant (cocaine or amphetamine) impairs the
ability of rats to direct behavior postdevaluation (Nelson & Killcross, 2006; Schoenbaum
& Setlow, 2005). Specifically, animals continue to respond to a cue that is associated with
an outcome that has been devalued. Importantly, this deficit only occurs when rats
experience psychostimulants prior to learning actioneoutcome associations; flexible
goal-directed behavior is intact if psychostimulant treatment is given after actione
outcome associations are already learned (Nelson & Killcross, 2006). This suggests that
a history of psychostimulants interferes with how cue/actioneoutcome associations
are processed. Furthermore, following cocaine exposure, rats show a loss of NAc
cue-encoding to cues predicting natural (nondrug) rewards (Saddoris & Carelli, 2014).
Interestingly, a history of cocaine alters DA signaling in the NAc core in response to
reward-predictive cues (Saddoris et al., 2016), while it impairs DA signaling in the
NAc shell in response to differently valued rewards (i.e., one vs. two pellets) (Saddoris
et al., 2017). In addition, prior cocaine experience also impairs the ability of rats to learn
that different levers correspond to differently valued rewards (Saddoris et al., 2017).
These findings suggest that a history of cocaine interferes with both learning (perhaps
via interference with NAc core DA signaling) and the ability to process value (perhaps
via interference with NAc shell DA signaling).
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BEYOND THE NUCLEUS ACCUMBENS

The NAc does not function in isolation but is part of a larger neural circuit involved in
processing hedonics, learning, flexible behavior, and decision-making, which collectively
direct goal-directed behaviors (see also Chapter 8 by Parkes and Coutureau). Indeed,
distinct NAc efferent and afferent projections highlighted above may account for
the different, but complimentary roles the core and shell play in specific aspects of
goal-directed behavior. For example, one key neural region linked to the shell (but
not core) that may explain, in part, its specific involvement in hedonic value is the
LH. For example, pharmacological inactivation of the shell induces feeding (Kelley &
Swanson, 1997) as observed during LH stimulation (Kelley, Baldo, & Pratt, 2005).
Further, LH input to the shell is necessary for the enhancement of appetitive behavior
following glutamate blockade in the shell (Kelley, 2004; Maldonado-Irizarry et al.,
1995). As such, it is possible that the shell receives outcome-specific satiety signals
from the LH that it can use to alter encoding information about a reward-associated
cue to reflect the updated motivational value. Thus, our prior study showing that the
shell processes devaluation to reward-predictive cues (West & Carelli, 2016) may be
dependent upon LH modulation, especially since LH neurons encode sensory-specific
satiety (Rolls, Murzi, Yaxley, Thorpe, & Simpson, 1986).

In contrast, the mPFC sends projections to both the core and shell, but within distinct
parallel circuits (i.e., the PrL projects to the core while the IL sends projections to the
shell) (Heidbreder & Groenewegen, 2003). Inactivation of the PrL cortex before learning
disrupts performance in reinforcer devaluation tasks, but the PrL cortex is not necessary
for the expression of the devaluation effect after learning has occurred (Tran-Tu-Yen,
Marchand, Pape, Di Scala, & Coutureau, 2009). This is similar to our finding that the
core encodes information during learning that is necessary for performance but not
information related to the performance itself (West & Carelli, 2016). Thus, the PrL
and NAc core may interact to form the cueeoutcome associations required for
goal-directed behavior. In addition, inactivation of the mPFC (aimed at the PrL) led
rats to become more impulsive by affecting preference for smaller immediate over
larger delayed rewards, similar to what is observed with core manipulations (Churchwell,
Morris, Heurtelou, & Kesner, 2009). However, many decision-making studies have
not distinguished the PrL from the IL, which projects to the shell. Thus, future studies
should incorporate these regional distinctions into their studies, especially considering
the divergent roles of the core and shell in this behavior.

CONCLUSIONS

Both the NAc core and shell play critical roles in guiding goal-directed decision-making.
Overall, it seems that shell plays a larger role in hedonic value processing and the core
plays a stronger role in learning, and both these processes are necessary for guiding
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complex decisions. As with most observations within neuroscience, the core versus shell
dichotomy in learning versus value encoding is likely an oversimplified view of the
functional roles of these subregions. The shell is certainly involved in complex
decision-making (e.g., risky decision-making and reinforcer devaluation), and the NAc
core plays a critical role in processing beyond simple learning of cueeoutcome
contingencies (e.g., effortful responding). Importantly, studies examining the core and
shell separately have shown that these two regions play distinct and complimentary roles
in goal-directed decision-making. As such, they highlight the importance of examining
these two distinct NAc subregions independently, but ultimately as part of a larger
neural network, to understand how the brain processes reward value, learning, and
goal-directed behavior.

REFERENCES
Aberman, J. E., & Salamone, J. D. (1999). Nucleus accumbens dopamine depletions make rats more sensitive

to high ratio requirements but do not impair primary food reinforcement. Neuroscience, 92(2), 545e552.
Acheson, A., Farrar, A. M., Patak, M., Hausknecht, K. A., Kieres, A. K., Choi, S., & Richards, J. B. (2006).

Nucleus accumbens lesions decrease sensitivity to rapid changes in the delay to reinforcement.
Behavioural Brain Research, 173(2), 217e228. https://doi.org/10.1016/j.bbr.2006.06.024.

Adams, C. D., & Dickinson, A. (1981). Instrumental responding following reinforcer devaluation. Quarterly
Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 33(May), 109e121.

Anker, J. J., Zlebnik, N. E., Gliddon, L. A., & Carroll, M. E. (2009). Performance under a Go/No-go task in
rats selected for high and low impulsivity with a delay-discounting procedure. Behavioural Pharmacology,
20(5e6), 406e414. https://doi.org/10.1097/FBP.0b013e3283305ea2.

Bari, A. A., & Pierce, R. C. (2005). D1-like and D2 dopamine receptor antagonists administered into the
shell subregion of the rat nucleus accumbens decrease cocaine, but not food, reinforcement.Neuroscience,
135(3), 959e968. https://doi.org/10.1016/j.neuroscience.2005.06.048.

Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646e664.
https://doi.org/10.1016/j.neuron.2015.02.018.

Beyene, M., Carelli, R. M., & Wightman, R. M. (2010). Cue-evoked dopamine release in the nucleus
accumbens shell tracks reinforcer magnitude during intracranial self-stimulation. Neuroscience, 169(4),
1682e1688. https://doi.org/10.1016/j.neuroscience.2010.06.047.

Bezzina, G., Body, S., Cheung, T. H., Hampson, C. L., Deakin, J. F., Anderson, I. M.,…Bradshaw, C. M.
(2008). Effect of quinolinic acid-induced lesions of the nucleus accumbens core on performance on a
progressive ratio schedule of reinforcement: Implications for inter-temporal choice. Psychopharmacology,
197(2), 339e350. https://doi.org/10.1007/s00213-007-1036-0.

Brog, J. S., Salyapongse, A., Deutch, A. Y., & Zahm, D. S. (1993). The patterns of afferent innervation of the
core and shell in the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of
retrogradely transported fluoro-gold. The Journal of Comparative Neurology, 338(2), 255e278. https://
doi.org/10.1002/cne.903380209.

Broos, N., Diergaarde, L., Schoffelmeer, A. N., Pattij, T., & De Vries, T. J. (2012). Trait impulsive
choice predicts resistance to extinction and propensity to relapse to cocaine seeking: A
bidirectional investigation. Neuropsychopharmacology: Official Publication of the American College of
Neuropsychopharmacology, 37(6), 1377e1386. https://doi.org/10.1038/npp.2011.323.

Cacciapaglia, F., Saddoris, M. P., Wightman, R. M., & Carelli, R. M. (2012). Differential dopamine release
dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for
sucrose.Neuropharmacology, 62(5e6), 2050e2056. https://doi.org/10.1016/j.neuropharm.2011.12.027.

Calaminus, C., & Hauber, W. (2007). Intact discrimination reversal learning but slowed responding to
reward-predictive cues after dopamine D1 and D2 receptor blockade in the nucleus accumbens of
rats. Psychopharmacology, 191(3), 551e566. https://doi.org/10.1007/s00213-006-0532-y.

212 Goal-Directed Decision Making

https://doi.org/10.1016/j.bbr.2006.06.024
https://doi.org/10.1097/FBP.0b013e3283305ea2
https://doi.org/10.1016/j.neuroscience.2005.06.048
https://doi.org/10.1016/j.neuron.2015.02.018
https://doi.org/10.1016/j.neuroscience.2010.06.047
https://doi.org/10.1007/s00213-007-1036-0
https://doi.org/10.1002/cne.903380209
https://doi.org/10.1002/cne.903380209
https://doi.org/10.1038/npp.2011.323
https://doi.org/10.1016/j.neuropharm.2011.12.027
https://doi.org/10.1007/s00213-006-0532-y


Cardinal, R. N., & Howes, N. J. (2005). Effects of lesions of the nucleus accumbens core on choice between
small certain rewards and large uncertain rewards in rats. BMC Neuroscience, 6, 37. https://doi.org/
10.1186/1471-2202-6-37.

Cardinal, R. N., Pennicott, D. R., Sugathapala, C. L., Robbins, T. W., & Everitt, B. J. (2001). Impulsive
choice induced in rats by lesions of the nucleus accumbens core. Science, 292(5526), 2499e2501.
https://doi.org/10.1126/science.1060818.

Carelli, R. M. (2000). Activation of accumbens cell firing by stimuli associated with cocaine delivery during
self-administration. Synapse, 35(3), 238e242. https://doi.org/10.1002/(SICI)1098-2396(20000301)35:
3<238::AID-SYN10>3.0.CO;2-Y.

Carelli, R. M. (2004). Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed
behaviors in rats. Neuropharmacology, 47(Suppl. 1), 180e189. https://doi.org/10.1016/j.neuropharm.
2004.07.017. pii:S0028390804002114.

Carelli, R. M., & Ijames, S. G. (2000). Nucleus accumbens cell firing during maintenance, extinction, and
reinstatement of cocaine self-administration behavior in rats. Brain Research, 866(1e2), 44e54.

Castro, D. C., Cole, S. L., & Berridge, K. C. (2015). Lateral hypothalamus, nucleus accumbens, and ventral
pallidum roles in eating and hunger: Interactions between homeostatic and reward circuitry. Frontiers in
Systems Neuroscience, 9, 90. https://doi.org/10.3389/fnsys.2015.00090.

Chang, J. Y., Janak, P. H., &Woodward, D. J. (1998). Comparison of mesocorticolimbic neuronal responses
during cocaine and heroin self-administration in freely moving rats. The Journal of Neuroscience: The
Official Journal of the Society for Neuroscience, 18(8), 3098e3115.

Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between the
prefrontal cortex and amygdala during delay discounting and reversal. Behavioral Neuroscience, 123(6),
1185e1196. https://doi.org/10.1037/a0017734.

Coffey, S. F., Gudleski, G. D., Saladin, M. E., & Brady, K. T. (2003). Impulsivity and rapid discounting
of delayed hypothetical rewards in cocaine-dependent individuals. Experimental and Clinical
Psychopharmacology, 11(1), 18e25.

Corbit, L. H., & Balleine, B. W. (2011). The general and outcome-specific forms of Pavlovian-instrumental
transfer are differentially mediated by the nucleus accumbens core and shell. The Journal of Neuroscience:
The Official Journal of the Society for Neuroscience, 31(33), 11786e11794. https://doi.org/10.1523/
JNEUROSCI.2711-11.2011.

Corbit, L. H., Muir, J. L., & Balleine, B. W. (2001). The role of the nucleus accumbens in instrumental
conditioning: Evidence of a functional dissociation between accumbens core and shell. The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience, 21(9), 3251e3260.

Dalton, G. L., Phillips, A. G., & Floresco, S. B. (2014). Preferential involvement by nucleus accumbens shell
in mediating probabilistic learning and reversal shifts. The Journal of Neuroscience: The Official Journal of the
Society for Neuroscience, 34(13), 4618e4626. https://doi.org/10.1523/JNEUROSCI.5058-13.2014.

Day, J. J., Jones, J. L., & Carelli, R. M. (2011). Nucleus accumbens neurons encode predicted and ongoing
reward costs in rats. The European Journal of Neuroscience, 33(2), 308e321. https://doi.org/10.1111/
j.1460-9568.2010.07531.x.

Day, J. J., Jones, J. L., Wightman, R. M., & Carelli, R. M. (2010). Phasic nucleus accumbens dopamine
release encodes effort- and delay-related costs. Biological Psychiatry, 68(3), 306e309. https://doi.org/
10.1016/j.biopsych.2010.03.026.

Day, J. J., Roitman, M. F., Wightman, R. M., & Carelli, R. M. (2007). Associative learning mediates
dynamic shifts in dopamine signaling in the nucleus accumbens. Nature Neuroscience, 10(8),
1020e1028. https://doi.org/10.1038/nn1923.

Day, J. J., Wheeler, R. A., Roitman, M. F., & Carelli, R. M. (2006). Nucleus accumbens neurons encode
Pavlovian approach behaviors: Evidence from an autoshaping paradigm. The European Journal of
Neuroscience, 23(5), 1341e1351. https://doi.org/10.1111/j.1460-9568.2006.04654.x.

Dickinson, A. (2012). Associative learning and animal cognition. Philosophical Transactions of the Royal Society
B: Biological Sciences, 367(1603), 2733e2742. https://doi.org/10.1098/rstb.2012.0220.

Diergaarde, L., Pattij, T., Poortvliet, I., Hogenboom, F., de Vries, W., Schoffelmeer, A. N., & De Vries, T. J.
(2008). Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking
in rats. Biological Psychiatry, 63(3), 301e308. https://doi.org/10.1016/j.biopsych.2007.07.011.

Distinct Functional Microcircuits in the Nucleus Accumbens Underlying Goal-Directed Decision-Making 213

https://doi.org/10.1186/1471-2202-6-37
https://doi.org/10.1186/1471-2202-6-37
https://doi.org/10.1126/science.1060818
https://doi.org/10.1002/(SICI)1098-2396(20000301)35:3<238::AID-SYN10>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1098-2396(20000301)35:3<238::AID-SYN10>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1098-2396(20000301)35:3<238::AID-SYN10>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1098-2396(20000301)35:3<238::AID-SYN10>3.0.CO;2-Y
https://doi.org/10.1016/j.neuropharm.2004.07.017
https://doi.org/10.1016/j.neuropharm.2004.07.017
https://doi.org/10.3389/fnsys.2015.00090
https://doi.org/10.1037/a0017734
https://doi.org/10.1523/JNEUROSCI.2711-11.2011
https://doi.org/10.1523/JNEUROSCI.2711-11.2011
https://doi.org/10.1523/JNEUROSCI.5058-13.2014
https://doi.org/10.1111/j.1460-9568.2010.07531.x
https://doi.org/10.1111/j.1460-9568.2010.07531.x
https://doi.org/10.1016/j.biopsych.2010.03.026
https://doi.org/10.1016/j.biopsych.2010.03.026
https://doi.org/10.1038/nn1923
https://doi.org/10.1111/j.1460-9568.2006.04654.x
https://doi.org/10.1098/rstb.2012.0220
https://doi.org/10.1016/j.biopsych.2007.07.011


Dreyer, J. K., Vander Weele, C. M., Lovic, V., & Aragona, B. J. (2016). Functionally distinct dopamine
signals in nucleus accumbens core and shell in the freely moving rat. The Journal of Neuroscience: The
Official Journal of the Society for Neuroscience, 36(1), 98e112. https://doi.org/10.1523/JNEUROSCI.
2326-15.2016.

Everitt, B. J., Parkinson, J. A., Olmstead, M. C., Arroyo, M., Robledo, P., & Robbins, T. W. (1999).
Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Annals
of the New York Academy of Sciences, 877, 412e438.

Fanselow, M. S., & Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct
structures? Neuron, 65(1), 7e19. https://doi.org/10.1016/j.neuron.2009.11.031.

Feja, M., Hayn, L., & Koch, M. (2014). Nucleus accumbens core and shell inactivation differentially affects
impulsive behaviours in rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 54, 31e42.
https://doi.org/10.1016/j.pnpbp.2014.04.012.

Ferland, J. N., & Winstanley, C. A. (2016). Risk-preferring rats make worse decisions and show increased
incubation of craving after cocaine self-administration. Addiction Biology. https://doi.org/10.1111/
adb.12388.

Floresco, S. B., Ghods-Sharifi, S., Vexelman, C., & Magyar, O. (2006). Dissociable roles for the nucleus
accumbens core and shell in regulating set shifting. The Journal of Neuroscience: The Official Journal of the
Society for Neuroscience, 26(9), 2449e2457. https://doi.org/10.1523/JNEUROSCI.4431-05.2006.

Galtress, T., & Kirkpatrick, K. (2010). The role of the nucleus accumbens core in impulsive choice, timing,
and reward processing. Behavioral Neuroscience, 124(1), 26e43. https://doi.org/10.1037/a0018464.

Ghods-Sharifi, S., & Floresco, S. B. (2010). Differential effects on effort discounting induced by inactivations
of the nucleus accumbens core or shell. Behavioral Neuroscience, 124(2), 179e191. https://doi.org/
10.1037/a0018932.

Gourley, S. L., & Taylor, J. R. (2016). Going and stopping: Dichotomies in behavioral control by the
prefrontal cortex. Nature Neuroscience, 19(6), 656e664. https://doi.org/10.1038/nn.4275.

Hara, Y., & Pickel, V. M. (2005). Overlapping intracellular and differential synaptic distributions of
dopamine D1 and glutamate N-methyl-D-aspartate receptors in rat nucleus accumbens. The Journal of
Comparative Neurology, 492(4), 442e455. https://doi.org/10.1002/cne.20740.

Hauber, W., & Sommer, S. (2009). Prefrontostriatal circuitry regulates effort-related decision making.
Cerebral Cortex, 19(10), 2240e2247. https://doi.org/10.1093/cercor/bhn241.

Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: Evidence for
a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience and
Biobehavioral Reviews, 27(6), 555e579.

Heimer, L., Zahm, D. S., Churchill, L., Kalivas, P. W., & Wohltmann, C. (1991). Specificity in the
projection patterns of accumbal core and shell in the rat. Neuroscience, 41(1), 89e125.

Hernandez, P. J., Andrzejewski, M. E., Sadeghian, K., Panksepp, J. B., & Kelley, A. E. (2005). AMPA/
kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: A context-
limited role in the encoding and consolidation of instrumental memory. Learning & Memory, 12(3),
285e295. https://doi.org/10.1101/lm.93105.

Hernandez, G., Oleson, E. B., Gentry, R. N., Abbas, Z., Bernstein, D. L., Arvanitogiannis, A., & Cheer, J. F.
(2014). Endocannabinoids promote cocaine-induced impulsivity and its rapid dopaminergic correlates.
Biological Psychiatry, 75(6), 487e498. https://doi.org/10.1016/j.biopsych.2013.09.005.

Hernandez, P. J., Sadeghian, K., & Kelley, A. E. (2002). Early consolidation of instrumental learning requires
protein synthesis in the nucleus accumbens. Nature Neuroscience, 5(12), 1327e1331. https://doi.org/
10.1038/nn973.

Hoffman, W. F., Moore, M., Templin, R., McFarland, B., Hitzemann, R. J., & Mitchell, S. H. (2006).
Neuropsychological function and delay discounting in methamphetamine-dependent individuals.
Psychopharmacology, 188(2), 162e170. https://doi.org/10.1007/s00213-006-0494-0.

Hollander, J. A., & Carelli, R. M. (2007). Cocaine-associated stimuli increase cocaine seeking and activate
accumbens core neurons after abstinence. The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 27(13), 3535e3539. https://doi.org/10.1523/JNEUROSCI.3667-06.2007.

Hollander, J. A., Ijames, S. G., Roop, R. G., & Carelli, R. M. (2002). An examination of nucleus accumbens
cell firing during extinction and reinstatement of water reinforcement behavior in rats. Brain Research,
929(2), 226e235.

214 Goal-Directed Decision Making

https://doi.org/10.1523/JNEUROSCI.2326-15.2016
https://doi.org/10.1523/JNEUROSCI.2326-15.2016
https://doi.org/10.1016/j.neuron.2009.11.031
https://doi.org/10.1016/j.pnpbp.2014.04.012
https://doi.org/10.1111/adb.12388
https://doi.org/10.1111/adb.12388
https://doi.org/10.1523/JNEUROSCI.4431-05.2006
https://doi.org/10.1037/a0018464
https://doi.org/10.1037/a0018932
https://doi.org/10.1037/a0018932
https://doi.org/10.1038/nn.4275
https://doi.org/10.1002/cne.20740
https://doi.org/10.1093/cercor/bhn241
https://doi.org/10.1101/lm.93105
https://doi.org/10.1016/j.biopsych.2013.09.005
https://doi.org/10.1038/nn973
https://doi.org/10.1038/nn973
https://doi.org/10.1007/s00213-006-0494-0
https://doi.org/10.1523/JNEUROSCI.3667-06.2007


Hurley, S. W., West, E. A., & Carelli, R. M. (2017). Opposing roles of rapid dopamine signaling across the
rostral-caudal axis of the nucleus accumbens shell in drug-induced negative affect. Biological Psychiatry,
82(11), 839e846. https://doi.org/10.1016/j.biopsych.2017.05.009.

Ito, R., Dalley, J. W., Howes, S. R., Robbins, T. W., & Everitt, B. J. (2000). Dissociation in conditioned
dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during
cocaine-seeking behavior in rats. The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 20(19), 7489e7495.

Ito, R., Robbins, T. W., & Everitt, B. J. (2004). Differential control over cocaine-seeking behavior by
nucleus accumbens core and shell. Nature Neuroscience, 7(4), 389e397. https://doi.org/10.1038/
nn1217.

Jones, J. L., Day, J. J., Wheeler, R. A., & Carelli, R. M. (2010). The basolateral amygdala differentially
regulates conditioned neural responses within the nucleus accumbens core and shell. Neuroscience,
169(3), 1186e1198. https://doi.org/10.1016/j.neuroscience.2010.05.073.

Kelley, A. E. (2004). Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward-
related learning. Neuroscience and Biobehavioral Reviews, 27(8), 765e776. https://doi.org/10.1016/
j.neubiorev.2003.11.015.

Kelley, A. E., Baldo, B. A., & Pratt, W. E. (2005). A proposed hypothalamic-thalamic-striatal axis for the
integration of energy balance, arousal, and food reward. The Journal of Comparative Neurology, 493(1),
72e85. https://doi.org/10.1002/cne.20769.

Kelley, A. E., & Swanson, C. J. (1997). Feeding induced by blockade of AMPA and kainate receptors within
the ventral striatum: A microinfusion mapping study. Behavioural Brain Research, 89(1e2), 107e113.

Kerfoot, E. C., Agarwal, I., Lee, H. J., & Holland, P. C. (2007). Control of appetitive and aversive
taste-reactivity responses by an auditory conditioned stimulus in a devaluation task: A FOS and
behavioral analysis. Learning & Memory, 14(9), 581e589. https://doi.org/10.1101/lm.627007.

Klanker, M., Sandberg, T., Joosten, R., Willuhn, I., Feenstra, M., & Denys, D. (2015). Phasic dopamine
release induced by positive feedback predicts individual differences in reversal learning. Neurobiology of
Learning and Memory, 125, 135e145. https://doi.org/10.1016/j.nlm.2015.08.011.

Lex, B., & Hauber, W. (2010). The role of nucleus accumbens dopamine in outcome encoding in
instrumental and Pavlovian conditioning. Neurobiology of Learning and Memory, 93(2), 283e290.
https://doi.org/10.1016/j.nlm.2009.11.002. pii:S1074-7427(09)00212-3.

Loos, M., Pattij, T., Janssen, M. C., Counotte, D. S., Schoffelmeer, A. N., Smit, A. B.,… van Gaalen, M. M.
(2010). Dopamine receptor D1/D5 gene expression in the medial prefrontal cortex predicts impulsive
choice in rats. Cerebral Cortex, 20(5), 1064e1070. https://doi.org/10.1093/cercor/bhp167.

Loriaux, A. L., Roitman, J. D., & Roitman, M. F. (2011). Nucleus accumbens shell, but not core, tracks
motivational value of salt. Journal of Neurophysiology, 106(3), 1537e1544. https://doi.org/10.1152/
jn.00153.2011.

Lubman, D. I., Yucel, M., & Pantelis, C. (2004). Addiction, a condition of compulsive behaviour?
Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction, 99(12),
1491e1502. https://doi.org/10.1111/j.1360-0443.2004.00808.x.

Lucantonio, F., Caprioli, D., & Schoenbaum, G. (2014). Transition from ‘model-based’ to ‘model-free’
behavioral control in addiction: Involvement of the orbitofrontal cortex and dorsolateral striatum.
Neuropharmacology, 76(Pt B), 407e415. https://doi.org/10.1016/j.neuropharm.2013.05.033.

Mai, B., Sommer, S., & Hauber, W. (2012). Motivational states influence effort-based decision making in
rats: The role of dopamine in the nucleus accumbens. Cognitive, Affective & Behavioral Neuroscience,
12(1), 74e84. https://doi.org/10.3758/s13415-011-0068-4.

Mai, B., Sommer, S., & Hauber, W. (2015). Dopamine D1/D2 receptor activity in the nucleus accumbens
core but not in the nucleus accumbens shell and orbitofrontal cortex modulates risk-based decision
making. The International Journal of Neuropsychopharmacology, 18(10), pyv043. https://doi.org/10.1093/
ijnp/pyv043.

Maldonado-Irizarry, C. S., & Kelley, A. E. (1994). Differential behavioral effects following microinjection of
an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology, 116(1), 65e72.

Maldonado-Irizarry, C. S., Swanson, C. J., & Kelley, A. E. (1995). Glutamate receptors in the nucleus
accumbens shell control feeding behavior via the lateral hypothalamus. The Journal of Neuroscience: The
Official Journal of the Society for Neuroscience, 15(10), 6779e6788.

Distinct Functional Microcircuits in the Nucleus Accumbens Underlying Goal-Directed Decision-Making 215

https://doi.org/10.1016/j.biopsych.2017.05.009
https://doi.org/10.1038/nn1217
https://doi.org/10.1038/nn1217
https://doi.org/10.1016/j.neuroscience.2010.05.073
https://doi.org/10.1016/j.neubiorev.2003.11.015
https://doi.org/10.1016/j.neubiorev.2003.11.015
https://doi.org/10.1002/cne.20769
https://doi.org/10.1101/lm.627007
https://doi.org/10.1016/j.nlm.2015.08.011
https://doi.org/10.1016/j.nlm.2009.11.002
https://doi.org/10.1093/cercor/bhp167
https://doi.org/10.1152/jn.00153.2011
https://doi.org/10.1152/jn.00153.2011
https://doi.org/10.1111/j.1360-0443.2004.00808.x
https://doi.org/10.1016/j.neuropharm.2013.05.033
https://doi.org/10.3758/s13415-011-0068-4
https://doi.org/10.1093/ijnp/pyv043
https://doi.org/10.1093/ijnp/pyv043


Mendez, I. A., Simon, N. W., Hart, N., Mitchell, M. R., Nation, J. R., Wellman, P. J., & Setlow, B. (2010).
Self-administered cocaine causes long-lasting increases in impulsive choice in a delay discounting task.
Behavioral Neuroscience, 124(4), 470e477. https://doi.org/10.1037/a0020458.

Meredith, G. E., Baldo, B. A., Andrezjewski, M. E., & Kelley, A. E. (2008). The structural basis for mapping
behavior onto the ventral striatum and its subdivisions. Brain Structure & Function, 213(1e2), 17e27.
https://doi.org/10.1007/s00429-008-0175-3.

Mirenowicz, J., & Schultz, W. (1996). Preferential activation of midbrain dopamine neurons by appetitive
rather than aversive stimuli. Nature, 379(6564), 449e451. https://doi.org/10.1038/379449a0.

Mitchell, M. R., Weiss, V. G., Beas, B. S., Morgan, D., Bizon, J. L., & Setlow, B. (2014). Adolescent risk
taking, cocaine self-administration, and striatal dopamine signaling. Neuropsychopharmacology: Official
Publication of the American College of Neuropsychopharmacology, 39(4), 955e962. https://doi.org/
10.1038/npp.2013.295.

Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: Functional interface
between the limbic system and the motor system. Progress in Neurobiology, 14(2e3), 69e97. https://
doi.org/10.1016/0301-0082(80)90018-0.

Morrison, S. E., & Nicola, S. M. (2014). Neurons in the nucleus accumbens promote selection bias for nearer
objects. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(42), 14147e14162.
https://doi.org/10.1523/JNEUROSCI.2197-14.2014.

Moschak, T. M., & Carelli, R. M. (2017). Impulsive rats exhibit blunted dopamine release dynamics during a
delay discounting task independent of cocaine history. eNeuro. https://doi.org/10.1523/
ENEURO.0119-17.2017.

Moschak, T. M., & Mitchell, S. H. (2014). Partial inactivation of nucleus accumbens core decreases delay
discounting in rats without affecting sensitivity to delay or magnitude. Behavioural Brain Research, 268,
159e168. https://doi.org/10.1016/j.bbr.2014.03.044.

Nelson, A., & Killcross, S. (2006). Amphetamine exposure enhances habit formation. The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience, 26(14), 3805e3812. https://doi.org/
10.1523/JNEUROSCI.4305-05.2006.

Nowend, K. L., Arizzi, M., Carlson, B. B., & Salamone, J. D. (2001). D1 or D2 antagonism in nucleus
accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory
increases in chow consumption. Pharmacology, Biochemistry, and Behavior, 69(3e4), 373e382.

Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal
cortex of rats, monkeys and humans. Cerebral Cortex, 10(3), 206e219.

Ostlund, S. B., Wassum, K. M., Murphy, N. P., Balleine, B. W., & Maidment, N. T. (2011). Extracellular
dopamine levels in striatal subregions track shifts in motivation and response cost during instrumental
conditioning. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(1),
200e207. https://doi.org/10.1523/JNEUROSCI.4759-10.2011.

Owesson-White, C. A., Cheer, J. F., Beyene, M., Carelli, R. M., & Wightman, R. M. (2008). Dynamic
changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proceedings
of the National Academy of Sciences of the United States of America, 105(33), 11957e11962. https://doi.org/
10.1073/pnas.0803896105.

Parkinson, J. A., Cardinal, R. N., & Everitt, B. J. (2000). Limbic cortical-ventral striatal systems underlying
appetitive conditioning. Progress in Brain Research, 126, 263e285. https://doi.org/10.1016/S0079-
6123(00)26019-6.

Phillips, P. E., Stuber, G. D., Heien, M. L., Wightman, R. M., & Carelli, R. M. (2003). Subsecond
dopamine release promotes cocaine seeking. Nature, 422(6932), 614e618. https://doi.org/10.1038/
nature01476.

Pothuizen, H. H., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of
selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning
in rats. The European Journal of Neuroscience, 22(10), 2605e2616. https://doi.org/10.1111/j.1460-
9568.2005.04388.x.

Poulos, C. X., Le, A. D., & Parker, J. L. (1995). Impulsivity predicts individual susceptibility to high levels of
alcohol self-administration. Behavioural Pharmacology, 6(8), 810e814.

216 Goal-Directed Decision Making

https://doi.org/10.1037/a0020458
https://doi.org/10.1007/s00429-008-0175-3
https://doi.org/10.1038/379449a0
https://doi.org/10.1038/npp.2013.295
https://doi.org/10.1038/npp.2013.295
https://doi.org/10.1016/0301-0082(80)90018-0
https://doi.org/10.1016/0301-0082(80)90018-0
https://doi.org/10.1523/JNEUROSCI.2197-14.2014
https://doi.org/10.1523/ENEURO.0119-17.2017
https://doi.org/10.1523/ENEURO.0119-17.2017
https://doi.org/10.1016/j.bbr.2014.03.044
https://doi.org/10.1523/JNEUROSCI.4305-05.2006
https://doi.org/10.1523/JNEUROSCI.4305-05.2006
https://doi.org/10.1523/JNEUROSCI.4759-10.2011
https://doi.org/10.1073/pnas.0803896105
https://doi.org/10.1073/pnas.0803896105
https://doi.org/10.1016/S0079-6123(00)26019-6
https://doi.org/10.1016/S0079-6123(00)26019-6
https://doi.org/10.1038/nature01476
https://doi.org/10.1038/nature01476
https://doi.org/10.1111/j.1460-9568.2005.04388.x
https://doi.org/10.1111/j.1460-9568.2005.04388.x


Randall, P. A., Pardo, M., Nunes, E. J., Lopez Cruz, L., Vemuri, V. K., Makriyannis, A.,… Salamone, J. D.
(2012). Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio
chow feeding choice task: Pharmacological studies and the role of individual differences. PLoS One,
7(10), e47934. https://doi.org/10.1371/journal.pone.0047934.

Robinson, D. L., & Carelli, R. M. (2008). Distinct subsets of nucleus accumbens neurons encode operant
responding for ethanol versus water. The European Journal of Neuroscience, 28(9), 1887e1894. https://
doi.org/10.1111/j.1460-9568.2008.06464.x.

Roesch, M. R., Singh, T., Brown, P. L., Mullins, S. E., & Schoenbaum, G. (2009). Ventral striatal neurons
encode the value of the chosen action in rats deciding between differently delayed or sized rewards. The
Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(42), 13365e13376. https://
doi.org/10.1523/JNEUROSCI.2572-09.2009.

Roitman, M. F., Stuber, G. D., Phillips, P. E., Wightman, R. M., & Carelli, R. M. (2004). Dopamine
operates as a subsecond modulator of food seeking. The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience, 24(6), 1265e1271. https://doi.org/10.1523/JNEUROSCI.3823-03.2004.

Roitman, M. F., Wheeler, R. A., & Carelli, R. M. (2005). Nucleus accumbens neurons are innately tuned
for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output.Neuron,
45(4), 587e597. https://doi.org/10.1016/j.neuron.2004.12.055.

Roitman, M. F., Wheeler, R. A., Tiesinga, P. H., Roitman, J. D., & Carelli, R. M. (2010). Hedonic and
nucleus accumbens neural responses to a natural reward are regulated by aversive conditioning. Learning
& Memory, 17(11), 539e546. https://doi.org/10.1101/lm.1869710. pii:17/11/539.

Roitman, M. F., Wheeler, R. A., Wightman, R. M., & Carelli, R. M. (2008). Real-time chemical responses
in the nucleus accumbens differentiate rewarding and aversive stimuli. Nature Neuroscience, 11(12),
1376e1377. https://doi.org/10.1038/nn.2219.

Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J., & Simpson, S. J. (1986). Sensory-specific satiety: Food-
specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain
Research, 368(1), 79e86.

Sackett, D. S., Saddoris, M. P., & Carelli, R. M. (2017). Nucleus accumbens shell dopamine preferentially
tracks information related to outcome value of reward. eNeuro, 4(3). https://doi.org/10.1523/
ENEURO.0058-17. pii:ENEURO.0058e17.2017.

Saddoris, M. P. (2016). Terminal dopamine release kinetics in the accumbens core and shell are distinctly
altered after withdrawal from cocaine self-administration. eNeuro, 3(5). https://doi.org/10.1523/
ENEURO.0274-16.2016.

Saddoris, M. P., Cacciapaglia, F., Wightman, R. M., & Carelli, R. M. (2015). Differential dopamine release
dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and
incentive motivation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(33),
11572e11582. https://doi.org/10.1523/JNEUROSCI.2344-15.2015.

Saddoris, M. P., & Carelli, R. M. (2014). Cocaine self-administration abolishes associative neural encoding in
the nucleus accumbens necessary for higher-order learning. Biological Psychiatry, 75(2), 156e164.
https://doi.org/10.1016/j.biopsych.2013.07.037.

Saddoris, M. P., Stamatakis, A., & Carelli, R. M. (2011). Neural correlates of Pavlovian-to-instrumental
transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-
administration. The European Journal of Neuroscience, 33(12), 2274e2287. https://doi.org/10.1111/
j.1460-9568.2011.07683.x.

Saddoris, M. P., Sugam, J. A., Cacciapaglia, F., & Carelli, R. M. (2013). Rapid dopamine dynamics in the
accumbens core and shell: Learning and action. Frontiers in Bioscience (Elite Edition), 5, 273e288.

Saddoris, M. P., Sugam, J. A., & Carelli, R. M. (2017). Prior cocaine experience impairs normal phasic
dopamine signals of reward value in accumbens shell. Neuropsychopharmacology: Official Publication of the
American College of Neuropsychopharmacology, 42(3), 766e773. https://doi.org/10.1038/npp.2016.189.

Saddoris, M. P., Sugam, J. A., Stuber, G. D., Witten, I. B., Deisseroth, K., & Carelli, R. M. (2015).
Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based
decision making. Biological Psychiatry, 77(10), 903e911. https://doi.org/10.1016/j.biopsych.2014.
10.024.

Distinct Functional Microcircuits in the Nucleus Accumbens Underlying Goal-Directed Decision-Making 217

https://doi.org/10.1371/journal.pone.0047934
https://doi.org/10.1111/j.1460-9568.2008.06464.x
https://doi.org/10.1111/j.1460-9568.2008.06464.x
https://doi.org/10.1523/JNEUROSCI.2572-09.2009
https://doi.org/10.1523/JNEUROSCI.2572-09.2009
https://doi.org/10.1523/JNEUROSCI.3823-03.2004
https://doi.org/10.1016/j.neuron.2004.12.055
https://doi.org/10.1101/lm.1869710
https://doi.org/10.1038/nn.2219
https://doi.org/10.1523/ENEURO.0058-17
https://doi.org/10.1523/ENEURO.0058-17
https://doi.org/10.1523/ENEURO.0274-16.2016
https://doi.org/10.1523/ENEURO.0274-16.2016
https://doi.org/10.1523/JNEUROSCI.2344-15.2015
https://doi.org/10.1016/j.biopsych.2013.07.037
https://doi.org/10.1111/j.1460-9568.2011.07683.x
https://doi.org/10.1111/j.1460-9568.2011.07683.x
https://doi.org/10.1038/npp.2016.189
https://doi.org/10.1016/j.biopsych.2014.10.024
https://doi.org/10.1016/j.biopsych.2014.10.024


Saddoris, M. P., Wang, X., Sugam, J. A., & Carelli, R. M. (2016). Cocaine self-administration experience
induces pathological phasic accumbens dopamine signals and abnormal incentive behaviors in drug-
abstinent rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(1),
235e250. https://doi.org/10.1523/JNEUROSCI.3468-15.2016.

Salamone, J. D., Wisniecki, A., Carlson, B. B., & Correa, M. (2001). Nucleus accumbens dopamine
depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary
food reinforcement. Neuroscience, 105(4), 863e870.

Schoenbaum, G., Saddoris, M. P., Ramus, S. J., Shaham, Y., & Setlow, B. (2004). Cocaine-experienced
rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. The European Journal of
Neuroscience, 19(7), 1997e2002. https://doi.org/10.1111/j.1460-9568.2004.03274.x.

Schoenbaum, G., & Setlow, B. (2003). Lesions of nucleus accumbens disrupt learning about aversive
outcomes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(30), 9833e9841.

Schoenbaum, G., & Setlow, B. (2005). Cocaine makes actions insensitive to outcomes but not extinction:
Implications for altered orbitofrontal-amygdalar function. Cerebral Cortex, 15(8), 1162e1169. https://
doi.org/10.1093/cercor/bhh216.

Sellings, L. H., & Clarke, P. B. (2003). Segregation of amphetamine reward and locomotor stimulation
between nucleus accumbens medial shell and core. The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience, 23(15), 6295e6303.

Setlow, B., Schoenbaum, G., & Gallagher, M. (2003). Neural encoding in ventral striatum during olfactory
discrimination learning. Neuron, 38(4), 625e636.

Simon, N. W., Beas, B. S., Montgomery, K. S., Haberman, R. P., Bizon, J. L., & Setlow, B. (2013).
Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity.
The European Journal of Neuroscience, 37(11), 1779e1788. https://doi.org/10.1111/ejn.12191.

Simon, N. W., Montgomery, K. S., Beas, B. S., Mitchell, M. R., LaSarge, C. L., Mendez, I. A.,
Ba~nuelos, C., Vokes, C. M., Taylor, A. B., Haberman, R. P., Bizon, J. L., & Setlow, B. (2011).
Dopaminergic modulation of risky decision-making. J Neurosci., 31(48), 17460e17470. https://
doi.org/10.1523/JNEUROSCI.3772-11.2011.

Singh, T., McDannald, M. A., Haney, R. Z., Cerri, D. H., & Schoenbaum, G. (2010). Nucleus accumbens
core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding.
Frontiers in Integrative Neuroscience, 4, 126. https://doi.org/10.3389/fnint.2010.00126.

Sokolowski, J. D., & Salamone, J. D. (1998). The role of accumbens dopamine in lever pressing and response
allocation: Effects of 6-OHDA injected into core and dorsomedial shell. Pharmacology, Biochemistry, and
Behavior, 59(3), 557e566.

St Onge, J. R., Ahn, S., Phillips, A. G., & Floresco, S. B. (2012). Dynamic fluctuations in dopamine efflux
in the prefrontal cortex and nucleus accumbens during risk-based decision making. The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience, 32(47), 16880e16891. https://doi.org/
10.1523/JNEUROSCI.3807-12.2012.

Stopper, C. M., & Floresco, S. B. (2011). Contributions of the nucleus accumbens and its subregions to
different aspects of risk-based decision making. Cognitive, Affective & Behavioral Neuroscience, 11(1),
97e112. https://doi.org/10.3758/s13415-010-0015-9.

Stopper, C. M., Khayambashi, S., & Floresco, S. B. (2013). Receptor-specific modulation of risk-based
decision making by nucleus accumbens dopamine. Neuropsychopharmacology: Official Publication of the
American College of Neuropsychopharmacology, 38(5), 715e728. https://doi.org/10.1038/npp.2012.240.

Stratford, T. R., & Kelley, A. E. (1997). GABA in the nucleus accumbens shell participates in the central
regulation of feeding behavior. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,
17(11), 4434e4440.

Stuber, G. D., Roitman, M. F., Phillips, P. E., Carelli, R. M., &Wightman, R. M. (2005). Rapid dopamine
signaling in the nucleus accumbens during contingent and noncontingent cocaine administration.Neuro-
psychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 30(5), 853e863.
https://doi.org/10.1038/sj.npp.1300619.

Sugam, J. A., Day, J. J., Wightman, R. M., & Carelli, R. M. (2012). Phasic nucleus accumbens dopamine
encodes risk-based decision-making behavior. Biological Psychiatry, 71(3), 199e205. https://doi.org/
10.1016/j.biopsych.2011.09.029.

218 Goal-Directed Decision Making

https://doi.org/10.1523/JNEUROSCI.3468-15.2016
https://doi.org/10.1111/j.1460-9568.2004.03274.x
https://doi.org/10.1093/cercor/bhh216
https://doi.org/10.1093/cercor/bhh216
https://doi.org/10.1111/ejn.12191
https://doi.org/10.1523/JNEUROSCI.3772-11.2011
https://doi.org/10.1523/JNEUROSCI.3772-11.2011
https://doi.org/10.3389/fnint.2010.00126
https://doi.org/10.1523/JNEUROSCI.3807-12.2012
https://doi.org/10.1523/JNEUROSCI.3807-12.2012
https://doi.org/10.3758/s13415-010-0015-9
https://doi.org/10.1038/npp.2012.240
https://doi.org/10.1038/sj.npp.1300619
https://doi.org/10.1016/j.biopsych.2011.09.029
https://doi.org/10.1016/j.biopsych.2011.09.029


Sugam, J. A., Saddoris, M. P., & Carelli, R. M. (2014). Nucleus accumbens neurons track behavioral
preferences and reward outcomes during risky decision making. Biological Psychiatry, 75(10),
807e816. https://doi.org/10.1016/j.biopsych.2013.09.010.

Sun, W., & Rebec, G. V. (2003). Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking
behavior in rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(32),
10258e10264.

Tran-Tu-Yen, D. A., Marchand, A. R., Pape, J. R., Di Scala, G., & Coutureau, E. (2009). Transient role of
the rat prelimbic cortex in goal-directed behaviour. The European Journal of Neuroscience, 30(3), 464e471.
https://doi.org/10.1111/j.1460-9568.2009.06834.x.

Volkow, N. D., Fowler, J. S., Wang, G. J., & Goldstein, R. Z. (2002). Role of dopamine, the frontal cortex
and memory circuits in drug addiction: Insight from imaging studies. Neurobiology of Learning and
Memory, 78(3), 610e624.

West, E. A., & Carelli, R. M. (2016). Nucleus accumbens core and shell differentially encode reward-
associated cues after reinforcer devaluation. The Journal of Neuroscience: The Official Journal of the Society
for Neuroscience, 36(4), 1128e1139. https://doi.org/10.1523/JNEUROSCI.2976-15.2016.

Wheeler, R. A., Aragona, B. J., Fuhrmann, K. A., Jones, J. L., Day, J. J., Cacciapaglia, F.,…Carelli, R. M.
(2011). Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state.
Biological Psychiatry, 69(11), 1067e1074. https://doi.org/10.1016/j.biopsych.2011.02.014.

Wheeler, R. A., Twining, R. C., Jones, J. L., Slater, J. M., Grigson, P. S., & Carelli, R. M. (2008). Behavioral
and electrophysiological indices of negative affect predict cocaine self-administration. Neuron, 57(5),
774e785. https://doi.org/10.1016/j.neuron.2008.01.024.

Winstanley, C. A., Theobald, D. E., Dalley, J. W., & Robbins, T. W. (2005). Interactions between serotonin
and dopamine in the control of impulsive choice in rats: Therapeutic implications for impulse control
disorders. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology,
30(4), 669e682. https://doi.org/10.1038/sj.npp.1300610.

Wolf, M. E., Mangiavacchi, S., & Sun, X. (2003). Mechanisms by which dopamine receptors may influence
synaptic plasticity. Annals of the New York Academy of Sciences, 1003, 241e249.

Wright, C. I., Beijer, A. V., & Groenewegen, H. J. (1996). Basal amygdaloid complex afferents to the rat
nucleus accumbens are compartmentally organized. The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience, 16(5), 1877e1893.

Yang, J. H., & Liao, R. M. (2015). Dissociable contribution of nucleus accumbens and dorsolateral striatum
to the acquisition of risk choice behavior in the rat. Neurobiology of Learning and Memory, 126, 67e77.
https://doi.org/10.1016/j.nlm.2015.11.002.

Zahm, D. S. (1992). An electron microscopic morphometric comparison of tyrosine hydroxylase
immunoreactive innervation in the neostriatum and the nucleus accumbens core and shell. Brain
Research, 575(2), 341e346.

Zahm, D. S. (1999). Functional-anatomical implications of the nucleus accumbens core and shell
subterritories. Annals of the New York Academy of Sciences, 877, 113e128.

Zeeb, F. D., Soko, A. D., Ji, X., & Fletcher, P. J. (2016). Low impulsive action, but not impulsive choice,
predicts greater conditioned reinforcer salience and augmented nucleus accumbens dopamine release.
Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(8),
2091e2100. https://doi.org/10.1038/npp.2016.9.

Distinct Functional Microcircuits in the Nucleus Accumbens Underlying Goal-Directed Decision-Making 219

https://doi.org/10.1016/j.biopsych.2013.09.010
https://doi.org/10.1111/j.1460-9568.2009.06834.x
https://doi.org/10.1523/JNEUROSCI.2976-15.2016
https://doi.org/10.1016/j.biopsych.2011.02.014
https://doi.org/10.1016/j.neuron.2008.01.024
https://doi.org/10.1038/sj.npp.1300610
https://doi.org/10.1016/j.nlm.2015.11.002
https://doi.org/10.1038/npp.2016.9


This page intentionally left blank



CHAPTER 10

Studying Integrative Processing and
Prospected Plasticity in Cholinergic
Interneurons: The Importance of
PavlovianeInstrumental Transfer
Jesus Bertran-Gonzalez, Vincent Laurent
Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia

INTRODUCTION

Every day, we make countless decisions, and we choose to engage in certain courses of
action while ignoring others. In many circumstances, these choices are controlled by the
value that we attribute to the consequences of all available actions (Dickinson & Balleine,
1994). On a hot summer day, we buy and drink a fresh lemonade, and we avoid a warm
coffee beverage. In other circumstances, our choices are influenced by the presence of
environmental cues that we have learned predict particular outcomes (Colwill &
Rescorla, 1988). For example, the smell of lemons will often drive us toward procuring
and consuming a fresh lemonade. Although the latter choice may well be perceived as
being somewhat forced upon us, it confers clear adaptive advantages. The predictive
cue (i.e., the smell of lemon) informs us about the likelihood of the outcome being avail-
able (i.e., the lemonade) and accordingly, we favor a course of actions that allows us to
secure this highly probable outcome. However, cue-based choices can result in detri-
mental and maladaptive behaviors. For instance, predictive cues influence choice be-
tween actions regardless of the value associated with the consequences of these actions:
the smell of lemons could lead us to drink a lemonade even though we are not thirsty
(Corbit, Janak, & Balleine, 2007). Similar suboptimal decision-making processes are
believed to play a central role in many pathologies such as drug addiction or obesity
(Belin, Jonkman, Dickinson, Robbins, & Everitt, 2009; Colagiuri & Lovibond, 2015;
Lamb, Schindler, & Pinkston, 2016), highlighting the need to gain a better understanding
of the psychological and neurobiological mechanisms underlying cue-based choices. The
best approach to model these choices in animals and humans is known as Pavloviane
instrumental transfer (PIT), and as we discuss here, PIT is a key paradigm to understand-
ing the neuronal mechanisms underlying cue-driven decision-making.

The PIT paradigm can be implemented in both the aversive and appetitive
domains (Campese, McCue, L�azaro-Mu~noz, LeDoux, & Cain, 2013; Cartoni, Balleine,
& Baldassarre, 2016; Holmes, Marchand, & Coutureau, 2010), but the latter remains
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more prominent and as a consequence, the present chapter will focus on appetitive forms
of PIT. The appetitive paradigm typically entails two separate training stages (see
Fig. 10.1A). One involves Pavlovian conditioning during which various cues, or stimuli,
are trained to predict the delivery of distinct food outcomes (i.e., stimuluseoutcome or
Pavlovian contingencies). The other training stage consists of instrumental conditioning
where the same food outcomes can be earned by engaging in specific actions (i.e., actione
outcome or instrumental contingencies). Then, a Pavlovianeinstrumental transfer test is
used to assess the influence of the predictive stimuli learned in the Pavlovian phase on
performing the actions trained in the instrumental phase. Importantly, such test reveals
the existence of two distinct forms of PIT. The “general” form demonstrates that a stim-
ulus predicting a food outcome increases performance on an action delivering food. This
increase is evidenced by greater responding on the action in the presence of the predictive
stimulus than in its absence and/or in the presence of a nonpredictive stimulus
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Figure 10.1 Experimental approaches used to examine the various forms of the Pavlovian instru-
mental transfer (PIT) paradigm. (A). Three designs are presented that study general and/or specific
PIT. All involved three stages. The first stage is Pavlovian conditioning during which several stimuli
(S1, S2, S3) predict distinct food outcomes (O1, O2, O3). Note that the general PIT paradigm includes
a control stimulus (S2) that is trained as neutral (i.e., it did not predict any outcome). Instrumental con-
ditioning is then administered and involved training one or two actions (A1, A2) to deliver the previ-
ously used food outcomes (O1, O2). Finally, a PIT test assesses responding on the instrumental actions
in the presence or absence of the various stimuli. (B). Schematic graphs that illustrate the typical
pattern of instrumental performance observed using the three distinct paradigms. Bas., baseline
responding in the absence of the stimuli.
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(Fig. 10.1B). Critically, general PIT is observed regardless of the specific type of appeti-
tive outcomes predicted by the stimulus and earned by the action. In other words, a stim-
ulus that signals the delivery of a fresh lemonade energizes performance on an action that
delivers a warm coffee beverage. In striking contrast, the “specific” form of PIT shows
that the influence of predictive stimuli on instrumental actions can be highly selective.
Indeed, specific PIT demonstrates that a stimulus predicting a particular outcome biases
choice toward actions earning the same outcome (Fig. 10.1B). That is, a stimulus that
signals the delivery of a fresh lemonade increases performance on an action earning
lemonade but leaves unaffected performance on a copresent action earning a warm coffee
beverage. Thus, general PIT usually involves a single instrumental action, whereas at least
two actions must be trained to observe specific PIT.

The two forms of PIT have been described in humans, monkeys, rats, mice, and equi-
nes (Cartoni et al., 2016; Colagiuri & Lovibond, 2015; Holmes et al., 2010), demon-
strating their robustness, validity, and significance to understanding how
environmental cues guide actions in our daily life. Although general PIT could be
perceived as a simpler approach to study cue-based choice, specific PIT has received
far more attention in the literature. At the behavioral level, specific PIT has been shown
to present two remarkable characteristics. The first is its resistance to manipulations that
hinder the stimuluseoutcome contingencies established across Pavlovian conditioning
and the actioneoutcome contingencies produced by instrumental conditioning. Thus,
extinction of the former (Delamater, 1996; Laurent, Chieng, & Balleine, 2016) and
degradation of the latter (Rescorla, 1992) fail to remove the specific influence of predic-
tive stimulus on choice between actions. A second characteristic is that specific PIT
occurs even though the outcomes predicted by the stimuli and earned by the actions
are not desirable. That is, a stimulus predicting an outcome that is being paired with sick-
ness, and is therefore somewhat aversive, remains able to guide choice toward an action
delivering that devalued outcome (Holland, 2004; Rescorla, 1994). In a similar fashion,
animals will persevere in showing appetitive-specific PIT even though they are not hun-
gry (Corbit et al., 2007). If anything, the influence of predictive stimuli on choice be-
tween actions therefore appears to override that produced by outcome value. The two
characteristics just mentioned may well explain the increased interest in specific PIT
over the past few decades. Indeed, they provide some insights as to why drug addictive
behaviors are so resistant to cognitive treatments and are prone to relapse. Further, these
characteristics also mimic the observation that obese individuals may engage in food
consumption even though they are not hungry.

In this chapter, we intend to provide some insights into the importance of the neuro-
biology underlying appetitive PIT. Several reviews are available that explain how the
study of cue-based choice may help our understanding of human pathologies, such as
obesity and drug addiction (Belin et al., 2009; Hogarth, Balleine, Corbit, & Killcross,
2013; Johnson, 2013; Lamb et al., 2016). Here, we will take another approach and
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will argue that PIT deserves attention for two crucial reasons. The first is that it is an
extremely powerful tool to establish the specific roles played by various brain regions
in the integration of two main forms of conditioning: Pavlovian and instrumental.
This will be demonstrated in the first section of this chapter that summarizes current
knowledge about the neural circuitry supporting PIT. The second reason justifying
the importance of PIT is that this paradigm is extremely well suited to confirm a central
tenet on neuronal plasticity: the way the brain anticipates and adjusts to future biologi-
cally significant events. Specifically, the second part of this chapter will present evidence
that Pavlovian conditioning triggers highly specific neuronal changes that are not neces-
sary for that present conditioning but rather are essential in the future, when it exerts an
influence over choice between actions.

THE NEUROANATOMY OF CUE-BASED CHOICE

PIT demonstrates that Pavlovian and instrumental learning interact with each other to
control adaptive behavior. Accordingly, it is not surprising that most of the brain regions
implicated in PIT are also known to process some aspects of the stimuluseoutcome
(i.e., S-O) contingencies established by Pavlovian conditioning and/or the actione
outcome (i.e., A-O) associations produced by instrumental conditioning. This section
will therefore describe the neuroanatomy of PIT with respect to the role played by brain
regions in either Pavlovian or instrumental conditioning. However, we will end this sec-
tion by arguing that the ventral striatum plays little role in either form of conditioning.
Rather, we will propose that it integrates information from brain regions supporting the
two forms of conditioning in order to promote the PIT effect.

Neuronal circuitry involved in stimuluseoutcome learning
Compelling evidence indicates that the orbitofrontal cortex (OFC) is involved in specific
PIT. However, the nature of this involvement critically depends on which subregion of
the OFC is being considered. Lesion encompassing both the ventral and lateral OFC has
been shown to abolish specific PIT whether it is completed before Pavlovian and instru-
mental training or after these two training stages (Ostlund & Balleine, 2005, 2007).
Further, the same lesion was found to impair the updating of the S-O associations that
are established across Pavlovian conditioning. Specifically, animals with such lesion fail
to cease responding to a stimulus that is no longer a reliable predictor of its previously
associated outcome (i.e., contingency degradation). Contrasting with this impairment,
damage to the ventral or lateral portion of the OFC does not disrupt encoding or retrieval
of the A-O associations produced by instrumental conditioning. For instance, animals
carrying such damage are perfectly able to select an action according to the value associ-
ated with its outcome. These data therefore suggest that activity in the ventral and lateral
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OFC is required during specific PIT because it processes some aspects of the S-O
contingencies that develop across Pavlovian conditioning.

The amygdala was one of the first brain regions to be identified as being critical for
cue-based choice. Yet, early lesion studies resulted in some discrepancies with respect
to which particular subnucleus of the amygdala contributes to the PIT effect. Some
studies revealed a crucial role for the central nucleus of the amygdala (CeA) while others
highlighted the importance of its basolateral complex (BLA) (Blundell, Hall, & Killcross,
2001; J. Hall, Parkinson, Connor, Dickinson, & Everitt, 2001; P.C. Holland & Gallagher,
2003). A potential explanation for these early inconsistencies comes from the observation
that these studies were assessing distinct forms of PIT, with some investigating general
PIT and others examining specific PIT. This explanation was cleverly confirmed with
the introduction of the so-called three-stimuli design (see Fig. 10.1A) by Corbit and
Balleine (2005). This design consists of training three stimuli (i.e., S1, S2, and S3) to
predict the delivery of three distinct outcomes (i.e., O1, O2, and O3) across Pavlovian
conditioning (i.e., S1-O1, S2-O2, and S3-O3). Then, instrumental conditioning is
administered during which O1 and O2 can be earned by performing actions A1 and
A2, respectively (i.e., A1-O1 and A2-O2). A final PIT test examines the effects of the
three stimuli on the two instrumental actions. This design is extremely powerful because
it allows to observe the two forms of PIT during the same test in a within-subject fashion.
That is, control subjects typically exhibit specific PIT as S1 increases responding on A1
but not A2, whereas S2 elevates performance on A2 but not A1. At the same time, these
subjects display general PIT as S3 energizes responding on both A1 and A2. Using this
design, it was found that BLA lesion removes the effect of S1 and S2 on A1 and A2,
but it leaves unaffected the energizing impact of S3 on the two actions. Conversely,
CeA lesion spares the bias in responding produced by S1 and S2 on A1 and A2, but it
abolishes the effect of S3 on these two actions. These findings convincingly demonstrate
that general PIT requires activity in the CeA but not the BLA. By contrast, specific PIT
relies on BLA activity but not CeA activity. Although these data were obtained in
rodents, it must be emphasized that a similar dissociation at the level of the amygdala
has been revealed using functional imaging in human subjects that were submitted to
a general or specific PIT task (Pr�evost, Liljeholm, Tyszka, & O’Doherty, 2012). The
ability to translate the rodent findings to humans clearly demonstrates the significance
of studying the PIT paradigm to understand how environmental cues guide actions in
our daily life.

It must be acknowledged that the involvement of the amygdala in the two forms of
PIT is somewhat unsurprising. The BLA and the CeA have repeatedly been implicated in
the processing of the S-O associations that develop across Pavlovian conditioning
(Holland & Gallagher, 1999; Petrovich, 2011). It is therefore likely that disrupting
BLA activity across a PIT test would prevent retrieval of the specific S-O contingencies
(i.e., S1-O1 and S2-O2) established across Pavlovian conditioning. Given that specific
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PIT requires the integration of these contingencies with the A-O relationships produced
by instrumental conditioning, it is clear that BLA disruption will abolish the PIT effect.
However, the dissociation between the roles played by the BLA and the CeA in specific
and general PIT remains particularly valuable to our understanding of how these two
nuclei contribute to Pavlovian conditioning. This understanding has largely been domi-
nated by findings employing the aversive form of Pavlovian conditioning (i.e., the
outcome is aversive). For decades, the BLA has been viewed as the site of encoding, stor-
age, and retrieval of the S-O associations. Meanwhile, the CeA was defined as a simple
relay that, when triggered by the BLA, coordinates the various conditioned responses
reflecting the nature of the outcome predicted by the stimulus (LeDoux, 2000; Maren,
2001). Clearly, the PIT findings are at odds with such serial model of amygdala func-
tioning in Pavlovian conditioning. For instance, the PIT findings previously described
are commonly interpreted as showing that the CeA is necessary for processing and
retrieving the general motivational property (e.g., an appetitive or aversive) of a predicted
outcome, while the BLA would compute and retrieve information about the sensory-
specific property (i.e., its shape, odor, or texture) of that same outcome (Corbit &
Balleine, 2005). Indeed, the former property is sufficient to trigger general PIT, whereas
the latter is required for specific PIT. Accordingly, it has been proposed that, rather than
functioning in a serial manner, the CeA and BLA work in parallel to incorporate the
various aspects (i.e., motivational and sensory-specific) of the S-O associations that
develop across Pavlovian conditioning (Balleine & Killcross, 2006). Importantly, this pro-
posal has now received substantial support, even in the aversive form of Pavlovian con-
ditioning. For example, it has been shown that the acquisition and consolidation of
Pavlovian fear conditioning is disrupted by pharmacological inactivation of either the
BLA or the CeA (Wilensky, Schafe, Kristensen, & LeDoux, 2006). There is also evidence
for experience-dependent plasticity changes occurring in the CeA that are necessary for
the formation of a fear memory (Li et al., 2013). Perhaps more strikingly, a recent study
has revealed that the CeA controls some aspects of the syntactic strengthening in BLA
neurons that has long been argued to underlie the predictive relationships between a
stimulus and an aversive stimulation (Yu et al., 2017). Although the findings on PIT
may not have been the sole driver for reevaluating how the CeA and BLA interact to
support Pavlovian conditioning, they do highlight the strength of the paradigm in getting
a better knowledge as to how various brain regions contribute to this form of
conditioning.

Neuronal circuitry involved in actioneoutcome learning
As mentioned previously, the involvement of the OFC in specific PIT critically depends
on which of its subregion is being studied. Thus, unlike its lateral and ventral portion, the
medial portion of the OFC appears to be required for specific PIT because it plays an
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important role in computing some aspects of the A-O relationships (Bradfield, Dezfouli,
van Holstein, Chieng, & Balleine, 2015). More specifically, it has been proposed that the
medial OFC is critical for retrieving sensory-specific information about nonobservable
outcomes and directing choice between actions according to that information. It is note-
worthy that the use of the specific PIT task was central in pinpointing the precise role
played by the medial OFC in instrumental outcome retrieval.

Beyond the OFC, two other prefrontal regions have been suspected to play an impor-
tant role in cue-based choice. These two regions are the prelimbic (PL) and infralimbic
(IL) cortices. A potential involvement of the PL and the IL is particularly relevant, as they
have been shown to contribute to instrumental conditioning (Corbit & Balleine, 2003;
Coutureau & Killcross, 2003). Specifically, the PL is known to be necessary for the acqui-
sition of A-O associations. However, this role appears to be relatively transient and
thereby, it is not surprising that manipulations of PL activity have failed to interfere
with the expression of either general or specific PIT (Corbit & Balleine, 2003). In
contrast to the PL, the IL cortex is believed to contribute to the establishment of habits
that develop with extensive instrumental training (Coutureau & Killcross, 2003). Habits
are behaviors that are characterized by their inflexibility, as evidenced by a loss of sensi-
tivity to manipulations of A-O contingencies or instrumental outcome value (Balleine,
Liljeholm, & Ostlund, 2009). As noted previously, this loss of sensitivity is also evident
in the specific PIT paradigm (Holland, 2004; Rescorla, 1994). Accordingly, one study
has revealed that disrupting IL activity abolishes specific PIT (Keistler, Barker, & Taylor,
2015). However, another study failed to reproduce such abolishment (Laurent et al.,
2016). The reason for this failure remains unclear, but it must be noted that the latter
study involved manipulations of S-O contingencies prior to testing for specific PIT.
These manipulations may have impacted how the IL contributes to cue-based choice.
Regardless, it is clear that a putative role of the IL in specific PIT could stem from its
involvement in the development of habits across extensive instrumental conditioning.

The dorsal striatum is another brain region that has been implicated in cue-based
choice. As with the amygdala, the use of the PIT paradigm has allowed to dissociate
the role played by distinct subregions of the dorsal striatum. Thus, inactivation of the
dorsolateral striatum (DLS) during a specific PIT test has been shown to generally reduce
instrumental performance (Corbit & Janak, 2007). However, the inactivation left the spe-
cific PIT effect intact. That is, a stimulus predicting a particular outcome was still able to
bias choice toward an action earning that same outcome. This bias was, however, absent
when the dorsomedial part of the striatum (DMS) was inactivated at test, even though
overall instrumental performance remained similar to controls. Similar to the findings
on the amygdala, the involvement of the DMS in specific PIT should not necessarily
been interpreted as evidenced that this brain region is critical for cue-based choice per
se. As noted, specific PIT requires the integration of the S-O and A-O associations,
and there is ample evidence that the DMS is crucial for establishing the latter type of
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associations (Balleine et al., 2009). Thus, the specific PIT impairment produced by DMS
inactivation is likely to reveal an inability to retrieve the specific A-O contingencies
established across instrumental conditioning. However, these results provide valuable
and new information on how the DLS and DMS functions in parallel to influence
behavior. The former appears to have a general energizing effect on instrumental perfor-
mance, whereas the latter may allow outcome-specific expression of the performance.
Although this may only be the case when predictive stimuli are present, it could well
be a general feature of the role played by these two brain regions during instrumental
conditioning.

Neuronal integration of Pavlovianeinstrumental transfer
Similar to the dorsal striatum, the role of the ventral striatum in choice between actions
depends on the subregion that is considered. This dissociation was convincingly demon-
strated using the three-stimuli design that was employed to establish the specific contri-
bution of the CeA and BLA during the PIT paradigm. Thus, using this design, it was
shown that the nucleus accumbens core promotes general PIT, whereas the nucleus
accumbens shell (NAc-S) is necessary for specific PIT (Corbit & Balleine, 2011; Corbit,
Muir & Balleine, 2001). Interestingly, it has also been shown that IL (Keistler et al., 2015)
and BLA (Shiflett & Balleine, 2010) inputs onto the NAc-S are required for the specific
PIT effect.

The role of NAc-S in specific PIT is particularly interesting as, unlike other brain re-
gions, it appears to be restricted to the expression of specific PIT per se. Several obser-
vations are consistent with such statement. First, rats with NAc-S lesion do not exhibit
any deficit across Pavlovian or instrumental conditioning (Corbit, Muir, Balleine, &
Balleine, 2001). Second, these rats are able to stop responding to a stimulus when the
contingent relationship with its outcome is degraded (unpublished data from our labora-
tory), implying that this brain region plays little role in establishing specific S-O associ-
ations. Further, the NAc-S is not involved in instrumental conditioning: local lesion
spares the sensitivity of A-O associations to change in contingencies or in outcome value
(Corbit et al., 2001). Thus, we propose that the NAc-S plays very little role, if any, in the
establishment of S-O and A-O associations. Rather, we argue that the NAc-S is essential
later for integrating the specific S-O and A-O relationships that mediate specific PIT.

In summary, several brain regions have been found to be essential in promoting gen-
eral and specific PIT. In addition to enhancing our knowledge about the neurobiology
underlying cue-based choice, we have provided evidence that the use of the PIT para-
digm allows a better understanding of the specific role played by various brain regions in
Pavlovian and instrumental conditioning. For example, we have seen that PIT provided
evidence for a parallel functioning of two main subnuclei of the amygdala. It revealed the
critical role played by the medial OFC in retrieving information about unobservable
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outcomes. It also delivered insights about the distinct roles played by the DLS and DMS
in action initiation and performance. The tremendous advantage of employing PIT is not
limited to neural advances, as it has improved our understanding of several behavioral
phenomena such as extinction (Delamater, 1996; Laurent et al., 2016) or inhibitory
learning (Laurent & Balleine, 2015; Quail, Laurent, & Balleine, 2017), by providing
an accurate approach to distinguish between motivational and outcome-specific informa-
tion. Regardless, one striking observation from the literature described above concerns
the highly precise role played by the NAc-S in specific PIT. Unlike other brain regions,
the NAc-S appears to be specifically involved in integrating S-O and A-O contingencies
to promote cue-based choice in specific PIT. This unique anticipatory feature of the
NAc-S has motivated the completion of a large number studies in our laboratory that
aimed at describing how this brain region computes the multidimensional integration
necessary for cue-based choice. This process, which involves a complex interaction
between different converging neuromodulatory signals in distinct local circuits in the
NAc-S, will be described in the second part of this chapter. A central aim of this part
is to illustrate how the specific PIT paradigm sets the optimal environment to study a
central feature of neuronal plasticity: how the brain circuitry arranges throughout
learning in order to prepare for future significant events.

THE NEUROBIOLOGY OF CUE-BASED CHOICE

Neuromodulation signals in the nucleus accumbens shell
The integration of neuronal signals is a ubiquitous property of the brain. Virtually, all
structural levels of the brain are designed to integrate signals, from intracellular molecular
programs detecting fluctuations in the extracellular environment to promote changes in
transcription, to multidomain neuronal clusters funnlling down sparse information states
to compute coherent behavioral responses. It is therefore difficult to pinpoint a “hotspot”
for integration across learning, unless two or more parallel sources of information process-
ing (and integration on the way) clash in a very defined point in time and space. This
optimal niche for large-scale integration is what specific PIT promotes at the moment
of test, and it appears to take place in the NAc-S. If one looks into the specifics of the
NAc-S neuronal organization, it becomes immediately evident how this structuredas
the rest of the striatumdis specifically designed to integrate large amounts of
signals from converging, functionally related circuits (Hunnicutt et al., 2016; Voorn,
Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004). The first revealing feature
for such a function is its main population of neurons, the so-called spiny projection neu-
rons (SPNs, also known as medium-sized spiny neurons or MSNs). These GABAergic
neurons comprise over 95% of the total neuronal population in the NAc-S and are char-
acterized by the very high spine densities in their dendrites and their reasonably long-
range projections, both rare features among GABAergic neuronal types. These cells
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are therefore adapted to receiving large loads of upstream glutamatergic information (e.g.,
the cortex, thalamus, amygdala), which is then funneled down to a much lower number
of cells. SPNs are thus carrying out one of the most important step-down processes in the
brain, and they do it while transitioning from a fundamentally glutamatergic to an essen-
tially GABAergic environment. These and other properties of SPNs that escape from the
scope of this chapter provide perspective on the scale of integration that these cells
mediate.

One factor strongly influencing the integrative capacity of SPNs in the NAc-S is their
sharp subdivision into two subpopulations that, while completely intermingled in the tis-
sue, are governed by opposing dopamine-dependent signaling (Bertran-Gonzalez,
Herv�e, Girault, & Valjent, 2010). The D1-SPN subpopulation initiates extensive molec-
ular signaling programs in response to dopamine (through intracellular cyclic AMP signal
[cAMP]epromoting D1 dopamine receptors), while the D2-SPN population derepresses
similar molecular signaling loads in response to dopamine clearing from the synapse
(through cAMP-ceasing D2 dopamine receptors) (Bertran-Gonzalez et al., 2008). These
opposing patterns of signaling activity in response to dopamine oscillations are key to un-
derstanding the way integration of first-hand glutamatergic information occurs in the
NAc-S, but they are not the full story. An important character modulating the informa-
tion flow onto SPNsdwhich has drawn substantial attention in recent yearsdis the stria-
tal cholinergic system, which depends on a very particular type of neuron known as
cholinergic interneuron (CIN). CINs are among the largest neurons in the mammalian
CNS, and although they only account for less than 2% of the neurons in the striatum,
they provide the largest acetylcholine load in the brain. They do so through extensive
local axonal fields and their explicitly sparse spatial distribution, which covers every
corner of striatal tissue (Bolam, Wainer, & Smith, 1984). Importantly, modern quantita-
tive studies of the CIN population revealed particularly high densities of neuronal bodies
and dendritic processes in the NAc-S (Matamales, G€otz, & Bertran-Gonzalez, 2016a),
which highlights the importance of the cholinergic system in this region of the ventral
striatum.

Although less well studied in the context of associative learning, a third important
modulation signal in the striatum is the opioid system, which counts with various types
of 7-transmembrane G protein-coupled receptors that are activated mostly by endoge-
nous opioid peptides (Kieffer & Evans, 2009). One particularly important receptor in
the ventral striatum, based on its enrichment in the NAc-S, is the delta-opioid receptor
(DOR), the ligand of which, enkephalin (ENK), is produced in enormous quantities in
the striatum (Carlyle et al., 2017), and its release depends exclusively on D2-SPNs
(Steiner & Gerfen, 1998). The first hint of the importance of the ENK-DOR system
for predictive learning was obtained in our laboratory, when we found that both the
genetic deletion of DOR, as well as the pharmacological blockade of DOR in the
NAc-S, abolished specific PIT (Laurent, Leung, Maidment, & Balleine, 2012). This study
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thus revealed the necessity of this receptor for the integration processing undertaken in
the NAc-S at the moment of PIT; however, given that predictive learning and the
choices it informs take place at different times, it remained unknown how the integration
of Pavlovian and instrumental learning emerged from the NAc-S circuitry.

Overall, the NAc-S nests a series of neuromodulation signals (i.e., dopamine, acetyl-
choline, and opioids at least) that, across learning, interact with one another to modulate
incoming glutamatergic information and mediate the integration of Pavlovian and instru-
mental learning. The mechanism by which this occurs at the level of molecules and
circuits is complex and is the focus of the following sections of this chapter.

The cholinergic system as an integration machinery in the striatum
Mounting evidence in the last few years positions CINs as central to all integration
processing occurring in SPNs of the striatum, from stimulus detection to reinforcement
learning and associative processing (Apicella, 2007; Goldberg & Reynolds, 2011;
Yamanaka et al., 2017). These interneurons are also known as tonically active neurons
(TANs), as they are characterized by their intrinsic capacity to fire tonically (Ben D
Bennett & Wilson, 1999) and they have the intriguing ability of pausing and rebounding
their firing during Pavlovian stimuluseoutcome conditioning (Aosaki et al., 1994).
Decades of intense research on these “conditioned pause” or “burst/pause” responses
have revealed their close relationship to the phasic activity of midbrain dopamine neurons
during conditioning (e.g., Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004), but the
mechanism by which these timely firing patterns are initiated and maintained are still
debated (Brown et al., 2012; Ding, Guzman, Peterson, Goldberg, & Surmeier, 2010;
Goldberg & Reynolds, 2011; Zhang & Cragg, 2017).

Given the antiphasic relationship between midbrain dopamine neurons and CINs
during predictive learning, dopamine itself has been proposed to critically participate
in driving firing pauses (Ding et al., 2010; Reynolds, Hyland, & Wickens, 2004). How-
ever, this modulation could be indirect, since pauseerebound behavior is observable in
the absence of phasic dopamine, and dopamine alone cannot explain the multiple phases
of this response (Zhang & Cragg, 2017). Another force proposed to critically control
these burst/pause and rebound responses in CINs is the glutamatergic drive from cortico-
striatal and/or thalamostriatal projections, both abundantly synapsing with CINs
(Bradfield, Bertran-Gonzalez, Chieng, & Balleine, 2013; Doig, Magill, Apicella, Bolam,
& Sharott, 2014; Lapper & Bolam, 1992; Matamales et al., 2016b). However, it is still
unclear how purely excitatory inputs from glutamatergic systems can solely explain each
phase of the burst/pauseerebound response, so highly synchronized interactions with other
modulation systems (such as dopamine) are the most likely scenario (Cachope et al., 2012;
Ding et al., 2010; Threlfell et al., 2012). Finally, Gamma-Aminobutyric acid (GABA) has
also been suggested as candidate orchestrator of the pause response (Sullivan, Chen, &
Morikawa, 2008), also during Pavlovian conditioning (Brown et al., 2012). Yet again,
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precipitation of the burst/pause and rebound response, with all its phases and time var-
iabilities, is difficult to explain based solely on GABAergic inputs.

Most likely, the emergence and fine-tuning of these responses during conditioning
relies on the combination of multiple signals that build up synchrony as learning pro-
gresses. Given the fast nature of the pauseerebound response, the striatum offers a pro-
pitious environment for generating large but focal oscillations of acetylcholine that could
define domains of targeted corticostriatal plasticity and information integration. In the
case of the integrational role played by the NAc-S on cue-based choice, it is reasonable
to think that important neurophysiological adaptations occur during the initial stages of
predictive learning, and the burst/pauseerebound activity in CINs of the NAc-S is very
likely to emerge during the initial Pavlovian phase. Incidentally, new research in mon-
keys has revealed that TANs in the ventral striatum display larger and longer pauses
than dorsal striatal counterparts in response to predictive stimuli during Pavlovian condi-
tioning (Marche, Martel, & Apicella, 2017), suggesting that pause behavior in ventral
regions is important and can be subjected to additional sources of neuromodulation.

Modulating the modulator: how CINs in the NAc-S get ready for
cue-driven choice
One particularly interesting feature of CINs during predictive learning is, as was initially
described (Aosaki et al., 1994), their ability to “become” sensitive to the conditioned
pause response as Pavlovian training progresses. In their first study in monkeys, Aosaki
and colleagues found that the proportion of TANs displaying such modes of firing
increased substantially over training, ranging from around 17% at the onset of training
to 50%e70% by the end of training. Importantly, competent CINs were able to fire
in this mode after long periods of training intermission and were able to rapidly switch
their sensory properties after a change in conditioning rules. It is therefore clear that
some sort of long-lasting adaptation emerges in these neurons during learning, but to
date the way these neurons build their capacity to pause their behavior remains un-
known. As discussed above, one possibility is that, with learning, synchrony between
different neurotransmitter systems builds around CINs and orchestrates their firing and
pausing. An alternative possibility is that these neurons become competent for burst/
pause firing through intrinsic adaptations promoted by learning. In other words, CINs
could be undergoing plastic changes that provide them with the physiological properties
required to behave in burst/pause modes.

In our laboratory, we described a striking molecular adaptation occurring in CINs of
the NAc-S in mice trained to appetitive Pavlovian conditioning (Bertran-Gonzalez,
Laurent, Chieng, Christie, & Balleine, 2013). We found that S-O contingencies estab-
lished during the initial Pavlovian training specifically promoted the accumulation of
DOR in the membrane of CINs, something that remained for at least 10 days until
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the mice were submitted to the PIT test (Fig. 10.2A,B). Importantly, the extent of DOR
accumulation correlated with performance during conditioned responding (Pavlovian
phase) and also stimulus-based choice (PIT test), and animals exposed to the same num-
ber of stimuli and reward but in a noncontingent manner did not develop membrane
DOR in their CINs (Fig. 10.2A,B). We also found that CINs in NAc-S slices from an-
imals with Pavlovian contingent training were more susceptible to irregular firing and
burst firing than those in noncontingently trained mice, a mode of firing that was further
precipitated with DOR agonist treatment (Fig. 10.2C). These data showed for the first
time a molecular adaptation in an interneuronal system induced purely by learning:
CINs strategically accumulated inhibitory DORs in their somatic membrane to develop
sensitivity to ENK modulation, an adaptive feature that is well suited to favor the expres-
sion of timely burst/pause and rebound responses emerged during conditioning. This
adaptation was enduring, as it stayed for a long time after its formation (up to several
weeks in our unpublished experiments) and, once formed, did not decrease after initially
formed contingencies were behaviorally degraded (unpublished data). Importantly, one
critical property of this adaptation is its anticipatory nature: neither DOR receptor activ-
ity nor the entire NAc-S function is required for conditioned responding during
Pavlovian learning (Corbit et al., 2001; Laurent et al., 2012). This suggests that whatever
neuronal plasticity the specific learning of stimuluseoutcome contingencies is promoting
in the NAc-S during initial conditioning, it is to be “used” prospectively in future
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Figure 10.2 Predictive learning induces opioid plasticity in cholinergic interneurons (CINs) of the
nucleus accumbens shell (NAc-S). (A) In the Pavlovian phase, learning of two parallel stimuluse
outcome contingencies were trained in mice and rats by associating two stimuli (S1 and S2) with
two different outcomes (O1 and O2) (see Fig. 10.1A). In the contingent group, O1 and O2 were
delivered coinciding with the presentation of the stimuli S1 and S2, respectively. In the noncontingent
group, delivery of O1 and O2 occurred irrespective of the presentation of S1 and S2. (B) Only contin-
gently trained mice showed a sustained accumulation of delta-opioid receptors (DORs) in the somatic
membrane of CINs of the NAc-S (marked with ChAT staining). This adaptation lasted for several weeks
after training. (C) CINs of contingently trained rats showing enhanced sensitivity to the DOR agonist
deltorphin in brain slices. Deltorphin promoted burst/pause firing in a larger proportion of CINs in
animals undergoing contingent Pavlovian training. (Data are from Bertran-Gonzalez et al. (2013).)
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circumstances, where, for example, these contingencies need to drive choice between ac-
tions. In other words, modulatory systems in the NAc-S appear to be getting ready for
future decision-making, and they do so by introducing molecular changes in modulatory
systems themselves.

The next question our lab aimed at addressing was which mechanisms could be pro-
moting membrane DOR accumulation in CINs during conditioning. We first hypoth-
esized that phasic dopamine release expected to occur during Pavlovian learning could be
causing sustained reductions in ENK release from D2-SPNs, something that could be
sensitizing DORs and therefore drive their expression in the membrane. However,
reducing the tone of D2-SPNs with specific D2 agonists during conditioning did not
affect DOR accumulation (unpublished research). We next reasoned that substance P
(SP), a neuropeptide that is specifically released by D1-SPNs, could be mediating
DOR accumulation in response to learning-related phasic dopamine. Using a series of
pharmacological manipulations in vivo, it was found that SP was key to drive the accu-
mulation of DOR in the membrane of CINs, and it did that through its natural receptors
(NK1Rs), which are highly enriched in CINs (Gerfen, 1991; Heath, Chieng, Christie, &
Balleine, 2017). Although direct experimental evidence is still lacking, these results sug-
gested that SP released as a consequence of sustained D1-SPN activity during condition-
ing could be an important contributor to the enrichment of DORs in the membrane of
CINs (Fig. 10.3A). The way the SP signal reconciles with sensory-specific and
contingency-specific signals broadcasted in the brain, as learning is established remains
unknown but sets the grounds for intensive research in the future.

Confluence of signals in the nucleus accumbens shell during cue-driven
choice
As we have seen in this chapter, the learning necessary for specific PIT gathers complex
processing, where extensive circuitry and neurotransmitter systems involved in gener-
ating stimuluseoutcome and actioneoutcome learning mature over training and
converge in the NAc-S to promote cue-driven action selection. Our next question
was, therefore, how the different neurotransmitter systems that had undergone plastic ad-
aptations during learning behaved at the moment of test. Strikingly, we found that the
NAc-S of mice undergoing PIT showed a very high proportion of neurons with
intracellular signaling activation, and these neurons were D1-SPNs (Laurent, Bertran-
Gonzalez, Chieng, & Balleine, 2014). Consistently, blocking dopamine D1 receptors
(D1Rs) but not D2R in the NAc-S prevented specific PIT. Further, NAc-S blockade
of D1Rs in one side and DORs in the other also impaired specific PIT, suggesting
that dopamine (through D1Rs) and ENK (through DORs) cooperate in the NAc-S
to mediate stimulus-based choice. Since the modulatory adaptations observed during
Pavlovian training occurred in CINs (Bertran-Gonzalez et al., 2013), we hypothesized
that the link between CINs and D1-SPNs had to be acetylcholinergic. We speculated
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that focal drops of acetylcholine during burst/pauseerebound responses in CINs at the
moment of PIT could be disengaging the acetylcholine muscarinic receptors type 4
(M4R), which are coexpressed with and specifically counteract D1R function. There-
fore, the intense intracellular signaling observed in D1-SPNs of the NAc-S during
stimulus-driven choice could be a consequence of a permissive acetylcholinergic signal
provided by timely modulations of burst/pause behavior in CINs, a firing mode that
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Figure 10.3 Model of the cooperative interactions between opioidergic, acetylcholinergic, and dopa-
minergic systems in the NAc-S in stimuluseoutcome learning and stimulus-based choice. Each dia-
gram (AeC) exemplifies the molecular interactions occurring in a cortico-D1-SPN synapse (left), a
CIN (center), and a cortico-D2-SPN (right). (A) Neurotransmitter interactions during stimuluseoutcome
learning (Pavlovian conditioning). Top trace is a representation of the firing of a dopamine neuron in
the midbrain. The firing bursts due to stimuli presentation and reward prediction errors during
Pavlovian training are translated into phasic dopamine in the NAc-S. (B) Neurotransmitter interactions
during stimulus-based choice (Pavlovian-instrumental transfer). Top trace is a representation of the
firing of a CIN in the NAc-S. The burst/pause and rebound mode of firing in response to predictive
stimuli is the result of a high sensitivity to ENK. The green contour represents the accumulated
DORs in the somatic region of the CIN due to prior Pavlovian conditioning (see Bertran-Gonzalez
et al., 2013). Blue color represents overactivity. Red color represents hypoactivity. See text for explan-
atory details. Top traces are representations of the original recordings in a dopamine neuron (A)
(Schultz, Dayan, & Montague, 1997) and a CIN (B) (Aosaki et al., 1994). AC, adenylate cyclase; Ach,
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accumbens shell; SP, substance P; SPN, spiny projection neuron.
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appeared to be promoted by DORs accumulated in their somatic membrane
(Fig. 10.3B). In direct support of this model, we found that specific blockade of M4R
in the NAc-S rescued specific PIT in rats bearing pharmacological inactivation of
DORs (Laurent et al., 2014), suggesting that local pauses of acetylcholine release can
remove the cholinergic “clamp” usually exerted on corticostriatal plasticity.

Considering all these studies, we propose a functional model by which the different
neurotransmitter systems cooperate in the NAc-S to integrate stimuluseoutcome and
actioneoutcome processing to encode stimulus-guided choice (Fig. 10.3). During the
initial Pavlovian training, frequent phasic dopamine around stimuluseoutcome condi-
tioning promotes SP release from D1R-SPNs through stimulation of D1Rs. SP then
binds to NK1Rs expressed in CINs and initiates the progressive translocation of
DORs to the somatic membrane (Fig. 10.3A). At the same time, learning-related phasic
dopamine can also reduce the ENK tone during conditioning, which in addition pre-
vents ligand-mediated internalization of DORs. The specific circuitry feeding this pro-
cess in the NAc-S remains unknown but could be related to afferents from
stimuluseoutcome encoding areas such as the BLA or the OFC (see above). By the
end of Pavlovian training, the proportion of CINs bearing DOR in the membrane in-
creases in the NAc-S, which can increase their susceptibility to burst/pause firing
when the neurochemical environment is favorable.

Such an environment is found at the moment of PIT, when S-O learning drives
vigorous instrumental responding toward the outcome that is predicted by each stimulus.
This “intense” behavioral state promotes major corticostriatal activity from S-O-related
and A-O-related circuitry in the form of glutamate release onto SPNs as well as CINs
in the NAc-S (Fig. 10.3B). Abundant glutamate stimulation in D2-SPNs triggers the
release of large amounts of ENK, which is found in large quantities in the striatum (Carlyle
et al., 2017). ENK then stimulates the preenriched DORs in CINs, which together with
externally sourced glutamate and GABA signals, promotes tightly modulated burst/pause
firing. These physiological responses of CINs generate highelowehigh patterns of acetyl-
choline availability, which is fast degraded by extracellular acetylcholinesterase (Quinn,
1987). In synapses formed by CINs and D1-SPNs, local drops of acetylcholine disengage
the M4Rs, thus derepressing dopamine and glutamate-induced intracellular signaling in
D1-SPNs. The afferent circuitry participating in CIN modulation in the NAc-S can be
complex (see discussion above) but is likely to cooperate with the local neurochemical
environment to timely modulate acetylcholine release and clearing in the NAc-S.

CONCLUSION

Here, we have argued that PIT is a powerful paradigm because it provides the means to
establish the precise role played by various brain regions in the two main forms of con-
ditioning: Pavlovian and instrumental. For example, we have shown that the use of PIT
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has motivated the development of a more refined model of amygdala functioning, in
which separate subnuclei mediate distinct aspects of Pavlovian information. We have
also shown how the use of PIT was central in gaining a better understanding of the
various contributions of dorsostriatal and orbitofrontal regions in instrumental condition-
ing. Beyond this, it is obvious that Pavlovian and instrumental information processed by
these brain regions are ultimately integrated together to mediate the PIT effect. We have
argued that this integration occurs in the NAc-S and that the role of this brain region
remains limited to that integration in the context of specific PIT. We then described
how CINs of the NAc-S develop sensitivity to opioid modulations during Pavlovian
conditioning, and how this sensitivity is later used to guide choice between actions.
We have argued that this finding is consistent with a central tenet on neuronal plasticity
by revealing how the brain circuitry arranges throughout learning in order to prepare for
future significant events. Given that PIT has been observed in many species including
humans, we believe that it provides a fantastic opportunity to understand how predictive
stimuli influence decision-making processes.
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INTRODUCTION

The finding that dopaminergic neurons in the midbrain signal errors in prediction when
an unexpected reward is delivered has transformed the study of behavioral neuroscience.
This is because the concept of prediction errors had been the lynch pin of models of
reinforcement learning for 50 years before this signal was discovered in the brain (Bush
&Mosteller, 1951; Estes, 1950; Rescorla &Wagner, 1972; Sutton & Barto, 1981). Errors
in outcome predictiondcolloquially referred to as a “surprise” signaldare argued to
drive learning about the antecedent stimuli that predict their occurrence. Essentially,
the prediction error in these models acts as the teaching signal, which underlies the devel-
opment of complex relationships between events in our environment (Holland &
Rescorla, 1975; Miller & Matzel, 1988; Rescorla, 1973; Rescorla & Wagner, 1972;
Wagner & Rescorla, 1972). The discovery that this signal actually exists in the brain
gave some street credibility to associative models of reinforcement learning.

Yet when this prediction error signal was discovered in the midbrain, it was inter-
preted in a manner that diverged from the concept of driving real-world associations.
Instead, the neural instantiation of this signal was taken to be synonymous with the error
contained in the model-free reinforcement algorithm described by Sutton and Barto
(1981, 1987, 1998). Here, reinforcement learning consists of the transference of what
is termed “cached” value back from the reward to the stimulus, which reliably predicts
reward occurrence. Cached value is the quantitative representation of the value
presumed to be inherent in the reward. Essentially, an idea of how good a reward is
to the subject, divorced from any specific knowledge of the identity or sensory properties
of the reward itself. This allows the cue to become endowed with the scalar value, which
drives motivated behavior in response to the reward-predictive cue in the future.
However, this mechanism does not envision the development of an explicit association
between the cue and the reward it predicts.
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There is now a host of studies in which phasic activity of dopamine neurons appears to
reflect or correlate with errors in cached value. However, in each study that has shown
this correlation, it is also possible that these signals reflect errors in the prediction of the
specific features of the reward, which are related to value, but exist independent of it.
Indeed, dopaminergic error signals have recently been shown to cues that could only
acquire an expectation for reward through the deployment of rich associative models
of the world (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Sadacca, Jones, &
Schoenbaum, 2016). Further, dopamine prediction errors appear to be both sufficient
and necessary for acquisition of these more complex model-based associations (Sharpe
et al., 2017). Such research suggests that the dopamine prediction error is not synony-
mous with the model-free reinforcement learning algorithm described by Sutton and
Barto (1987). Instead, research implicating the dopamine prediction error in these
more complex learning phenomena encourages a step back to the spirit of traditional
models of reinforcement learning, which perceive the prediction error as the catalyst
for learning about relationships between events in the world.

DOPAMINE NEURONS IN THE MIDBRAIN RESPOND TO REWARD AND
REWARD-PAIRED CUES

Perhaps, the first suggestion that dopamine plays a role in reward processing was the
finding that rodents will perform an action to receive intracranial stimulation of dopa-
mine neurons in the midbrain (Olds & Milner, 1954; Wise & Rompre, 1989). The
propensity to respond was proportional to the frequency of stimulation; rodents
responded at a higher frequency for a delivery of a higher frequency of stimulation.
Such findings led to the wide-held belief that dopamine functions in the brain to allow
natural rewards to possess powerful control over behavior, a concept supported by find-
ings showing that selective dopaminergic lesions of the ventral tegmental area (VTA)
reduced subjects desire to pursue natural rewards (Robbins & Everitt, 1982; Spyraki,
Fibiger, & Phillips, 1982; Stricker & Zigmond, 1974; Ungerstedt, 1971). The midbrain
dopamine system was conceptualized as a system, which registers the receipt of some-
thing valuable to a subject, like food or water in a deprived state, which increases the
likelihood that a subject will seek out these items in the future and promote survival
(Wise, 1987; Wise & Rompre, 1989; Yokel & Wise, 1975).

Early recording studies in nonhuman primates corroborated a role for dopamine in
registering the reinforcing effects of natural rewards (Romo & Schultz, 1990; Schultz,
1986). Such studies showed that dopamine neurons in the VTA respond when subjects
receive food in a food-restricted state (Romo & Schultz, 1990; Schultz, 1986). Further,
the response of dopamine neurons to receipt of reward correlated with the magnitude
of the reward received (Romo & Schultz, 1990; Schultz, 1986; Schultz, Apicella, &
Ljungberg, 1993). That is, if a subject received a greater amount of reward, dopamine
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neurons increased their response accordingly. And since these early studies, it has been
demonstrated that dopamine neurons encode not only the magnitude of reward but
also the subjective preference of reward (Fiorillo, Tobler, & Schultz, 2003; Lak, Stauffer,
& Schultz, 2014; Stauffer, Lak, & Schultz, 2014). Dopamine neurons showed a prefer-
ence for a particular reward over another in a manner that reflects the subject’s observed
choice preference for reward, regardless of caloric content. Such studies demonstrated
that dopamine neurons register something about reward in a manner that reflects the
subject’s desire for that reward.

However, recording activity in dopamine neurons across the course of learning painted
a more complex picture of the role of dopamine in reward. Specifically, recordings
made across the course of conditioning showed that while dopamine neurons exhibit a
phasic increase in activity during reward when nonhuman primates first experience
reward (Mirenowicz & Schultz, 1994; Schultz et al., 1993), across time this phasic
signal-to-reward receipt waned, appearing to transfer to the predictive cue with learning
(Hollerman & Schultz, 1998; Ljungberg, Apicella, & Schultz, 1992; Mirenowicz &
Schultz, 1994). Further, this transfer of phasic activity was progressive and occurred
over successive pairings of the cue with reward, proportionate to increases in the appeti-
tive response to the reward-paired cue (Mirenowicz & Schultz, 1994). Finally, once the
subject learned the relationship between the cue and the reward, the omission of the
expected reward elicited a depression in firing of these neurons at the time the reward
was expected to occur (Mirenowicz & Schultz, 1994). These recording studies suggested
that dopamine does not encode reward per se. Rather, it appeared that dopamine encodes
some aspects of the predictive relationship between cues in the environment and rewards.

PREDICTION ERRORS IN MODELS OF REINFORCEMENT LEARNING

At the same time that researchers began to posit that dopamine was important for pro-
cessing rewards, a parallel literature was being formed, which attempted to understand
how natural rewards can function to reinforce responses result in procurement of those
rewards. Some of the earliest mathematical models of this nature were developed to
explain instrumental conditioning, where subjects learn to perform a particular action,
which results in delivery of a particular reward (Bush & Mosteller, 1951; Estes, 1950;
Estes & Burke, 1953). These models emerged out of the tradition of Thorndike
(1898), in which it was argued that the pleasure derived from reward receipt increased
the probability of a response being made in the presence of a particular stimulus. That
is, procurement of reward was thought to make an agent more likely to perform a
response again due to the reward’s reinforcement of the association between the stimulus
and the response.

Early mathematical models were simply an attempt to reconcile this idea with the incre-
mental nature of the learning that takes place in instrumental tasks (Bush & Mosteller, 1951;
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Estes, 1950; Estes & Burke, 1953; Thorndike, 1898). To do this, they used the standard
linear operator, in which learning is governed by the discrepancy between the current
probability of making a response and the maximal response probability (Bush &
Mosteller, 1951). Here, the maximal response probability is determined by the reinforcer
resulting from performance of the response and the effort required to procure that rein-
forcer. The learning rate parameter acted on the linear operator to govern the proportion
of learning occurring on any one trial, allowing for a gradual increase in the probability
of a response across the course of learning. Significantly, such models assumed that an
increment in one particular response is completely independent of learning another
responsedeven if both lead to the same eventual goal (Bush & Mosteller, 1951).
Thus, a reliable correlation between a response and reward in the presence of a particular
stimulus was enough to stamp in an association between that particular stimulus and the
response, regardless of how many other responses could be made to procure the same
reward or if that particular response was causally related to producing a reward. Rather,
if a response was produced and was followed by reward, the subject would be more likely
to make that particular response again.

Not long thereafter, however, the Kamin (1969) blocking experiments demonstrated
that a correlation between events was not sufficient to produce learning. In the prototyp-
ical example, Kamin (1969) showed that pairing one stimulus (e.g., cue A) with reward
would subsequently block learning about a second stimulus (e.g., cue X) if they were
presented in compound (cue AX) with reward. In this example, cue A would have a
high probability of producing a response when tested later separately, whereas cue X
had a low probability. With these experiments, the notion of “surprise” began to enter
the associative conversation. That is, in order for an association between events to form,
the subject had to be surprised by the consequence. Learning required an error in the pre-
diction of the reward. And so was born the notion that learning is driven by errors in
prediction.

This notion initially took the form of the Rescorla and Wagner (1972) theory. This
theory of Pavlovian conditioning deviated from its instrumental predecessors in two
important ways. Firstly, the language used to describe the learning changed. Rather
than talking in terms of increments in the probability of a response, this theory, instead,
discussed learning in terms of associative strengthdthe strength of associations between
events that allow a subject to make predictions about future rewards. Secondly, while the
Rescorla-Wagner (1972) model used the same linear operator as that employed by Bush
and Mosteller (1951), the update on any one trial according to the Rescorla-Wagner
(1972) model was equal to the discrepancy between the maximal associative strength
supported by the reward and the associative strength that has already accrued toward
all present stimuli. Thus, all present stimuli essentially compete for associative strength
with the reward they predict. This allowed the model to explain reports, described by
Kamin (1969) and others, in which stimuli conditioned in compound shared the
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associative strength derived from reward. All stimuli that are currently present can
contribute to the upcoming prediction for reward. Therefore, an error in prediction
will only occur if the upcoming reward is not predicted by the summed expectation
for reward provided by all present stimuli.

While this model did not elaborate on the specific nature of representations of the
events being associated, focusing instead on the conditions for learning (e.g., when
learning will take place rather than what is learned), it had important consequences for
how associative theorists have since conceptualized learning. Specifically, the emphasis
on changing the strength of associations changed the conversation in associative learning
theory from one about strength of the response to one about the underlying associative
framework underlying the likelihood of a response. This tradition has continued with the
elaboration of empirically derived accounts, designed to explain more complex behav-
iors, which share in spirit the idea that errors in prediction drive changes in our under-
standing of the causal structure of our environment (Balleine & Dickinson, 1991; Colwill
& Rescorla, 1985; Holland & Rescorla, 1975; Miller & Matzel, 1988; Rescorla, 1973;
Wagner, Spear, & Miller, 1981).

This brings us to the model currently applied to interpret the dopaminergic prediction
error, developed by Sutton and Barto (1981, 1987). While this reinforcement learning
model arose out of the field of machine learning, it was influenced by the work described
above. Specifically, this model attempted to bridge the concepts derived from the
associative learning literature described above with that observed in the field of neurobi-
ology. Essentially, Sutton and Barto (1981) wanted to apply the concepts of associative
learning to Hebbian synaptic plasticitydthe biological principal that if neuron A repeat-
edly evokes firing of another neuron B, then the firing of neuron A will be more
efficacious in inducing activity in neuron B in the future (Hebb, 1949, 2005). Synaptic
plasticity was essentially taken as a neurobiological instantiation of associative learning. In
the earliest version of this model, Sutton and Barto (1981) argued that a reward acts to
strengthen the ability of the stimulus to elicit a response, going back to the Thorndike
(1898) tradition. According to this model, the response is the same response usually
elicited by the reward, which comes to be controlled by the predictive stimulus as the
associative strength between the stimulus and response increases. The rules for how
the reward acts to strengthen the weights between the stimulus and response were
adopted from the RescorlaeWagner model (1972), where learning was driven by the
discrepancy between the expected reward predicted by all stimuli present and the actual
reward received. In essence, the prediction error acted to bias the response to obtain the
maximum amount of reward. Critically, while the Sutton and Barto (1981) model
borrowed some aspects of the Rescorla-Wagner (1972) model, in the form of the
use of an error incorporating a summed prediction, the content of what could be
learned narrowed sharply from the budding notions of a cognitive framework of relation-
ships between events. In the place of this idea, the Sutton and Barto (1981) model
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substituted a somewhat Thorndikian conception of stimuluseresponse associations gov-
erning learning and behavior.

Later versions of the Sutton and Barto (1981) model moved even further away from
the concept of associative strength between stimuli and responses and instead argued that
a reward-predictive cue actually acquires the value inherent in the reward, through a pro-
cess whereby the value inherent in the reward backpropagated to the antecedent cue
(Sutton & Barto, 1987, 1998). Referred to as temporal difference reinforcement learning
(TDRL), this iteration of the model conceptualized a stimulus (or, more generally, a
“state”) as segregated into multiple consecutive time steps. Each time step of a stimulus
was associated with its own scalar value estimate that allows a subject to track the expec-
tation of future sum of rewards through time. This development allowed the model to
make accurate value predictions from stimulus onset despite the delay until reward
delivery, as reward value backpropagates to the initial time step. Further, it estimated
when the reward will occur as time steps of the stimulus that are closer to reward will
acquire greater value. These value estimates can also be used to choose appropriate
actions, where an action can be elected on the basis of the associated state value. Thus,
TDRL was a time-derivative model of the original Sutton and Barto (1981), where it
was argued that the value inherent in the reward propagates back to the state, which pre-
ceded reward delivery to subsequently influence a choice between future actions (Sutton
& Barto, 1987, 1998). Importantly, the prediction error was divorced from the system
that arbitrates between action choices. Rather, it just acted to endow the reward-
predictive cue with the value inherent in the reward, which drove selection of the
response associated with that stimulus.

THEORETICAL INTERPRETATIONS OF THE DOPAMINE PREDICTION
ERROR

As noted above, Schultz, Dayan, and Montague (1997) hypothesized that dopamine sig-
nals acted as the prediction error postulated by the model-free reinforcement learning
algorithm described by Sutton and Barto (1981, 1987, 1998). Their proposal was promp-
ted by the close correspondence between several specific features of the model and the
pattern of firing in these neurons. Most importantly, the observation that the dopamine
response to reward transferred back to onset of the reward-predictive cue seemed to
fulfill critical predictions of the Sutton and Barto model (1987), in which the value
inherent in reward transferred back to the cue, which predicts its occurrence. Thus,
phasic dopamine activity was taken to be the value signal hypothesized by the Sutton
and Barto model (1981, 1987), which drives backpropagation of reward value to the
stimulus (Schultz et al., 1997). Effectively phasic dopaminergic activity was argued to
provide the learning signal that allows the state preceding reward delivery to acquire
the value approaching the sum of future rewards, subsequently serving to bias an
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organism toward a choice of an action, which would result in the procurement of
maximal reward.

This interpretation of phasic dopamine activity as a cached-value error signal has been
remarkably influential across the decades since its proposal. The general idea has perme-
ated how the field of neuroscience views not only dopamine function but also the func-
tions of a host of brain regions that interact with the midbrain and are known to be
involved in associative learning. This pervasiveness is despite our growing understanding
of the complexity of learning. We now know unequivocally that organisms respond to
stimuli in the environment as a consequence of relationships between events either in
addition or in spite of any sort of static or cached value that may have accrued toward
them in prior training (Balleine & Dickinson, 1991, 1998; Colwill & Rescorla, 1985;
Delamater, 1996; Dickinson & Balleine, 1994; Holland & Rescorla, 1975; Killcross &
Coutureau, 2003; Rescorla, 1973; Rescorla &Wagner, 1972). Indeed, humans and other
animals are capable of developing rich models of the associative relationships between
events in the world that are used in the absence of direct experience to influence ongoing
and future behavior (Brogden, 1939; Colwill & Rescorla, 1985; Tolman, 1948). Yet the
interpretation that the dopamine prediction error functions only to endow reward-
predictive cues with a scalar value precludes the involvement of dopamine in the devel-
opment of these more complex models of the environment. So, could dopamine also be
involved in more complex forms of associative learning that transcend cached value or is
it restricted to the model-free reinforcement learning algorithm described by Sutton and
Barto (1981, 1987, 1998)?

The hypothesis that phasic dopamine acts only as a cached-value prediction error
(Sutton & Barto, 1981, 1998) makes three notable predictions about when changes in
phasic dopaminergic activity should be seen and what sorts of learning this phasic activity
can support. Firstly, this theory predicts that stimulation or inhibition of dopamine neu-
rons should act as a value signal to produce increments and decrements in responding to-
ward reward-paired cues. Secondly, such manipulations of dopamine activity should not
produce learning about the relationships between events of the world outside of a scalar
expectation of value. Finally, phasic activity of dopamine neurons should not be evident
in response to valueless changes in reward or to cues which have come to predict reward
indirectly. We will now discuss these predictions in light of several recent studies that we
believe provide particularly strong tests of their validity.

PREDICTION ONE: PHASIC STIMULATION OR INHIBITION OF
DOPAMINE NEURONS SHOULD SUBSTITUTE AS A CACHED-VALUE
PREDICTION ERROR TO DRIVE LEARNING

According to Schultz et al. (1997), an increase in phasic activity of dopamine neurons
should serve to increase the value attributed toward a reward-paired cue, whereas a phasic
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decrease should reduce the value attributed to a cue. The advent of optogenetics has
afforded us the temporal specificity to manipulate putative dopamine neurons in manner
that allows us to causally test this hypothesis (Deisseroth, 2011; Deisseroth et al., 2006).
Ideally, such experiments should arrange the learning materials so that all that is lacking is
contingencydor an error in reward predictiondand then attempt to restore that error
by manipulating the dopamine neurons precisely when it would be expected to occur.
For example, Steinberg et al. (2013) used an optogenetic approach to mimic a positive
reward prediction error during the blocking task first described by Kamin (1969).
Specifically, rats were first presented with an auditory stimulus (e.g., A), which predicted
reward. Following this training, a novel visual cue (e.g., X) was presented in compound
with A and followed by delivery of the same reward. Rats in the control group failed to
learn about cue X, presumably because cue X was blocked by prior training with cue A
and reward. However, stimulation of dopaminergic neurons in the VTA during reward
delivery after presentation of the AX compound unblocked learning about cue X. This
was evident in an increase in rats’ responses to the food port when cue X was presented
alone in extinction. These data are consistent with the value hypothesis. Specifically, the
artificial prediction error could be construed as attaching excess value to cue X despite the
predictability of the reward, allowing cue X to become associated with the particular
response being made at the time to enter the food port during presentation of the condi-
tioned cue AX.

However, this study does not rule out a simple alternative, which is that the dopamine
signal is increasing the salience of the preceding cue, which would also be expected to
cause learning. If the dopamine signal acts in this manner, then inhibiting it would result
in less learning. If, on the other hand, it acts as a cached-value error signal then phasic
inhibition of dopamine should cause extinction learning, essentially decreasing the value
attributed to a cue (Schultz et al., 1997). To test this question, Chang et al. (2016) opto-
genetically produced a brief negative error in VTA dopamine neurons during an over-
expectation task. Overexpectation usually involves first pairing two cues (e.g., A and
X) individually with reward (e.g., three food pellets). Then, these two cues are paired
in compound with the same magnitude of reward. Usually, learning to cue X will
decrease as the reward is now “overexpected” by the sum of the expectations elicited
by cue A and X (e.g., six food pellets). However, in a modified version of this task Chang
et al. (2016) delivered the expected reward (e.g., six pellets) during the compound phase,
in order to eliminate the normal negative prediction error and prevent extinction. In half
of the rats, dopamine activity in the VTA was inhibited during delivery of the final three
pellets in the compound stage. Chang et al. (2016) found that brief inhibition of dopa-
mine neurons during pellet delivery in the compound phase of this modified overexpec-
tation task restored the normal extinction learning to cue X. That is, responding to X
decreased with introduction of a brief inhibition of dopamine neurons during reward
receipt. Again, these results are consistent with the hypothesis that VTA DA acts as a
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bidirectional value signal described in the model-free reinforcement learning algorithm
postulated by Sutton and Barto (1981, 1987; Schultz et al., 1997). Specifically, that phasic
inhibition of dopamine can act to decrease the value attributed to a cue and therefore
reduce the response associated with that cue state.

PREDICTION TWO:WHAT IS LEARNED OR STAMPED IN BY THE PHASIC
DOPAMINE SIGNAL SHOULD BE RELATED TO GENERIC OR CACHED
VALUE

Experiments showing that optogenetic inhibition or stimulation can drive increases or
decreases in responding to reward-predictive cues are consistent with the idea that this
signal constitutes a scalar value, which increases or decreases the value attributed to a
reward-paired cue. However, in both the studies described above (Chang et al.,
2016; Steinberg et al., 2013), the learning induced by manipulating the firing of the
dopamine neurons could consist of either general value or the formation of a more
detailed associations between the cue and reward in the case of unblocking, and the
cue and reward omission in the case of extinction. The former would constitute a
learning mechanism consistent with that described in the model-free reinforcement algo-
rithm postulated by Sutton and Barto (1981, 1998), where the latter is a more complex
association between events that transcends the backpropagation of value to the reward-
predictive cue.

To test whether dopamine transients are sufficient for associative learning beyond
value, we used sensory preconditioning. Sensory preconditioning normally entails first
pairing two neutral cues together in close succession such that an association forms
between them (e.g., C/X). The development of this association can be revealed if
one of those cues is later paired with reward. Specifically, if cue X is paired with reward,
both cue C and X will elicit an expectation for reward when presented individually
under extinction conditions. As cue C has never been directly paired with reward, it
can only acquire an association with reward via its association with cue X, which allows
it to enter into an association with the reward. This is supported by studies that have
shown that cue C will not support conditioned reinforcementdrats will press a lever
for cue X but not for cue C (Sharpe, Batchelor, & Schoenbaum, 2017). This suggests
that cue C does not have any value independent of the food that it predicts, and so
rats will not exert effort to obtain presentations of that stimulus alone. Thus, the sensory
preconditioning procedure is well suited to an investigation of whether phasic dopamine
may also support the development of rich associations between events in a manner that
transcends cached value.

Using a modified version of the sensory preconditioning procedure, we aimed
to assess whether optogenetic stimulation of dopamine neurons in the VTA could
support associative learning beyond the transfer of cached value (Sharpe et al., 2017).
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To do this, we first reduced the likelihood that rats would form an association between
the two neutral cues C and X by pairing cue A with X (A/X). Subsequently, cues A
and C were presented in compound prior to presentation of cue X (AC/X). Cue X
was later paired with reward. In controls, we found that learning about cue C was
blocked in this design, similarly to the original blocking studies shown with cues and
rewards (Kamin, 1969). However, in our experimental group, stimulation of
phasic dopamine at the beginning of X following the AC compound (i.e., AC/X
trials) unblocked learning about cue C. These rats entered the magazine when cue C
was presented in the final probe test as though they expected delivery of the reward.
This suggests that triggering the dopamine neurons to fire at the start of X served to
facilitate the formation of an association of a relationship between C and X, which
allowed cue C to enter into a direct relationship with reward paired with X. This
was confirmed by subsequent tests, which revealed that responding to C was sensitive
to devaluation of the reward, showing rats responded to C because they desired the
particular food reward. We also do not believe our results can be accounted for by
salience, since there was no change in the rate of learning about X during conditioning,
after the dopamine stimulation, nor was there any increase in learning about A (which
would be evident in our design as stronger blocking of cue D; Sharpe et al., 2017).
Thus, overall, these data suggest that the dopamine prediction error is capable of
supporting the development of more complex associations than that envisioned by
model-free reinforcement learning algorithms (Schultz et al., 1997; Sutton & Barto,
1981, 1998).

PREDICTION THREE: PHASIC CHANGES IN DOPAMINE SHOULD NOT
REFLECT INFORMATION ABOUT CUEeREWARD RELATIONSHIPS THAT
DOES NOT REFLECT DIRECT EXPERIENCE

If dopamine transients signal the prediction error is that contained in the model-free rein-
forcement algorithm described by Sutton and Barto (1981, 1987), then phasic dopami-
nergic activity should not reflect associations that have been inferred from prior
associative relationships or a change in current state of the environment. This is because
the error contained in the model-free reinforcement learning algorithm only receives
predictions based on the value that backpropagates from the reward to the cue after
the cue and reward have been paired in close succession (Sutton & Barto, 1981,
1998). This cannot happen if no direct association has been experienced. While the
findings from Sharpe et al. (2017) suggest that dopamine can support the acquisition of
complex associations between events (rewarding or otherwise), this does not require
that the content of the information encoded in the prediction error signal itself go beyond
errors in cached value. That is, stimulation or inhibition of dopamine could be allowing
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other neural structures to formmore complex associations about the relationship between
events, yet phasic activity in dopaminergic neurons may be ignorant of these associations
under normal circumstances, operating only in response to cached-value errors.

Assessing whether the dopamine prediction error has access to information about the
relationship between events requires examining how dopamine neurons or dopamine
release changes in response to errors that reflect such associative information. There
are now a growing number of studies that do this (Aitken, Greenfield, & Wassum,
2016; Bromberg-Martin & Hikosaka, 2009; Nakahara, Itoh, Kawagoe, Takikawa, &
Hikosaka, 2004; Papageorgiou, Baudonnat, Cucca, & Walton, 2016; Sadacca et al.,
2016; Takahashi et al., 2011). For example, dopamine activity to reward-paired cues
changes depending on the physiological state of the subject (Aitken et al., 2016;
Papageorgiou et al., 2016). In one study, Papageorgiou et al. (2016) monitored dopamine
release using fast scan voltammetry in the nucleus accumbens (NaCC), as rats were per-
forming an instrumental learning task. Here, rats had a choice of pressing one of two
levers for one of two rewards (R1/O1 or R2/O2). On some of the trials, rats
were presented with one lever option (forced trials; R1 or R2) while on others they
could make a choice between pressing either one of the two levers (choice trials; R1
and R2). Prior to test sessions, rats were given free access to one of the rewards
(e.g., devaluing O1). Subsequently, rats exhibited a preference for the lever associated
with the nondevalued reward they had not had access to prior to the session
(R2/O2). Papageorgiou et al. (2016) found that dopamine release to the reward-
paired cues (i.e., the insertion of the lever into the behavioral chamber) was modulated
by outcome devaluation prior to the rats experiencing the lever producing the now
devalued outcome. That is, the dopamine response to lever presentation on forced trials
reflected the new value of the devalued reward before it had been experienced with the
lever-press response. Further, the dopaminergic response to presentation of the other
lever was increased, showing an increased preference for the nondevalued option. This
demonstrates that dopamine responses to reward-paired cues can update in response to
the current physiological state of the subject without the subject directly experiencing
the association between the cue and now devalued reward. These data are at odds
with an interpretation of the dopamine signal as the model-free reinforcement learning
algorithm described by Sutton and Barto (1981, 1998), since the cue and the devalued
reward have never been paired, and so the new value of the reward cannot be attributed
to the cue.

The data from Papageorgiou et al. (2016) beg the question of whether the phasic
dopamine signal might also reflect information about an entirely new association devel-
oped in the absence of experience. In line with this possibility, Sadacca et al. (2016)
showed that phasic activity of dopamine neurons can reflect associations between cues
and rewards that have been inferred from prior knowledge of associative relationships
in the experimental context. Specifically, Sadacca et al. (2016) recorded the activity of
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putative dopamine neurons in the VTA during sensory preconditioning. In this study,
rats were first presented with two neutral cues in close temporal succession (A/B).
Following this training, one of these cues was paired with reward (B/US). During con-
ditioning, putative dopamine neurons exhibited the expected reward prediction error
correlates, firing to reward early in conditioning, and transferring this response back to
the cue later in learning. After conditioning, in the probe test in which both cues A
and B were presented in the absence of reward, putative dopamine neurons continued
to exhibit increased firing to B e the cue paired with reward e while also now firing
to A, the cue paired with B in the preconditioning phase. Further, dopamine neuron
firing to A and B was correlated, suggesting that the information signaled in response
to A was the same as what was signaled in response to B. The simplest interpretation
of these data is that dopamine neurons in the VTA signal reward prediction errors simi-
larly whether they are based on directly experienced associations or whether they require
inference. Again, this is not accommodated by a theory which argues that the dopamine
signal reflects value that has backpropagated from the reward to a cue from their pairing (a
notion reinforced by data showing a preconditioned cue does not acquire general value
during the preconditioning procedure; This is the Sharpe, Batchelor, and Schoenbaum,
2017, eLife paper again. Rather, these data suggest that dopamine neurons may make
more general predictions about the nature of upcoming rewards, garnered from associa-
tive model of the world and based on past experience.

CONCLUSIONS

In this chapter, we have discussed data that are problematic for the hypothesis that phasic
dopamine signals encode a scalar cached-value signal, which allows a state preceding
reward to acquire the value inherent in the reward and motivate behavior. Specifically,
optogenetic stimulation or inhibition of has been found not only to increase or decrease
responding to a cue preceding reward but also to facilitate the acquisition of associations
between two neutral stimuli. Further, changes in phasic dopaminergic activity have been
observed in response to a change in the physiological state of the subject despite the sub-
ject never experiencing pairing of the cue with the outcome that has been devalued in
that state. Finally, the phasic dopaminergic response has also been seen in response to
cues that have come to predict reward via prior knowledge of associative relationships
in the experimental context, without being directly paired with reward. Such data chal-
lenge the conception that transient changes in dopamine carry the cached-value predic-
tion error contained in model-free reinforcement learning algorithms (Sutton & Barto,
1981, 1998). Specifically, such evidence is outside the realm of a theory which argues
that a cue only acquires a dopaminergic response via the backpropagation of value. Value
cannot transfer back to a cue, which has not been paired with something valuable, and a
value signal cannot facilitate the acquisition of associations between neutral stimuli.
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So where to now? One theory that warrants consideration is that put forward by
Nakahara (2014). Nakahara (2014) argues that dopamine prediction errors can be influ-
enced by more than the expectation elicited from the current state. That is, a prediction
error does not need to be calculated on the basis of current sensory information. Rather, a
prediction error can be calculated on the basis of hidden states derived from prior expe-
rience. Further, the dopamine prediction error in this model can also be used to update
these internal models of the environment. However, while the calculation of prediction
errors can utilize information garnered from internal models of the world to generate a
prediction about upcoming rewards, the signal itself still reflects the discrepancy between
the value of the reward expected and that received. Thus, while Nakahara (2014) extends
what the dopamine prediction error can use to make predictions, the prediction itself is
still one of value which similarly serves to update the expected value of future rewards.

An alternative proposal is that dopamine transients reflect errors in event prediction
more generally and that they are also involved in supporting learning about future events
whether those events are the delivery of a particular reward, presentation of a neutral
stimulus, or even absence of some stimuli or some other events. This would constitute
a return to thinking about the prediction error in associative theory as driving real-
world associations between events, as described in earlier theories of associative learning
(Colwill & Rescorla, 1985; Holland & Rescorla, 1975; Miller & Matzel, 1988; Rescorla,
1973; Rescorla & Wagner, 1972; Wagner & Rescorla, 1972; Wagner et al., 1981) but
somewhat abandoned by the world of neuroscience with the advent of TDRL (Sutton
& Barto, 1981, 1987, 1998). Data from our lab already show that dopamine transients are
both sufficient and also necessary for learning associations between neutral cues that
inherently have no value (Sharpe et al., 2017). This is one prediction of the account
described above. Below, we consider several more that might be examined in the future
to support this hypothesis.

FUTURE DIRECTIONS

Conceptualizing the dopamine prediction error as a signal that detects a discrepancy
between expected and actual eventsmakes some testable predictions about when phasic ac-
tivity in dopamine neurons should be observed. While Sadacca et al. (2016) and
Papageorgiou et al. (2016) showed that dopamine activity to reward-paired cues can
change as a result of knowledge not acquired through direct experience, in each case
dopaminergic activity still signaled an upcoming prediction that could be construed as be-
ing about reward value. However, the alternative proposal made here suggests that
changes in phasic dopaminergic activity would also be seen as a result of other changes
in the predicted event that do not constitute a shift in value. For example, an increase
in dopaminergic signaling should occur in response to a change in the identity of a reward.
That is, if a cue previously paired with a particular reward was unexpectedly presented
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with a different reward that was equally valuable, we would expect to see a prediction er-
ror in dopaminergic neurons. While a few studies have looked at errors in response to
change value of different rewards and have claimed not to see evidence of such a signal,
these studies do not examine how dopamine signals change when identity is altered inde-
pendent of value or reward preference (Lak et al., 2014; Stauffer et al., 2014). Thus, while
their results show that the value error is similar across different identity rewards, they do
not address whether changes in identity evoke error signals. It is also worth noting that it
may be necessary to move beyond single unit correlates to appreciate more subtle error
signaling functions of the dopamine system. As in other brain areas, meaningful signals
may be carried in the pattern of finding across an ensemble of dopamine neurons, which
may not be evident in individual “grandmother” neurons. In this regard, value errors may
be a particularly amazing example of a more general population function. In any event,
whether in individual units or ensemble responses, such a finding would represent strong
evidence that the dopamine prediction error accesses information about the content of
what is expected, independent of its meaning with regard to value.

Further, future research may also search for the presence of a dopaminergic error
signal when a more general associative relationship between neutral stimuli is violated
even in the absence of rewards. It is well-established that dopamine neurons in the
midbrain fire when a novel stimulus is first presented unexpectedly, (Schultz, 1998).
While this has been interpreted in the literature as a “novelty bonus” (Kakade & Dayan,
2002), it is also possible that this is an error signal in response to the appearance of an
unexpected stimulus. It would be valuable to assess in an appropriately controlled envi-
ronment whether these dopamine signals are seen when the contingency between
neutral stimuli is manipulated such that expectation about upcoming stimuli is violated.
Such research would support the hypothesis that the dopamine prediction error may
reflect a more general signal for detecting the discrepancy between actual and expected
events. Experiments like these would be useful since positive findings would open up
new possibilities for how this biological signal may support associative learning in these
and other contexts.
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CHAPTER 12

A State Representation for Reinforcement
Learning and Decision-Making in
the Orbitofrontal Cortex
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1Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; 2Princeton
Neuroscience Institute & Department of Psychology, Princeton University, Princeton, NJ, United States; 3Department of
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INTRODUCTION

The orbitofrontal cortex (OFC) is an intensely studied brain area. Pubmed currently lists
over 1000 publications with the word “orbitofrontal” in the title, reflecting more than six
decades of research that has mainly sought to answer one question: What mental func-
tions are subserved by the OFC? Still, an integration of existing knowledge about this
brain area has proven difficult (Cavada & Schultz, 2000; Stalnaker, Cooch, & Schoen-
baum, 2015). Lesion studies have pointed to a plethora of often subtle and complex im-
pairments, but what mental operation is common to all these impairments has remained
unclear. Neural recordings have shown that a large variety of different aspects of the cur-
rent environment are encoded in orbitofrontal activity but have not yet explained why
these variables are jointly represented in OFC or how they are integrated. Finally, the
study of OFC’s anatomy has uncovered a complex internal organization of subregions,
which has made the identification of homologies in other mammals difficult, and raised
questions about the functional division of labor associated with these subregions.

Despite this diversity of findings and the lack of consensus on their interpretation,
research has converged on the idea that many of OFC’s functions must lie within the do-
mains of decision-making and reinforcement learning (RL). In this chapter, we will pro-
vide a selective overview of the studies supporting this broader idea and describe a novel
theoretical framework for understanding the role of the OFC in RL and decision-
making. This framework, the State-Space Theory of OFC, proposes that the OFC rep-
resents, at any given time, the specific information needed in order to maximize reward
on the current task.

We will begin the chapter with a brief overview of OFC anatomy, focusing mostly on
its most salient aspects in primates. We will then discuss the State-Space Theory of OFC
in more detail and evaluate how well it can accommodate current knowledge. We will
follow with a discussion of other major theoretical accounts of the OFC and how they
might be integrated into the State-Space Theory. Finally, we will discuss which findings
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about OFC lie outside the scope of our framework and highlight some areas for future
research. Given the large number of investigations, our overview remains necessarily
incomplete, and we refer the reader to several recent excellent reviews on this topic
for more information (Kringelbach, 2005; Murray, O’Doherty, & Schoenbaum, 2007;
Rudebeck & Murray, 2011; Rushworth, Noonan, Boorman, Walton, & Behrens,
2011; Schoenbaum, Takahashi, Liu, & McDannald, 2011; Stalnaker et al., 2015).

WHAT IS THE ORBITOFRONTAL CORTEX?

The primate OFC is a large cortical area located at the most ventral surface of the pre-
frontal cortex (PFC), directly above the orbit of the eyes (hence the name), and including
parts of the medial wall between the hemispheres (see Fig. 12.1A). It is defined as the part
of PFC that receives input from the medial magnocellular nucleus of the mediodorsal
thalamus (Fuster, 1997) and consists of Brodmann areas 10, 11, and 47. Brodmann’s initial
classification, however, was unfinished and showed inconsistencies between humans and
primates, possibly reflecting the heterogeneity of sulcal folding patterns in OFC (Kringel-
bach, 2005). Later cytoarchitectonic work has refined this classification, and today’s
widely accepted parcellations are based on five subdivisions known as Walker’s areas
10, 11, 47/12, 13, and 14 (e.g., €Ong€ur, Ferry, & Price, 2003; Glasser et al., 2016, see
Fig. 12.1B,C). One unusual aspect of the primate OFC is its mixed cytoarchitecture
that is partly five-layered (agranular) and partly six-layered (granular). Because granular
cortex emerged later in evolution than agranular cortex, this suggests that some parts
of OFC are phylogenetically older than other parts of frontal cortex and complicates
comparisons between primates and nonprimates, whose OFC is entirely agranular
(Passingham & Wise, 2012; Preuss, 1995). Based on these differences, Wise and
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Figure 12.1 Anatomy of the human orbitofrontal cortex (OFC). (A): The location of the OFC on an
inflated brain is highlighted by the brown shaded areas in a lateral (upper) and medial (lower)
view. (B): Subdivisions of the OFC, shown on the ventral surface, according to most recent parcellation
proposed by Glasser et al. (2016). (C): OFC subareas shown on a flat map of the left hemisphere, with
the same color coding as in (A) and (B). AAIC, anterior agranular insular complex. (Figure made using
data from Glasser et al. (2016) and the Connectome Workbench.)
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colleagues have proposed that nonprimate mammals have no homologue of what is the
granular OFC in primates (Wise, 2008). Many controversies about this topic are still
ongoing, for instance, about whether the medial OFC network does or does not have
a homologue in rodents (Heilbronner, Rodriguez-Romaguera, Quirk, Groenewegen,
& Haber, 2016; Rudebeck & Murray, 2011; Schoenbaum, Roesch, & Stalnaker, 2006).

Another noteworthy feature of OFC’s anatomy is its connectivity. OFC has remark-
ably close connections to all sensory areas (often only bi- or trisynaptic) in addition to
widespread connections to other parts of the frontal cortex, striatum, amygdala, and hip-
pocampus, among others. Connectivity patterns to these areas highlight a distinction
between a medial and a lateral subnetwork in the OFC (Cavada, Compa~ny, Tejedor,
Cruz-Rizzolo, & Reinoso-Su�arez, 2000; Kahnt, Chang, Park, Heinzle, & Haynes,
2012), a difference that is often assumed to have functional implications (Elliott, Dolan,
& Frith, 2000; Noonan, Walton, et al., 2010; Rudebeck & Murray, 2011; Walton,
Behrens, Noonan, & Rushworth, 2011). Specifically, the lateral network has been shown
to have many connections to lateral orbital areas as well as the amygdala and receives con-
nections from sensory areas related to olfactory, gustatory, visual, somatic/sensory, and
visceral processing. The medial network, in contrast, connects to areas along the medial
wall (Brodmann areas 25, 24, and 32) and receives input from the amygdala, the medi-
odorsal thalamus, various regions in the medial temporal lobe (hippocampus, parahippo-
campus, rhinal cortex), ventral striatum, hypothalamus, and periaqueductal gray (Cavada
et al., 2000). For the remainder of this chapter, we will consider both networks as OFC,
following definitions of the orbital medial PFC ( €Ong€ur et al., 2003). Note that the area
commonly referred to as ventromedial PFC is therefore partly included in our definition
of OFC.

In summary, the OFC represents a remarkably densely connected brain area with
links to all sensory domains, learning and memory structures like the striatum, amygdala,
and hippocampus as well as several frontal subregions. The OFC is also a highly heter-
ogenous brain area, containing two broadly distinct subnetworks (medial vs. lateral),
cytoarchitectonic diverse subregions (granular vs. agranular cortex), and large interindi-
vidual differences in sulcal folding patterns.

THE STATE-SPACE THEORY OF ORBITOFRONTAL CORTEX

At the heart of studying decision-making is the quest to understand how the brain an-
swers the following question: Given the state of the world, which actions promise to
yield the best outcomes? Much research has focused on how expected outcomes are
learned and represented or how actions are selected based on these expectations. In
contrast, the other major aspect of the question, namely how decisions depend on the
current environment, and what the animal considers “the state of the world,” has
received much less attention. Because natural environments of animals are often rich
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in sensory information and complex temporal dependencies, how the state of the envi-
ronment is represented in the brain is crucial for successful decision-making. Below, we
will define more precisely what we mean by “state of the world” and provide more detail
on how the representation of the state of the world is shaped by the requirements of the
decision-making process. Then we will propose a specific role for the OFC in represent-
ing this information during decision-making.

The computational theory of RL (Sutton & Barto, 1998) relies on a representation of
all the information that is relevant for the current decision, referred to as the state. The
state is not just a one-to-one reflection of the physical state of the environment, but
rather a reflection of what information about the world the decision-making agent rep-
resents at the moment the decision is made. How precisely should an agent represent its
environment to optimally support decision-making and learning? As we will see below,
this is not an easy question, and answering it requires a good understanding of the prob-
lem at hand. Consider, for instance, an RL agent trying to learn to balance a pole hinged
to a cart that can be moved either left or right (a classic benchmark task in RL, Michie &
Chambers, 1968). From an RL perspective, an optimal policy for this problem can only
be computed if the current state contains all information that is sufficient to fully predict
the immediate future state of the cart, once a certain action is taken. This characteristic is
known as theMarkovian property and effectively means that the conditional probabilities
of future states depend only on the current state and action, but not the past states. In the
case of the pole problem, this means that representing the cart’s position and the angle of
the pole as the state are not enough because these variables alone are insufficient to pre-
dict which way the pole is moving and to infer how to move the cart. Instead, the cart’s
velocity and the rate at which the angle between the pole and the cart is changing are
needed. Representing these variables as part of the current state will allow one to learn
a much better behavioral control policy than if they were omitted from the state
representation.

This requirement for the state representation raises another problem: Some variables
are not easily extracted from the information the agent gets from its sensors but require
memory of past sensory information and further computation. For example, the velocity-
related variables must be inferred by comparing past and current sensory inputs and thus
require memory. If states need to reflect information beyond what is accessible through
current sensory input and there is uncertainty regarding their true underlying value, the
states are called partially observable.

Finally, not all aspects of the current sensory input are relevant. Lighting conditions,
for instance, do not need to be included into the state, as they are irrelevant for the policy
even if they change the sensory signals. Including unnecessary aspects in the state repre-
sentation will lead to slower learning due to the need to separately learn a policy for states
that seem different but are effectively equivalent, a phenomenon known as the curse of
dimensionality. A good state representation is therefore one that solves two problems: It
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deals with partial observability and non-Markovian environments by supplementing sen-
sory information with the necessary unobservables, and it filters the sensory input to only
include relevant aspects in order to avoid the curse of dimensionality.

While pole balancing itself is a rare activity for humans, the curse of dimensionality
and the problem of partial observability of states are ubiquitous. A brain area well suited
to solve this problem would need to be able to access sensory cortices as well as brain areas
relevant for episodic memory and selective attention processes (Niv & Langdon, 2016).
On purely anatomical grounds, the OFC is a good candidate for this representation: It is
unique among areas in the PFC in its close connectivity to all five sensory modalities, and
it has bidirectional connections to brain areas relevant for memory and decision-making
such as the hippocampus and the striatum. In addition to these general considerations, a
review of decades of studies on the function of the OFC has recently led us to propose
that the role of the OFC in decision-making is to represent partially observable states of
the environment when they are needed to perform the task at hand. Specifically, in
Wilson, Takahashi, Schoenbaum, and Niv (2014), we investigated how changes in the
way states are represented would affect behavior in tasks that are known to be impacted
by OFC lesions. The central idea was that in many cases the state space of a task must
include partially observable information, but OFC-lesioned animals might be incapable
of integrating the necessary observable and unobservable information. In order to test this
idea theoretically, we used an RL modeling framework and manipulated how states were
represented. To simulate OFC-lesioned animals, all states of the task that are associated
with identical sensory input were therefore modeled as the same state, whereas healthy
animals were modeled as having the ability to disambiguate states that involve identical
sensory input based, for instance, on past events. Strikingly, this manipulation caused
subtle but pervasive impairments of the model’s ability to perform exactly those tasks
that are known to be impacted by OFC lesions.

One example is the delayed alternation task, which is known to be impaired by OFC
lesions in both animals as well as humans (e.g., Freedman, Black, Ebert, & Binns, 1998;
Mishkin, Vest, Waxler, & Rosvold, 1969). In this task, two simple actions (say, pressing a
left or right lever) can lead to reward. Specifically, the delivery of reward is coupled to the
previous choice such that on each trial, only the action that was not chosen on the pre-
vious trial is rewarded. To solve this task, the states corresponding to the two options
need to be supplemented by the previous choice: Although all trials look similar in terms
of the externally available stimuli, when the previous choice was A, the best action is B,
and vice versa (see Fig. 12.2A,B). If OFC lesions impair the ability to distinguish between
two identically looking states based on unobservable context, one would expect that
OFC-lesioned animals would represent the task as having only one state (Fig. 12.2B).
As a consequence, the animal would be severely impaired in its ability to correctly
perform the task, which indeed has been shown (specifically, performance went down
to chance due to the lesion, but only if trials were separated by a delay that rendered
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the previous choice unobservable; Mishkin et al., 1969). In Wilson et al. (2014), we
showed that a variety of behavioral consequences of OFC lesions can indeed be explained
by an impairment in the state space underlying performance on the task. We also showed
that changes in dopaminergic firing following OFC lesions can be explained as a conse-
quence of impaired state differentiation (Takahashi et al., 2011).

In a follow-up study in humans, we used a task specifically designed to test our hy-
pothesis, to investigate orbitofrontal representations during decision-making (Schuck,
Cai, Wilson, & Niv, 2016). On each trial of the task, participants had to judge whether
either a face or a house (presented overlaid as a compound stimulus) was old or young.
Crucially, to determine whether they should be judging the house or the face,

(A) (C)

(B)

Figure 12.2 State spaces of the delayed alternation task and the Schuck et al. task. (A): In a delayed
alternation task, performance is rewarded if the previously unchosen action is selected. A suitable state
representation therefore must distinguish between trials in which action A was previously performed
versus trials in which action B was previously taken. We denote the two possible actions as “A” and “B”
and label the states accordingly “(A)” and “(B)” to denote the action on the previous trial. In the diagram,
state transitions depend on the action taken. The probability of reward on each trial, which depends on
the transition/action chosen, is denoted in gray for each transition. With such a state representation,
different values can be assigned to an action depending on whether is was preceded by the same
or a different action, thus allowing the agent to learn the optimal policy that leads to 100% reward
(alternating choices). (B): If, on the other hand, an agent is unable to differentiate between states based
on the unobservable choice history, then the environment is perceived as having only one state, in
which each action yields reward on only 50% of trials. According to the theory, complete OFC lesions
would result in this reduced state representation, and consequently, performance would be at chance
accuracy, as is indeed seen empirically (Mishkin et al., 1969). (C):The state space used in the Schuck
et al. task described in the text. “Hy” indicates a trial in which the relevant category was House,
and the correct response was young. For simplicity, only transitions for correct actions are shown
(the wrong action leads to repetition of the trial). State-relevant information from the previous trial
is denoted in brackets, such that “(Fo)Fy” indicates a young Face trial (the “Fy” part of the state)
that was preceded by an old Face trial (the “(Fo)” part of the state, see legend).
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participants had to continuously monitor both the current and previous trial: Whenever
the age response on the previous trial was different from that on the current trial, the cate-
gory to be judged on the following trial was switched. Otherwise, the next trial’s cate-
gory was the same as the current trial. Given these rules, the task required a complex state
space with 16 different partially observable states (Fig. 12.2C). Using multivariate pattern
analysis techniques, we investigated what aspects of the state information were encoded
within OFC. This analysis showed that on each trial, the OFC contained information
about all partially observable aspects of the state: the previous age, the previous category,
and the current category. A whole-brain analysis suggested that medial OFC was the only
region in which all necessary unobservable information could be decoded. Still, informa-
tion about events two trials in the past, which was not relevant to correct performance,
could not be decoded in OFC (in contrast to other brain areas where we could decode
not only some of the relevant unobservable state components but also some irrelevant
information such as the category from two trials back). Finally, in an error-locked analysis
of single-trial information, we found that errors during the task were preceded by a dete-
rioration of the state representation in OFC. These results provide strong support for the
above-outlined hypothesis of the representational role of OFC in decision-making.

Several other studies have come to similar conclusions. Recording from neurons in
lateral OFC in rodents, Nogueira et al. (2017) reported that task-relevant but unobserv-
able information from the previous trial was integrated with the current sensory input. A
study from our lab used a task in which participants had to infer the current state based on
a series of past observations and found that activity patterns in OFC reflect the posterior
probability distribution over unobserved states, given the observed sequence of events
(Chan, Niv, & Norman, 2016). Bradfield, Dezfouli, van Holstein, Chieng, and Balleine
(2015) reported that bilateral excitotoxic lesions and designer-drug-induced inactivations
of the rat medial OFC led to an inability to retrieve or anticipate unobservable outcomes
across a range of tasks. Finally, Stalnaker, Berg, Aujla, and Schoenbaum (2016) studied
rats in a task in which outcome magnitudes and identities were occasionally reversed.
They found that the unobservable state of the task (that is, the “block identity”) could
be decoded from activity of cholinergic interneurons in the dorsomedial striatum, and
importantly, that this information vanished when the OFC was lesioned. Taken
together, these studies support the idea that within OFC, task-relevant information is
combined into a state representation that facilitates efficient decision-making in the
face of partial observability and non-Markovian environments.

A ROLE FOR THE ORBITOFRONTAL CORTEX IN STATE INFERENCE
AND BELIEF STATES?

If the OFC is involved in representing partially observable information in the service of
decision-making, one important question is whether OFC is also involved in inferring the
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state from observations. As we highlighted above, a useful state representation is not sim-
ply a reflection of the current sensory input, but rather can be viewed as the (often hid-
den) collection of attributes that causally determine future rewards and state transitions.
For example, in the young/old task described above, the current stimulus is not sufficient
for determining which action will be rewarded. Similarly, when deciding whether the
cab you requested is still on its way, or they have forgotten your request and you should
call the company again, the current observation of “no cab here” is not sufficient and you
must make use of information such as how long you have already been waiting, what is
the time, and what time did you request the cab for. This implies that the current state
must often be inferred from more than current observations, and in many cases, there is
considerable uncertainty about the current state. RL theory has shown that an optimal
way to learn under such uncertainty is to use Bayesian inference to estimate the proba-
bility distribution over possible unobservable states given the observations, and use this
quantity (referred to as the belief state) as the current state of the task (Daw, Courville,
& Touretzky, 2006; Dayan & Daw, 2008; Kaelbling, Littman, & Moore, 1996; Rao,
2010; Rodriguez, Parr, & Koller, 1999; Samejima & Doya, 2007).

Although it is still unclear whether the brain indeed performs a similar inference pro-
cess and if the OFC is representing a belief state distribution rather than a single (for
instance, most likely) state, recent evidence has pointed in that direction. For example,
in a recent study, we studied the process of inferring the true state in a task in which ob-
servations were only probabilistically related to states (Chan et al., 2016). Using a repre-
sentational similarity approach, we found that the similarity of neural patterns in medial
OFC was related to the similarity of probabilistic state distributions predicted by a
Bayesian inference model. In line with this idea, other studies have indicated that
OFC also represents the confidence with which animals make a choice (Kepecs, Uchida,
Zariwala, & Mainen, 2008; Lak et al., 2014), a quantity that also affects dopaminergic
midbrain activity and may reflect belief states (Lak, Nomoto, Keramati, Sakagami, &
Kepecs, 2017). Other studies investigating dopaminergic prediction error signals have
shown that reward predictions are based on a state inference process rather than purely
sensory states (Langdon, Sharpe, Schoenbaum, & Niv, 2018; Starkweather, Babayan,
Uchida, & Gershman, 2017). In particular, the passage of time provides a ubiquitous
cue for inferring transitions between states that may be externally similar (as in the cab
example above), and recent work suggests that prediction error signals rely on input
from the ventral striatum to reflect such time-based state inference (Takahashi, Langdon,
Niv, & Schoenbaum, 2016). Our previous work has shown that dopaminergic prediction
errors indeed depend on state representations in the OFC (Takahashi et al., 2011; Wilson
et al., 2014). Together with this recent work that indirectly suggests the existence of
belief states elsewhere in the brain, these findings support the idea that a state inference
process results in a representation of an entire belief-state distribution within the OFC.
More evidence is needed, however, and previous work has suggested that belief states
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may be encoded either in lateral PFC (Samejima & Doya, 2007) or sensory cortices (Daw
et al., 2006; van Bergen, Ji Ma, Pratte, & Jehee, 2015).

In addition, many questions about the inference process itself remain unanswered. Of
particular importance is the question about the role of state transitions in the state infer-
ence process. The abovementioned theoretical approaches to belief states indicate that
inferring the current belief state relies on two quantities: current and past observations
on the one hand and the previous belief state on the other hand (see Fig. 12.3). Previous
belief states influence the current belief state through the state transition function: Similar
to how knowledge about someone’s previous location will constrain where that person
could possibly be one time step later, knowledge about possible state transitions and the
previous state will influence the estimate of the current state. Several of the tasks in which

(A)

(B)

Figure 12.3 Belief state representations and state inference. (A): The diagram illustrates how uncer-
tainty at different stages is incorporated into a belief state representation (blue box). On each trial,
because of partial observability, we assume that the sensory input (“current observation”) cannot
be deterministically mapped onto states, but rather leads to a probabilistic estimate of how likely
different states are (captured by the observation function Z(sʹ, o)). In addition, the distribution over
states on the previous trial is combined with the (presumably known) state transition function to
further constrain the likely current state. In analogy to a spatial setting, this process corresponds to
estimating your current location based on what is currently observed, in combination with your pre-
vious belief regarding where you have just been, which determines the locations that were adjacent
to you and reachable in one step. Together, the current sensory input and your previous beliefs
regarding your likely location constrain your current location estimate. (B): The key belief statee
updating equation relates the above-described quantities to yield the probability of being in a specific
state sʹ at a specific time t, denoted as b(St ¼ sʹ).
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OFC lesions lead to behavioral impairments, such as devaluation (Gallagher, McMahan,
& Schoenbaum, 1999; Pickens et al., 2003) and Pavlovianeinstrumental transfer
(Bradfield et al., 2015) tasks, require not only state representations but also inference
about expected outcomes based on knowledge of state transitions. Furthermore, neuro-
imaging studies have found that the OFC may be involved in updating knowledge about
transitions between cues and outcome identities (Boorman, Rajendran, O’Reilly, &
Behrens, 2016), which could reflect a role in representing state transitions more generally.
Other studies have pointed to a prominent role of the hippocampus in storing state
transitions (Schapiro, Kustner, & Turk-Browne, 2012).

Finally, an important aspect of state inference is that the environmental features that
are predictive of the outcome might change over time, or previously unknown relations
between sensory input and outcomes might only be discovered after a period of learning.
In our previous work, we have begun to investigate both of these cases (Niv et al., 2015;
Schuck et al., 2015). This work has so far pointed not toward the OFC but rather sug-
gested a role for a frontoparietal attention network in controlling the adaptation of state
representations and of medial PFC in covertly preparing the updated state
representations.

In summary, current research bears only indirectly on the possible role of OFC in the
representation of belief states, state transitions, and state updating processes, and it seems
unlikely that all these functions would be performed by a single neural circuit. Future
research therefore needs to address these questions more directly and also investigate
how different brain areas such as the hippocampus and medial PFC might perform these
complex computations in cooperation with the OFC (e.g., Kaplan, Schuck, & Doeller,
2017). Moreover, one important question is where and how the relations between states,
as reflected in the possible transitions between them, are represented in the brain. Build-
ing on the existing work about hippocampal representations of transitions between spatial
and observable states (Schapiro et al., 2012; Stachenfeld, Botvinick, & Gershman, 2017),
future work needs to investigate the neural representation of transitions between partially
observable states. Such research needs to carefully take into account the methodological
hurdles of estimating representational similarity with fMRI, however (Cai, Schuck,
Pillow, & Niv, 2016).

ORBITOFRONTAL VALUE SIGNALS AND THEIR ROLE
IN DECISION-MAKING

While the work reviewed in the previous sections provides support for the State-Space
Theory of OFC, these findings are only a small part of the large literature on the OFC,
and other authors have proposed different accounts of OFC function. Perhaps the most
influential alternative is that OFC represents economic value associated with a given
choice, in particular, value that has to be calculated on the fly rather than learned
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from experience. This theory has its roots in recordings of neural activity in the OFC of
monkeys making choices between different food options (Padoa-Schioppa & Assad,
2006; Tremblay & Schultz, 1999). In particular, in one influential study, Padoa-
Schioppa and Assad (2006) recorded activity in the OFC (area 13) of monkeys while
the monkeys chose between two different kinds of juice. On each trial, different amounts
of each juice were offered through the display of visual cues, and the animals could freely
decide which option they preferred. Following standard economic theory, the authors
calculated the subjective value of each juice based on the monkeys’ choices and showed
that a proportion of recorded neurons showed firing activity that varied linearly (some
increasing and some decreasing) with the subjective value of the chosen juice, regardless
of which option was chosen (they additionally reported neurons that responded to the
identity of the chosen option and the value of each of the two offers). This general
finding, a value or reward representation that is independent of sensory or motor aspects
of the option, is supported by a number of similar studies in humans, monkeys, and ro-
dents (e.g., Gottfried, O’Doherty, & Dolan, 2003; Hare, O’Doherty, Camerer, Schultz,
& Rangel, 2008; Howard, Gottfried, Tobler, & Kahnt, 2015; Plassmann, O’Doherty, &
Rangel, 2007; Schoenbaum & Eichenbaum, 1995; Thorpe, Rolls, & Maddison, 1983;
Tremblay & Schultz, 1999). Moreover, subsequent studies have suggested that these
value representations do exhibit a number of properties in line with the value account
of OFC function. For example, Padoa-Schioppa and Assad (2008), found that OFC value
signals are invariant to the other available options (a property called transitivity; but see
Tremblay & Schultz, 1999).

What these findings imply about OFC function is not as clear as it might seem, how-
ever. First, due to the long recording durations and many experimental sessions involved
in monkey electrophysiology, it is difficult to claim with certainty that the monkeys are
computing the values of the alternatives on the fly and that this is what OFC is necessary
for. Moreover, other findings have cast doubt on the claim that OFC’s primary function
is to represent values of choices during decision-making in general (Schoenbaum et al.,
2011). For example, studies of OFC-lesioned animals have shown no impairment in gen-
eral learning abilities during initial value acquisition (e.g., Butter, 1969; Chudasama &
Robbins, 2003; Chudasama, Kralik, & Murray, 2007; Izquierdo, Suda, & Murray,
2004; O’Doherty, Critchley, Deichmann, & Dolan, 2003; West, DesJardin, Gale, &
Malkova, 2011) and inconsistent results after a reversal of cueeoutcome contingencies
(Kazama & Bachevalier, 2009; Rudebeck, Saunders, Prescott, Chau, & Murray, 2013;
Stalnaker, Franz, Singh, & Schoenbaum, 2007). Other studies have shown that OFC le-
sions do not impact monkeys’ ability to make value-dependent choices even when values
are constantly changing (Walton, Behrens, Buckley, Rudebeck, & Rushworth, 2010). A
recent proposal by Walton et al. (2011) has highlighted that the nature of the decision-
making impairment depends on whether the lesion affected medial or lateral OFC. Spe-
cifically, Walton and colleagues suggested that lateral OFC is necessary for correctly
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assigning credit for outcomes to previous actions for the purpose of learning, whereas the
medial OFC is important for basing decisions on the highest-valued option while
ignoring the irrelevant other options. This idea might indeed explain why decision-
making impairments are seen under some circumstances but not others.

Yet, values (and choices) are not the only task-related quantity that is encoded in
OFC. Several reports have shown that OFC encodes many variables that are related to
the current task but are independent of value, including for instance outcome identities
(Howard et al., 2015; McDannald et al., 2014, 2011; Stalnaker et al., 2014), salience
(Ogawa et al., 2013), confidence signals (Kepecs et al., 2008; Lak et al., 2014), and
even social category of faces (Watson & Platt, 2012) or spatial context (Farovik et al.,
2015). In fact, these value-free signals may represent the vast majority of information
encoded in OFCdone study found only 8% of lateral OFC neurons coding value in
a linear manner (Lopatina et al., 2015), a number that is not out of line with other reports
that often analyze only small subsets of the recorded neurons. This raises the possibility
that firing patterns of orbitofrontal neurons reflect value only in the context of, or as
part of, the current state. This interpretation is also supported by the above-described
study, in which we found state signals in the OFC in the absence of any overt rewards
or values (Schuck et al., 2016).

This idea that OFC value representations are embedded in a more general state signal
in the OFC is supported by a recent study from Rich and Wallis (2016). In this exper-
iment, OFC neurons were recorded while monkeys deliberated between two choices
leading to differently valued outcomes. While activity patterns during deliberation
were predictive of the value of the later chosen option, the authors also report that
the value encoded by single neurons was dependent on a network-represented state:
The same neuron encoded the value of pictures on the right when the rest of the network
(not including this neuron) was in the “right state” (i.e., signaling that something was
shown on the right), and the value of pictures on the left when the network was in
the “left state.”

The notion that the unique function of OFC is to integrate information about
partially observable task states (and perhaps their resulting values) is also supported by
research on flexible, goal-directed behavior in the so-called devaluation paradigm. In
this task, animals are first trained to perform actions (say, pressing on one of several
bars) in order to obtain desired outcomes (e.g., different types of food) such that each ac-
tion is associated with a particular outcome. Subsequently, in a separate setting, one of the
possible outcomes is devalued by satiation or pairing the outcome with food poison. A
test then assesses whether the animal can use the new (lower) value of the outcome to
guide its behavior. In this, the animal is once again allowed to make outcome-earning
actions (although no outcomes are actually delivered in this phase), with the main ques-
tion being whether it will continue to perform the action that previously led to the now-
devalued outcome. While healthy animals that have not been overtrained to the point
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that the actions have become habitual adapt their behavior appropriately, OFC-lesioned
animals continue to chose the wrong option, a behavior that has been suggested to reflect
their inability to update outcome expectations (Gallagher et al., 1999; Pickens et al.,
2003), rather than mere failures to inhibit prepotent reposes (Chudasama et al., 2007;
Walton et al., 2010). In another devaluation study, value representations in the OFC
as well as the amygdala were found to be changed following devaluation (Gottfried
et al., 2003), suggesting that the values encoded in OFC can be updated offline based
on knowledge of state transitions and the newly experienced outcomes. Interestingly,
consistent with the State-Space Theory, similar studies looking at the representations
of value-independent outcome identities in the OFC found that these representations
differed based on the current goal, consistent with the state-space representation being
task dependent (Critchley & Rolls, 1996; Howard & Kahnt, 2017). Thus, the role
that OFC seems to play in value-based decision-making seems to be at the junction of
representing values and correctly inferring partially observable current or future states.

Other studies using unblocking paradigms support similar conclusions (Burke, Franz,
Miller, & Schoenbaum, 2008; McDannald, Lucantonio, Burke, Niv, & Schoenbaum,
2011). In one variant of this task, animals learn to discriminate different odors that predict
different quantities and flavors of milk. After learning, additional odors are added to the
original odor and either the same outcome is presented, the size of the outcome is
changed, or the flavor of the outcome is changed. Afterward, the degree to which an as-
sociation between the novel odors and the outcomes was learned is assessed. Because
value-based learning is driven by the difference between one’s expectations and the out-
comes (the so-called prediction error), learning theory suggests that no association should
be learned for the novel odor when it led to the same outcome as before (hence the term
“blocking” as the association between the old odor and the outcome blocks a new asso-
ciation from forming Kamin, 1969). The novel odors associated with a change in reward
size, however, should be followed by a prediction error that would trigger learning
(“unblocking”). This learning can be based purely on value signals, as found in areas
such as the striatum. A very different and interesting prediction arises when considering
trials in which the milk flavor was changed. Because the two milk flavors were matched
for overall value, learning about novel cues predicting flavor changes cannot be driven by
a value mismatch error. Rather, for changes in the outcome identity to trigger learning
about the new odor-specific knowledge about the expected identity of the outcome (and
its violation) is required, as found in the OFC (Critchley & Rolls, 1996; Howard &
Kahnt, 2017; McDannald et al., 2014; Stalnaker et al., 2014). Indeed, lesion studies
have shown that OFC is critical for this type of outcome identityedependent unblocking
but not for unblocking due to changes in the value of the outcome in this task
(McDannald et al., 2011).

In summary, while these findings suggest that orbitofrontal neurons encode informa-
tion about the values of different options, OFC’s function is not readily captured by the
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proposal that the sole or primary role of this area is value comparisons. From the perspec-
tive of the State-Space Theory, these findings rather point to a more holistic integration
of decision-relevant information in the OFC, ranging from partially observable context
that is necessary for solving the task to the expected sensory aspects of the outcomes and
the values associated with them. Interestingly, the above-described lesion and inactiva-
tion studies all suggest that this representation is only necessary when changes in the con-
tingencies between states require to reassess the value of different choices.

BEYOND LEARNING AND DECISION-MAKING

Although the literature on the function of the OFC has mainly addressed its role in
decision-making, some investigations have focused on other potentially important as-
pects of OFC function. In particular, observations from human patients with OFC dam-
age have often led to reports about post-lesion changes in their “personality” (e.g.,
Cicerone & Tanenbaum, 1997; Galleguillos, Parrao, & Delgado, 2011). These clinical
impressions are corroborated by studies that have established links between OFC damage
and activity and aggressive behavior (e.g., Beyer, Muente, Goettlich, & Kraemer, 2015;
Butter, Snyder, & McDonald, 1970; Raleigh, Steklis, Ervin, Kling, & McGuire, 1979),
processing of social information (e.g., Azzi, Sirigu, & Duhamel, 2012; Ishai, 2007;
O’Doherty, Winston, et al., 2003; Perry et al., 2016), emotional information (e.g.,
Bechara, 2004; Izquierdo, Suda, & Murray, 2005; Kumfor, Irish, Hodges, & Piguet,
2013; Schutter & van Honk, 2006), and risky or impulsive behavior (Bechara, Damasio,
& Damasio, 2000). In addition, some studies have indicated that OFC may be important
for long-term memory (Frey & Petrides, 2002; Meunier, Bachevalier, & Mishkin, 1997;
Petrides, 2007) and working memory (Barbey, Koenigs, & Grafman, 2011).

Given the complex anatomy of the OFC, such diversity of findings is not surprising.
Previous research has shown that lesion effects can be the result of damage to passing fi-
bers rather than damage to OFC per se (Rudebeck et al., 2013). Moreover, some effects
may result from codamage to other areas (Noonan, Sallet, Rudebeck, Buckley, &
Rushworth, 2010), and incorporating the effects of connected areas is generally an
important approach for understanding OFC’s function (Rempel-Clower, 2007). In addi-
tion, it is certainly possible that some subregions of OFC have functions outside of the
domain of decision-making.

While our framework does not aim to account for the entirety of the function of this
large brain area, it is noteworthy that some of the effects mentioned above are not
orthogonal to our proposal. Studies investigating the processing of emotional and facial
information have used stimuli that could also be interpreted as either having positive
(smiling, attractiveness) or negative value (angry facial expression) (Chien, Wiehler,
Spezio, & Gl€ascher, 2016; Winston, O’Doherty, Kilner, Perrett, & Dolan, 2007).
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In general, inferring others’ emotions and intent are the epitome of inference of a partially
observable state. Indeed, these tasks require participants to process “subtle social and
emotional cues required for the appropriate interpretation of events” (Cicerone &
Tanenbaum, 1997, abstract), which could be affected by lesioned patients’ inability to
integrate partially observable information and current sensory input into a suitable state
representation. Moreover, the reported association with working memory seemed to
be specific to n-back tasks (Barbey et al., 2011) that also require decision-making and
are similar to the task we used to test our theory in humans (Schuck et al., 2016).

Apart from these issues of integrating all available evidence, one important avenue for
future research is to specify predictions about the OFC representations that drive
decision-making in different tasks and how these OFC representations are affected by le-
sions and disease. Existing computational models therefore need to be specified in order
to predict which hidden and observable aspects of the environment need to be incorpo-
rated into the current state in order to solve the task sufficiently (see Chapter 5 by
Collins). Ideally, models and theory would also yield predictions about how these state
representations develop during task learning, depending on the specific history of choices
and experiences of each subject (Gershman, Norman, & Niv, 2015; Niv et al., 2015).

SUMMARY

In this review, we have focused on work that links the OFC to many aspects of decision-
making. Several prominent findings have reported that individual neurons in OFC lin-
early increase their firing with the value of the chosen option. Other studies, however,
have highlighted that many different aspects of the ongoing task are encoded in OFC’s
neural activity, that value neurons dynamically change which option they are encoding
depending on the network state, and that value neurons make up only a small proportion
of the OFC population in certain circumstances. Moreover, studies of OFC lesions are
not consistent with the claim that the OFC is the brain’s sole site of performing basic
value-based decision-making. Rather, behavioral impairments seem to occur only under
certain circumstances, e.g., when a change of previously learned associations is prompted
by drastic changes in outcome value, when task rules require rapid switching between
values or when learning must focus on the sensory properties of the outcome rather
than its value. In all these cases, performance depends critically on the ability to infer a
partially observable state of the environment, and maladaptive behavior becomes visible
when the state changes in the absence of any sensory cues, and previously learned values
no longer apply.

We therefore suggest that the role of the OFC in decision-making is to represent the
current state of the environment, in particular, if that state is partially observable. We have
presented several lines of evidence, including lesion studies, electrophysiological record-
ings, computational modeling, and fMRI, that support our framework. We also outlined
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avenues for future research that should seek to directly investigate to what extent previ-
ously reported associations between OFC and cognitive functions outside of the domain
of decision-making could also result from changes in partially observable state represen-
tations (e.g., working memory or personality changes). In addition, taking into account
anatomical diversity within OFC, cross-species anatomical differences and, in the case of
lesion studies, careful scrutiny of the nature of OFC insults (e.g., if passing fibers have
been damaged) might clarify the origins of some of the diversity of functions associated
with the OFC. Crucially, we argued that computational models that specify the repre-
sentations underlying successful decision-making need to be advanced and tested against
empirical data. Together with the existing evidence, these efforts promise to yield un-
precedented insight into the functions of an elusive brain area.
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INTRODUCTION

In recent years, an extensive literature stemming from the study of learning in animal
models has begun to elucidate the mechanisms that underpin goal-directed behavior
(Dolan & Dayan, 2013). This conceptual framework distinguishes two types of
“instrumental” learning, or ways in which actions can be facilitated based on their result-
ing rewards or punishments. A “goal-directed” action is a behavior driven by an expec-
tation that it is likely to bring about a desired outcome (Dickinson, 1985). Goal-directed
decisions leverage causal knowledge of the potential consequences of actions to flexibly
pursue a current goal. Such deliberate action selection is distinguished from “habitual”
behavior, in which an action is reflexively elicited by the cues or contexts associated
with its prior successful performance. Whereas goal-directed actions are selected based
on expectations of their consequent outcomes, habits are thought to stem from the for-
mation of stimuluseresponse associations, reinforced by reward and automatically
elicited by their antecedent stimuli.

This distinction between two types of instrumental action has its origins in a historic
scientific debate. The dominant behaviorist account of instrumental behavior in the early
20th century proposed that instrumental action reflected an assembly of stimuluse
response associations, stamped in through reinforcement, and reflexively elicited by envi-
ronmental cues or contexts. In the mid-20th century Edward Tolman advocated for an
alternative view, proposing instead that animals and humans form mental models of their
environments (cognitive models or “maps”) that can be flexibly consulted and recruited
to pursue a current goal (Tolman, 1948). In the ensuing decades, a large interdisciplinary
empirical literature has provided support for this conceptualization of goal-directed
learning. Behavioral tasks have been designed to test for the key features of goal-
directed behavior and examine the experimental factors that influence the balance
between goal-directed versus habitual action (Dickinson, 1985). Convergent computa-
tional, psychological, and neuroscientific literatures have begun to characterize the
diverse algorithmic, cognitive, and neurobiological processes that enable goal-directed
action (Dolan & Dayan, 2013; Doll, Simon, & Daw, 2012).
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To date, the vast majority of this empirical literature has examined goal-directed
behavior in adult humans and animals. In contrast, the typical development of goal-
directed decision-making and the neurocognitive processes that underlie its develop-
mental trajectory have not been widely studied. In this chapter, we will review empirical
findings that illustrate marked changes in goal-directed behavior over the course of
development from infancy to young adulthood. We will discuss developmental changes
in the component cognitive processes and underlying neural circuits that may contribute
to these shifts in behavior, highlighting the current gaps in our understanding. We begin
by describing tasks designed to dissociate goal-directed behavior from habitual action.
We then present findings from developmental studies employing these tasks, which
reveal age-related changes in goal-directed decision-making. While we focus primarily
on data exploring human development, we also integrate relevant developmental studies
in animal models. We briefly outline a provisional model of the neurocircuitry implicated
in goal-directed decision-making from studies in adult humans and animals and give an
overview of the dynamic changes that occur within these circuits from childhood to
adulthood. We then discuss what is known about the development of the component
cognitive processes involved in the construction and use of the cognitive models that un-
derpin goal-directed action, as well as the neural correlates of these developmental
changes.

ASSAYS OF GOAL-DIRECTED BEHAVIOR

The goal-directedness of instrumental behavior can be assessed in experimental para-
digms gauging the degree to which a decision to take an action is governed by knowledge
of its likely causal consequences (i.e., actioneoutcome contingencies) as well as the cur-
rent desirability of these expected outcomes (i.e., outcome value). Behavior that stems
from the formation of habit-like stimuluseresponse associations is insensitive to manip-
ulations of either of these properties, allowing for the dissociation between goal-directed
and habitual behavior.

One such experimental manipulation is outcome revaluation. In these tasks, an ani-
mal learns actions that can effectively bring about the delivery of rewards. For example,
an animal might learn that pressing one lever will yield a food pellet, while pressing a
second lever will deliver water from a spout. In the next stage of the study, the value
of one outcome is altered. This change in value may be brought about through changes
in the animal’s motivational state (e.g., altering the animal’s degree of hunger or thirst) or
through manipulations that alter the intrinsic value of the outcome (e.g., pairing a food
with pharmacologically induced illness or revealing a new rewarding use for an object).
The effect of this manipulation on performance of the instrumental action is then tested.
Importantly, this test is performed in extinction (i.e., when no further outcomes are
delivered), which ensures that instrumental behavior can only be informed by outcome
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knowledge learned during initial training, as well as by any change in representation of
the current value of the outcome. To the extent that an action is driven by consideration
of the current desirability of its likely outcome, a decrease in outcome value should result
in an attenuation of the instrumental response, whereas an increase in value should yield a
corresponding increase in performance of the action. In contrast, habitual actions, which
are thought to involve no consideration of the likely outcome, are insensitive to such
changes in value. For example, an animal that continues to press a lever associated
with food delivery after having eaten to satiety would reveal its actions to be habitual,
whereas a cessation of lever pressing would reflect a goal-directed evaluation.

A second assay of the goal-directedness of action involves altering the learned contin-
gency between an action and a desired outcome. A behavior is only an effective means of
bringing about a desired outcome if the probability of obtaining a reinforcer when a spe-
cific action is performed is greater than the probability of reinforcement when that action
is not taken. Such actioneoutcome contingencies can be degraded through the provision
of noncontingent reward (i.e., delivering a food reinforcer in the absence of any instru-
mental action). If an action is habitual, the lack of consideration of actioneoutcome re-
lationships will reduce sensitivity to the causal ineffectiveness of the action. Thus, a
behavior that persists when its actioneoutcome contingency has been degraded is
considered to be habitual.

Two classes of reinforcement learning algorithms have been proposed to approximate
the neural computations underlying goal-directed and habitual behavior and to repro-
duce their key behavioral properties (Daw, Niv, & Dayan, 2005). “Model-based” algo-
rithms select actions via a flexible but computationally and representationally intensive
“tree-search” process of evaluating potential state transitions and outcomes to determine
the action most likely to yield reward. In contrast, “model-free” algorithms recruit trial-
and-error feedback to update a stored action value associated with a stimulus, allowing
the most highly valued action to be readily elicited when the stimulus is encountered.

A sequential decision-making task (the “two-step task”) was designed to dissociate
these two learning processes (Daw, Gershman, Seymour, Dayan, & Dolan, 2011) and
has recently been adapted to a child-friendly format (Decker, Otto, Daw, & Hartley,
2016). On each trial of the task (Fig. 13.1A), participants make a first-stage choice be-
tween two stimuli (spaceships), which is followed by a probabilistic transition to one
of two second-stage states (a red or purple planet). In stage two, participants choose be-
tween two second-stage choice options (red or purple aliens), each of which is associated
with a probability of yielding reward (space treasure). Reward probabilities change slowly
and independently, encouraging participants to explore second-stage options throughout
the task. Importantly, the probabilistic transition between first- and second-stage states
(i.e., each spaceship commonly (70%) goes to one planet, and rarely (30%) to the other)
creates a task structure that enables the distinction between goal-directed (model-based)
and habitual (model-free) choices. Whereas a goal-directed chooser uses a cognitive
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model of the transitions and rewards in the task to select actions, a habitual model-free
chooser, who does not recruit such a cognitive model, simply repeats previously
rewarded actions. Thus, the influence of the previous trial on the first-stage choice of
the next trial depends on one’s learning strategy (Fig. 13.1B). A habitual, model-free
learner is likely to repeat a previously rewarded first-stage choice regardless of the tran-
sition type that led to the reward (i.e., a win-stay effect; Fig. 13.1B, left). In contrast, a
goal-directed chooser takes into account the state transition structure, reflected by an
interactive effect of transition type (common vs. rare) and reward on “stay” decisions
(Fig. 13.1B, right). For example, a habitual chooser is more likely to repeat a first-
stage choice following a rare transition that led to a reward, whereas a goal-directed
chooser is more likely to switch, choosing instead the spaceship that is most likely to
lead to the previously rewarded planet.

Whereas tests of outcome revaluation and contingency degradation rely on a small
number of trials following the task manipulation to assess goal-directedness, the

Figure 13.1 (A) The transition structure of the child-friendly “two-step task.” Participants make a first-
stage choice between two stimuli (spaceships), which is followed by a probabilistic transition to one of
two second-stage states (a red or purple planet). They then choose between two second-stage choice
options (red or purple aliens), each of which is associated with a slowly varying probability of receiving
reward (space treasure). (B) The probability of repeating a first-stage choice for an idealized model-
free (left) or model-based (right) chooser is shown as a function of previous transition type (common
or rare) and outcome (rewarded or unrewarded). (From Decker, J. H., Otto, A. R., Daw, N. D., & Hartley, C.
A. (2016). From creatures of habit to goal-directed learners tracking the developmental emergence of
model-based reinforcement learning. Psychological Science, 27, 848e858.)
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two-step task can derive estimates of the degree to which learning is model-based or
model-free using all trials of the task. Moreover, this paradigm lends itself to trial-by-trial
computational modeling of the distinct model-based and model-free algorithms for ac-
tion evaluation. These features of the task make it particularly useful for human neuro-
imaging analyses investigating the brain mechanisms underlying each learning strategy
(Daw et al., 2011), as well as studies examining the effects of cognitive or affective
manipulations on learning strategies (e.g., Otto, Gershman, Markman, & Daw, 2013;
Otto, Raio, Chiang, Phelps, & Daw, 2013).

Each of these experimental assays of goal-directed action has been used in recent
studies in adult humans to better understand the principles governing goal-directed
and habitual learning and action selection. Below, we present findings from the few
studies that have leveraged these tasks to begin to characterize changes in goal-directed
decision-making across development.

DEVELOPMENT OF GOAL-DIRECTED INSTRUMENTAL ACTION

Recent studies have used experimental assays including outcome revaluation, contin-
gency degradation, and sequential reinforcement learning tasks in both humans and an-
imals at differing ages to better characterize developmental changes in the learning and
reliance upon goal-directed versus habitual action.

In one study examining the sensitivity of learned actions to outcome devaluation
(Kenward, Folke, Holmberg, Johansson, & Gredeb€ack, 2009), young children (aged
14, 19, or 24 months) learned to press a button to release an object from a box. In a sec-
ond stage of the experiment, the children learned how to use an object as part of an
enjoyable game (either a ball could be placed into a series of chutes, or a wooden block
could be used to activate a music box). For only one of the two groups of children, the
object used in the play demonstration was the same object that the child previously
learned to release from the box. Thus, learning that the object could be used for play
constituted an increase in its value. In a test phase, the objects used in the play demon-
stration were removed so that children’s responses could be assessed in extinction, and
children’s button presses on the box from the first stage were measured as an index of
goal-directed action. The group of 24-month-old children, for whom the game involved
the object that they had learned to obtain through a button press, exhibited a shorter la-
tency to press the button and a greater number of button presses compared to 24-month-
old children in the control group, who had not learned any valuable use for the object
they had learned to release from the box. In contrast, 14- and 19-month-old children
showed no effect of the outcome revaluation on their button press behavior, suggesting
that their actions were not influenced by outcome expectancies.

Another outcome revaluation study tested children ranging in age from 18 to
48 months (Klossek, Russell, & Dickinson, 2008). The children learned that by making
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distinct responses on a touch screen, they could view an animated video clip from one of
two cartoon series. After the responses were acquired, one video outcome was devalued
by presenting children with four repeated viewings of each clip from that cartoon series.
During the subsequent test phase, children were able to make responses on the screen,
but no video clips were presented as a result of their actions (i.e., responses were tested
in extinction). Children aged approximately 3 years and older reduced their performance
of the action associated with the cartoon series that had been played repeatedly, relative to
the nondevalued series, reflecting consideration of the decreased desirability of the exten-
sively viewed cartoon series when making choices. In contrast, younger children showed
no differentiation in their responses to the two cartoon series, suggesting that their actions
were insensitive to this change in outcome value, and instead were driven by the previ-
ously learned reward associations.

Collectively, these studies suggest that the propensity to prospectively consider the
likely outcome of an action and its current value when making choices increases with
age. While in the first study we discussed (Kenward et al., 2009), sensitivity to changes
in outcome value was only evident in 24-month-old children, in the second study
(Klossek et al., 2008) this signature of goal-directedness only emerged in children at
approximately 3 years of age. One factor that may contribute to these age differences
in the emergence of goal-directed choice is task complexity. The cartoon task (Klossek
et al., 2008), in which outcome value sensitivity became evident at a later age, required
children to consider two potential actions that differed in value following devaluation,
rather than a single action associated with a revalued outcome, as in the first study
(Kenward et al., 2009). These results suggest that for tasks in which greater cognitive
demand is required to bring to mind the outcomes of potential actions, goal-directed
behavior may only be evident at later developmental time points.

A recent study examining sensitivity to outcome devaluation and contingency
degradation in adolescent and adult rodents provides additional support for this pro-
posal, suggesting that age-related increases in goal-directed behavior extend beyond
adolescence (Naneix, Marchand, Scala, Pape, & Coutureau, 2012). Adolescent and
adult rodents were trained to lever-press to obtain a food reward. Rodents in both
age groups exhibited sensitivity to reward devaluation, decreasing their lever pressing
after having unrestricted access to the food reward. However, when the actione
outcome contingency was degraded through noncontingent delivery of the food
reward, lever pressing in adult, but not adolescent, rodents decreased. When these
adolescent rodents subsequently underwent the same procedure upon reaching adult-
hood, they exhibited sensitivity to contingency degradation at this later developmental
time point. These findings suggest that there may be a more protracted developmental
trajectory of goal-directed learning for behaviors that rely on greater cognitive demands.
Another implication of this study is that sensitivity to outcome revaluation is dissociable
from sensitivity to contingency degradation, and that outcome value sensitivity may be
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evident at earlier developmental time points than sensitivity to changes in the causal ef-
ficacy of an action.

A recent study in humans corroborates this evidence of continued increases in goal-
directed evaluation into adulthood (Decker et al., 2016). Children, adolescents, and
adults, aged 8 to 25 years, completed a child-friendly adaptation of the “two-step
task,” a sequential reinforcement learning task designed by Daw et al. (2011) to disen-
tangle goal-directed and habitual learning strategies (see Fig. 13.1 above for task details).
In this task, participants can pursue reward either by simply repeating previously
rewarded actions (a strategy reflected by a main effect of previous reward on first-stage
choices) or by using knowledge of the transition structure of the task to select an action
most likely to lead to a goal (a strategy reflected by an interaction effect of previous
reward and transition type on first-stage choices).

Whereas participants across ages were equally likely to demonstrate a main effect of
reward from the previous trial on first-stage choices (the behavioral signature of
model-free learning), the interaction effect, indicating use of the previous trial’s transition
structure and outcome to pursue reward (the model-based behavioral signature),
increased with age (Fig. 13.2A and B). A computational analysis was conducted to deter-
mine whether participants’ trial-by-trial choices in the task were better captured by a
model-based evaluation algorithm, which selects actions via a forward search through
a mental model of actions and outcomes, or a model-free algorithm that recruits trial-
and-error feedback to efficiently update a cached value associated with an action, but
maintains no representation of the outcomes themselves. Corroborating the behavioral
finding that only considers the effect of the previous trial on subsequent choices, the
computational analysis that incorporates learning from the full history of task trials
showed that the tendency to engage in model-based, but not model-free, computations
of value increased with age.

Figure 13.2 (A) Evidence of model-free learning (significant main effect of reward) is present from
childhood onward, whereas model-based learning (significant reward � transition interaction effect)
is only evident in adolescents and adults. (B) Model-based behavior increases with age from childhood
into adulthood (P < .001). (From Decker, J. H., Otto, A. R., Daw, N. D., & Hartley, C. A. (2016). From
creatures of habit to goal-directed learners tracking the developmental emergence of model-based
reinforcement learning. Psychological Science, 27, 848e858.)
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Collectively, these studies suggest that across a diverse set of tasks, the learning of moti-
vated behaviors in individuals at younger ages is more likely to result in habit-like behav-
iors than goal-directed actions that are deliberately engaged to achieve a desired outcome.
Based on a large literature in adult humans and animals, instrumental learning is proposed
to initially begin as goal-directed but typically become habitual over time through
extensive training of the instrumental response (Graybiel, 2008; Yin & Knowlton,
2006). The developmental studies reviewed above suggest that ontogenetically, this
sequential progression from goal-directed to habitual behavior may be reversed. Behav-
ioral responses may initially be acquired through the formation of stimuluseresponse
associations that are reinforced by rewarding outcomes. Through repetition of these
actions, causal understanding of actioneoutcome contingencies may be acquired and
ultimately used to enable the selection of actions likely to achieve one’s present goals.
The developmental time point at which an individual shifts toward employing a goal-
directed strategy may depend on both the intrinsic complexity of the task at hand and
the development of the myriad cognitive processes involved in the formation and recruit-
ment of a mental model of that task. In the following sections, we discuss developmental
changes in the neural and cognitive processes that support goal-directed decision-making.

NEUROCIRCUITRY UNDERPINNING GOAL-DIRECTED BEHAVIOR AND
ITS DEVELOPMENT

A provisional model of the neural substrates of goal-directed action has emerged from a
convergent body of research in adult animals and humans. Below, we outline the neural
circuitry implicated in goal-directed learning in adulthood and discuss how these circuits
change over the course of development from childhood to adulthood.

Goal-directed behavior involves selecting and performing an action based on the cur-
rent value of its outcome. The striatum, a subcortical region of the brain, is centrally impli-
cated in the evaluation and selection of actions (Balleine & O’Doherty, 2010).
Dopaminergic input to the striatum is proposed to encode a computational reward pre-
diction error signal, reflecting the degree to which an experienced outcome is better or
worse than expected. This signal can support a feedback-driven learning process through
which action values, which differ according to one’s learning strategy, are estimated
(McClure, Berns, & Montague, 2003; O’Doherty, Dayan, Friston, Critchley, & Dolan,
2003; Schultz, Dayan, & Montague, 1997). The prediction error signals that support
model-free and model-based learning depend on action values and thus vary by learning
strategy. Correlates of both model-free and model-based prediction errors can be
observed in the ventral striatum and are associated respectively with a greater tendency
toward habitual or goal-directed choice behavior (Daw et al., 2011). Distinct subregions
of the dorsal striatum underpin the selection of goal-directed and habitual actions (Balleine
& O’Doherty, 2010; Balleine, Delgado, & Hikosaka, 2007; Yin & Knowlton, 2006).
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The caudate nucleus (dorsomedial striatum) is implicated in the learning of contingent
actioneoutcome associations that are central to goal-directed behavior (Haruno et al.,
2004; Tricomi, Delgado, & Fiez, 2004; Yin, Ostlund, Knowlton, & Balleine, 2005).
The putamen (dorsolateral striatum) plays a central role in the acquisition and expression
of habitual actions (Tricomi, Balleine, & O’Doherty, 2009).

The actioneoutcome evaluations underlying goal-directed learning additionally
integrate information about states and outcomes stemming from a more extensive
network of regions, including the prefrontal cortex. The prefrontal cortex exhibits strong
connectivity to the striatum, and lesions to corticostriatal connections disrupt the acqui-
sition of goal-directed behavior (Hart, Bradfield, & Balleine, 2018). A number of func-
tions critical for goal-directed action are thought to be supported by distinct areas of the
prefrontal cortex. The ventromedial prefrontal cortex (vmPFC) is broadly implicated in
the representation of value signals that inform motivated behavior (Dayan, Niv,
Seymour, & Daw, 2006; Gl€ascher, Hampton, & O’Doherty, 2009; Hampton, Bossaerts,
& O’Doherty, 2006; Tanaka et al., 2006; Valentin, Dickinson, & O’Doherty, 2007). The
orbitofrontal cortex (OFC) has been proposed to represent associations between actions
and their specific outcomes, forming a cognitive model of the task (McDannald et al.,
2012; Schuck, Cai, Wilson, & Niv, 2016; Stalnaker, Cooch, & Schoenbaum, 2015;
Valentin et al., 2007; Wilson, Takahashi, Schoenbaum, & Niv, 2014). Recruitment of
this cognitive model enables expectations of a specific outcome to guide behavior.
The OFC has been found to mediate goal-directed behavior in studies using assays
such as contingency degradation and outcome revaluation (Gottfried, O’Doherty, &
Dolan, 2003; Izquierdo, Suda, & Murray, 2004; McDannald et al., 2012; Valentin
et al., 2007). The dorsolateral prefrontal cortex is also engaged during goal-directed
learning (Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013) and may reflect the
contribution of working memory and cognitive control processes, which are critical
for the timely retrieval and maintenance of actioneoutcome associations recruited to
obtain a current goal (Barch et al., 1997; Miller & Cohen, 2001). Thus, the prefrontal
cortex supports diverse cognitive processes that underpin goal-directed behavior.

The hippocampus is also widely implicated in goal-directed behavior due to its central
role in the learning of relationships between stimuli, events, and contexts (Shohamy &
Turk-Browne, 2013; Zeithamova, Schlichting, & Preston, 2012). Learning and memory
processes supported by the hippocampus are critical for the construction of the mental
models of the environment that underpin goal-directed action (Pennartz, Ito, Verschure,
Battaglia, & Robbins, 2011; Pfeiffer & Foster, 2013). Connectivity between the hippo-
campus, striatum, and vmPFC appears to support the integration of state information
with knowledge about potential rewards or goal states during choice (Pennartz et al.,
2011; Wimmer & Shohamy, 2012).

Over the course of development from childhood to adulthood, the neural circuitry
underlying goal-directed behavior undergoes striking changes. The volume of cortical
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gray matter in the brain increases in early childhood, during which there is an overpro-
duction of synapses (Huttenlocher, 1990). This proliferative period is followed by
decreases in the thickness of cortex beginning in middle childhood (approximately 8
years of age) that continue into late adolescence or early adulthood, depending on the
cortical region (Huttenlocher & Dabholkar, 1997; Mills et al., 2016). Cortical thinning,
thought to reflect synaptic pruning as well as other cellular changes, occurs in a topo-
graphically organized and hierarchical manner. Sensory and motor regions undergo thin-
ning first, followed by higher-order association cortices, with anterior and lateral regions
of the prefrontal cortex exhibiting continued thinning into young adulthood (Gogtay
et al., 2004; Shaw et al., 2008). In contrast to the marked decline in cortical gray matter
from childhood to adulthood, the nonlinear volumetric changes in gray matter volume of
subcortical structuresdincluding the striatum and the hippocampusdare less pro-
nounced in magnitude, and highly individually variable (Raznahan et al., 2014;
Wierenga, Langen, Oranje, & Durston, 2014).

While subcortical structures exhibit greater volumetric stability, patterns of white matter
connectivity between cortical and subcortical structures exhibit dynamic changes over the
course of development. White matter volume in the brain increases into young adulthood
(Giedd et al., 1999; Mills et al., 2016). These increases are thought to reflect myelination of
white matter tracts, which increases their speed of information transmission. Studies exam-
ining the functional consequences of these developmental changes suggest that connectiv-
ity between the prefrontal cortex and striatum increases from childhood to young
adulthood and contributes to age-related improvements in cognitive processes that under-
pin goal-directed behavior (van den Bos, Cohen, Kahnt, & Crone, 2012; van
Duijvenvoorde, Achterberg, Braams, Peters, & Crone, 2016; Somerville & Casey, 2010;
Somerville, Hare, & Casey, 2011). Connectivity between the prefrontal cortex and subcor-
tical structures, including the amygdala and the hippocampus, exhibits similar age-related
increases (Blankenship, Redcay, Dougherty, & Riggins, 2017; Gabard-Durnam et al.,
2014). Network analyses of whole brain dynamics suggest that subcortical connectivity pat-
terns become increasingly differentiated from childhood to adulthood (Gu et al., 2015).

Developmental changes are also evident in the dopaminergic system (Wahlstrom,
White, & Luciana, 2010), which is thought to modulate behavioral flexibility (Grace,
Floresco, Goto, & Lodge, 2007). Dopaminergic neurons innervate many regions of
the brain that have been implicated in cognitive processes that support goal-directed
behavior, including the hippocampus, striatum, and prefrontal cortex (Grace et al.,
2007; Roshan Cools, 2008; Shohamy & Adcock, 2010), and this neuromodulatory sys-
tem undergoes dynamic changes over the course of development (Wahlstrom et al.,
2010). As modulation of dopaminergic signaling is implicated in the balance between
model-based and model-free choice in adults (Deserno et al., 2015; Wunderlich,
Smittenaar, & Dolan, 2012), changes in dopamine neurotransmission may also play a
role in differences in behavioral control across developmental time points.
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While studies to date have identified substantial structural and functional develop-
ment in the brain circuits implicated in goal-directed learning, few studies have directly
related these changes to behavioral indices of goal-directed versus habitual action selec-
tion. However, insights into the neurocognitive development of goal-directed decision-
making can be gleaned from studies examining age-related changes in the cognitive
processes that support goal-directed action.

In the following sections, we first discuss developmental trajectories in the learning
processes that support the construction of cognitive models, including discussion of
the neural mechanisms underpinning these changes wherever possible. We then turn
our attention to the cognitive processes involved in the use of cognitive models, focusing
on the central role of proactive cognitive control.

THE CONSTRUCTION OF COGNITIVE MODELS

Goal-directed actions are characterized by sensitivity to their contingent outcomes. Thus,
integration of a mental representation of the structure of the environment with one’s cur-
rent goals is critical for the development of goal-directed decision-making. The capacity
to infer causal relationships between one’s actions and contingent outcomes and use this
knowledge to explain or predict such outcomes is evident in children as young as 2 years
(Gopnik, 2004). However, the formation of a cognitive model that can support planning
in complex environments involves not only the capacity for causal inference but also a
diverse array of learning and memory processes that enable the identification and repre-
sentation of regularities in the environment. Events that tend to cooccur or follow in
sequence can be learned through experience. Such relational associations discovered in
distinct learning episodes can be assembled together, continually augmenting one’s
mental model with newly learned information. Knowledge of the rewarding properties
of a given event, stimulus, or state can be used to prioritize that outcome as a goal. This
reward information can be integrated with causal knowledge about which actions might
lead to this desired outcome or to generalize reward value to states that are similar to one
in which reward has been directly experienced. Below, we discuss studies that explore the
development of these learning and memory processes, which provide a foundation for
goal-directed action.

Through statistical learning, individuals can recognize events that tend to occur in
sequence or covary with high probability. The ability to discover statistical regularities
from a continuous stream of sensory experience is evident from infancy (Fiser & Aslin,
2002; Saffran, Aslin, & Newport, 1996) and has been proposed to play a central role
in functions such as language acquisition. Learning of these regularities enables prediction
of upcoming events, a necessary precursor to goal-directed actions that depend on those
anticipated outcomes. While some studies have observed equivalent performance on sta-
tistical learning tasks from childhood to adulthood (Amso & Davidow, 2012), in other
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studies, performance has been found to improve with age (Potter, Bryce, & Hartley, 2017;
Schlichting, Guarino, Schapiro, Turk-Browne, & Preston, 2017), suggesting that learning
of more complex sequential structures may improve over development. Consistent with
extensive evidence in adults that statistical learning of sequential information depends on
the hippocampus and other medial temporal lobe structures (Covington, Brown-
Schmidt, & Duff, 2018; Davachi & DuBrow, 2015; Preston, Shrager, Dudukovic, &
Gabrieli, 2004; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014),
developmental improvements in statistical learning parallel the structural development
of the hippocampus (Schlichting et al., 2017).

Beyond the ability to directly extract regularities from a single learning experience,
associations can also be inferred across learning episodes. The ability to associate distinct
learning experiences is critical for generalizing knowledge derived from past experience
to new situations. Developmental studies using paradigms testing associative inference
suggest that the ability to infer relations between overlapping experiences improves
with age. In one such study (Schlichting et al., 2017), participants aged 6 to 30 years
completed an associative inference task in which several sets of novel object triads
(e.g., A, B, and C) were presented in pairs that shared an overlapping element (e.g.,
pair AB and pair BC). In a subsequent test phase, participants were shown one of the
items previously paired with the overlapping element (e.g., item A) and asked to select
the object that was indirectly related to it through their common association. The choice
set included the target object (i.e., item C), as well as two unassociated objects (e.g., items
D and E). Inference improved with age, even when accuracy of recall for the direct item
pairings was taken into account. This suggests that the ability to flexibly integrate the
shared aspects of distinct learned relationshipsda key process underlying abstract knowl-
edge representation (Preston, Molitor, Pudhiyidath, & Schlichting, 2017)dimproves into
adulthood. Moreover, associative inference and statistical learning, assessed in the same
cohort, were positively correlated, and both were associated with developmental changes
in hippocampal structure (Schlichting et al., 2017). Studies in adults suggest that associative
inference involves functional integration of the hippocampus and vmPFC (Zeithamova,
Dominick, & Preston, 2012). Thus, developmental changes in the ability to flexibly inte-
grate learned associations likely stem in part from refinement of functional connectivity
between the hippocampus and the prefrontal cortex, which increases into adulthood
(Menon, Boyett-Anderson, & Reiss, 2005; Ofen, Chai, Schuil, Whitfield-Gabrieli,
& Gabrieli, 2012).

Other studies have similarly found that the ability to transitively integrate relational
premises (e.g., “A comes before B and B comes before C. Which comes first, A or
C?”) also improves with age (Halford, 1984) and that the age at which children show
competence at such inferences depends on the degree of relational complexity (i.e.,
the number of premises to be integrated) involved in the judgment (Halford, Andrews,
Dalton, Boag, & Zielinski, 2002). Medial temporal lobe regions and the rostrolateral
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prefrontal cortex are implicated in the learning and integration of premises during tran-
sitive inference in adults (Wendelken & Bunge, 2010). Thus, as with associative infer-
ence, developmental changes in prefrontalehippocampal connectivity might also
contribute to age-related improvements in integrating learned relations through transi-
tive inference.

The recognition that stimuli or contexts are related can promote the generalization of
associations or responses learned in one context to another. Studies of acquired equiva-
lence (or “functional equivalence”) directly assess such generalization. In these tasks, two
stimuli or contexts are associated with the same outcomes or responses. Then, participants
learn a novel association for one of the stimuli, and the transfer of this knowledge to the
second stimulus is assessed in a subsequent generalization test phase. In one study exam-
ining acquired equivalence in 4- and 5-year-olds (Smeets, Barnes, & Roche, 1997), many
children exhibited poor learning of the initial associations. However, if these associations
were learned, children typically exhibited generalization in the test phase. A more recent
study of participants, aged 3 to 52 years, similarly found that while the learning and
retrieval of the initial pairings improved into adulthood, generalization for learned pairs
was present from 6 years of age and did not differ from that of adults (Braunitzer et al.,
2017). Another set of studies demonstrated that 8-month-old infants can transfer a set of
learned associations to a novel stimulus based on its associative similarity, providing
further evidence for the early emergence of generalization, even for more complex con-
textually dependent associations (Werchan, Collins, Frank, & Amso, 2015; Werchan,
Collins, Frank, & Amso, 2016). Concurrent near-infrared spectroscopy in these infants
revealed greater recruitment of the prefrontal cortex in infants who exhibited better
learning and transfer, as well as higher eye blink rate during the task, a putative measure
of striatal dopamine function ( Jongkees & Colzato, 2016; Karson, 1983). This evidence
that generalization ability is supported by dopaminergic innervation of frontostriatal cir-
cuitry is consistent with the selective impairment in generalization ability in adult patients
for whom striatal dopamine is depleted (Myers et al., 2003).

To inform goal-directed actions, learned sequential regularities or associations must
be integrated with information about currently valued outcomes. One way in which
this can be accomplished is by recruiting these representations to prospectively envision
potential “paths” from a current state to a goal. Studies across species have identified rep-
resentations of potential future trajectories encoded in hippocampal activity ( Johnson &
Redish, 2007), which can be recruited to simulate both experienced and novel paths to-
ward goals (Brown et al., 2016; Gupta, van der Meer, Touretzky, & Redish, 2010;
Pfeiffer & Foster, 2013). The OFC is also proposed to play a central role in representing
the sequential structure or “state space” of a current task, supporting such simulations
(Schuck et al., 2016). These simulations are proposed to enable online comparison of
the value of alternative courses of action, facilitating goal-directed action selection
(Buckner, 2010; Pezzulo, van der Meer, Lansink, & Pennartz, 2014; van der Meer,
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Kurth-Nelson, & Redish, 2012). Consistent with this proposed role for prospection in
goal-directed evaluation, a neuroimaging study in adults has shown that individuals
whose choices reflected a more model-based evaluation process also exhibited neural sig-
natures of mentally invoking future outcomes when making choices (Doll, Duncan,
Simon, Shohamy, & Daw, 2015). No study to date, in humans or animal models, has
used neural decoding approaches to characterize the capacity to prospectively simulate
future states prior to adulthood. However, developmental studies using self-report
methods have found that the ability to envision or simulate future events improves
with age into adulthood (Atance, 2015; Coughlin, Lyons, & Ghetti, 2014, Coughlin,
Robins, & Ghetti, 2017), and the ability to recruit past learning to prospectively select
a goal-directed action similarly improves as children age (Redshaw & Suddendorf,
2013; Suddendorf, Nielsen, & von Gehlen, 2011). This work suggests a potential role
for age-related changes in prospective simulation ability in the development of goal-
directed decision-making.

Integration of learned relations to support goal pursuit can also occur in a retrospec-
tive manner. Studies in animal models suggest that receipt of reward can promote spon-
taneous retrieval, or “replay,” of the events that preceded or are associated with an
outcome (Carr, Jadhav, & Frank, 2011). This prioritized retrieval has been proposed as
a mechanism for transferring value information backward across states, allowing mentally
simulated experience to “retrain” learned values for remotely associated stimuli
(Shohamy & Daw, 2015). Importantly, such a mechanism might enable behavioral adap-
tation to changes in outcome valuation or identification of a newly rewarding action
(Sutton, 1991). Empirical support for this proposal comes from neuroimaging studies
in adults showing that the degree to which a stimulus, previously associated with a reward
predictive cue, is invoked during reward learning predicts the preference for that stimulus
in a subsequent choice phase (Kurth-Nelson, Barnes, Sejdinovic, Dolan, & Dayan, 2015;
Wimmer & Shohamy, 2012). As with prospective integration, to our knowledge, no
studies in children or adolescents have directly examined retrospective simulation using
neuroimaging approaches, and prospective and retrospective integration are often not
distinguishable in many behavioral paradigms. Thus, future studies are required to better
understand whether there are developmental shifts in the mechanisms by which novel
value-based associations are integrated with prior learned associations.

Mounting evidence suggests that sleep plays an important role in developmental
changes in memory integration and consolidation (Fischer, Wilhelm, & Born, 2007;
Wilhelm, Prehn-Kristensen, & Born, 2012). Reactivation of prioritized memories, and
their associated relationships, occurs not only during learning of novel reward associations
but also in “offline” periods of sleep or rest following learning (Carr et al., 2011;
Kudrimoti, Barnes, & McNaughton, 1999; Wilson & McNaughton, 1994). Such offline
memory integration has been proposed to underpin qualitative changes in relational
memory following sleep in adults (Ellenbogen, Hu, Payne, Titone, & Walker, 2007;
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Stickgold & Walker, 2013). Children not only spend more time in sleeping than adults
but also spend a disproportionately larger amount of time in slow-wave sleep (Ohayon,
Carskadon, Guilleminault, & Vitiello, 2004), the stage during which these reactivation
events occur. While no studies have directly examined sleep-dependent changes in the
transfer of reward value in children, sleep-dependent facilitation of memory for
emotional, relative to neutral, information is more robust in children than adults
(Prehn-Kristensen et al., 2013), suggesting that sleep might have unique effects on the
transformation or integration of valenced information in younger individuals. Moreover,
as nearly all the studies discussed in earlier sections that have revealed developmental
changes in goal-directed behavior were conducted in a single experimental session, it
is unknown whether rest- or sleep-dependent memory integration and consolidation
processes might facilitate subsequent goal-directed behavior.

Collectively, the findings reviewed in this section highlight developmental changes in
the learning processes that play a central role in the construction of a cognitive model of a
task or environment. However, while the construction of such a model is necessary for
goal-directed action, it is not sufficient. Using this mental model further requires the abil-
ity to recognize time points at which prior knowledge could be productively leveraged to
purse a current goal, as well as the selective retrieval of goal-relevant information.

Importantly, several developmental studies have observed dissociations between the
ability to acquire the structural knowledge of a task necessary for goal-directed action
and actual goal-directed performance on the task itself (Decker et al., 2016; Zelazo,
Frye, & Rapus, 1996). Such a dissociation was present in the two-step reinforcement
learning task described earlier (Decker et al., 2016). Children’s habitual (model-free)
choices demonstrated that they were learning stimulusereward associations in the second
stage, but they did not make model-based choices at the first stage of the task. While chil-
dren did not show evidence of using transition structure information to make goal-
directed choices, they were able to learn the task transition structure. Children, like
adolescents and adults, could explicitly report the transition structure of the task (i.e.,
“Which planet did this spaceship usually travel to?”) and were also slower to respond
following rare transitions. Slower second-stage responses following rare transitions may
reflect a violation of the expectation that the more frequent transition would occur
and thus, reveal knowledge of the task’s probabilistic transitions. In adolescents and
adults, this reaction time measure of task structure knowledge correlated with the degree
to which they exhibited goal-directed choices at the first-stage of each trial. However,
this was not the case in children.

What cognitive factors might account for such a failure to recruit learned actione
outcome knowledge to pursue a goal? The gradual development of relational integration
discussed above may have hindered children’s integration of learned transition structure
knowledge with learned reward associations to construct a cognitive model of the task
(Potter et al., 2017). However, goal-directed choice also requires the timely retrieval

The Development of Goal-Directed Decision-Making 293



of this knowledge at the first stage of the task, when it can be leveraged proactively to
support goal pursuit. Below, we discuss the developmental changes in the cognitive pro-
cesses that support the ability to use learned knowledge about task structure to take goal-
directed action.

USING COGNITIVE MODELS TO ENABLE GOAL-DIRECTED ACTION

To act to bring about a desired outcome, one must monitor the environment to deter-
mine when opportunities for goal-relevant actions arise. Such forward-looking behavior
relies on cognitive control, or the ability to maintain and flexibly update a mental model
of the task at hand, while preventing interference from irrelevant stimuli. Cognitive con-
trol is a key component of goal-directed behavior, as it allows for current goals to be
retrieved and used to guide one’s actions. A large body of work has identified substantial
age-related changes in the recruitment of cognitive control (Diamond, 2006; Luna, 2009;
Somerville & Casey, 2010), which likely play a critical role in the development of goal-
directed decision-making.

A distinction is commonly made between two forms of cognitive control: proactive
and reactive (Braver, 2012). In proactive control, a mental representation of a goal is
invoked and sustained during a preparatory period prior to making a goal-directed action.
Proactive control is typically engaged in anticipation of a cognitively demanding task,
increasing resistance of goal representations to interference from goal-irrelevant stimuli.
In contrast, reactive control occurs when a transient representation of a goal is evoked by
the presence of a stimulus that either signals conflict with goal pursuit or directly activates
a goal representation. For example, individuals might accomplish a goal of buying milk,
eggs, and apples through two distinct cognitive control processes. Those who engage
proactive control may leave their house with a mental list of groceries to buy, maintain-
ing the goal representation during the drive to the grocery store and even when distracted
at the store by goal-irrelevant stimuli such as bananas and bread. On the other hand, those
recruiting reactive control may go to the grocery store and remember the items that they
intended to buy only after entering the produce or dairy section of the store, which reac-
tivates the goal representation. While both reactive and proactive control can support the
pursuit of a goal, only proactive control allows for multistep planning to attain a goal. For
example, in the two-step task described previously, for participants to use the information
about the task structure from the previous trial to make a goal-directed choice at the first
stage, proactive control is necessary to plan which spaceship should be chosen to get to
the planet that has the greatest potential for reward. Reactive control does not support
planning at the first stage to maximize reward but instead would be recruited at the sec-
ond stage when it may be too late to select the most rewarding option.

A common task used to assess reactive versus proactive control is the AX-CPT, an
adaptation of the continuous performance test (CPT). In the AX-CPT paradigm,

294 Goal-Directed Decision Making



proactive attention to contextual cues can facilitate quick correct responses when a cue is
highly predictive of a target probe. On each trial, a cue (“A” or “B”, which may be let-
ters, pictures, or any other type of visual stimulus) appears, followed by a short delay
period, and then a probe (“X” or “Y”). While all cue and probe combinations occur,
certain cueeprobe pairs (“AX”) appear more frequently than others (“AY”, “BX”, or
“BY”). A target response should be made when A is followed by X, while a nontarget
response should be made for all other combinations. The disproportionate number of
AX trials allows individuals to develop both an expectancy for the X probe following
an A cue and a prepotent response for X probes. Critically, the pattern of performance
on this paradigm can be used to distinguish which cognitive control strategy was
employed. Individuals using proactive control will have worse performance on the AY
trials, as the target response would have been prepared during the delay period and is
more likely to be emitted than for individuals relying on reactive control. In contrast,
performance in individuals using reactive control will be worse on the BX trials as the
preceding B cue has not been maintained, causing them to make an erroneous target
response to the X cue. In contrast, those using proactive control would have already pre-
pared their nontarget response.

In a child-friendly adaptation of the AX-CPT task, Chatham, Frank, and Munakata
(2009) found that 3-year-olds primarily relied on reactive control while 8-year-olds
engaged proactive control, suggesting a developmental shift from reactive to proactive
control. To investigate whether younger children are capable of invoking proactive con-
trol, a cued task-switching paradigm was adapted to create three trial types: “proactive
impossible,” “proactive possible,” and “proactive encouraged” (Chevalier, Martis,
Curran, & Munakata, 2015). For “proactive impossible” trials, only reactive control
could be employed, as the cue that informed the correct action was presented simulta-
neously with the target, rendering proactive preparation impossible. For “proactive
possible” trials, the cue preceded the probe, enabling proactive control, but remained
on the screen following probe onset, facilitating reactive control. For “proactive encour-
aged” trials, the cue disappeared from the screen when the probe appeared, requiring cue
information to be maintained in memory in order to respond correctly. Although reac-
tive or proactive control strategies could be used for both of these trial types, reactive
control was disincentivized for the “proactive encouraged” trials by making reactive con-
trol more difficult. Using this manipulation, Chevalier et al. (2015) found that whereas
10-year-old children tended to engage proactive control whenever possible, 5-year-
old children engaged proactive control only when reactive control was made more
challenging.

Collectively, these studies suggest that younger children tend to engage reactive con-
trol, and over the course of development, shift toward preferential engagement of pro-
active control (Blackwell & Munakata, 2014; Chatham et al., 2009; Chevalier et al.,
2015). The age at which this developmental shift occurs depends on the complexity of
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the task (Chatham et al., 2009; Chevalier et al., 2015; Church, Bunge, Petersen, &
Schlaggar, 2017). However, preferential engagement of reactive control early in devel-
opment does not reflect an inability to engage proactive control, as younger children
are able to engage proactive control if incentivized. While both cognitive control strate-
gies can be observed early in development, the evaluation process that determines which
strategy to engage may improve with age (Chevalier et al., 2015). Age-related increases in
weighing the costs and benefits of each strategy according to task demands (i.e.,
computing the expected value of exerting each form of control; Shenhav, Botvinick,
& Cohen, 2013) may support the increased reliance on proactive control (Chevalier
et al., 2015). Adults may more effectively integrate value computations to inform
when cognitive control should be optimally deployed (Insel, Kastman, Glenn, &
Somerville, 2017).

Similar age-related trajectories are evident in working memory gating, a process that
limits the information transferred into and out of working memory (Amso, Haas,
McShane, & Badre, 2014; Unger, Ackerman, Chatham, Amso, & Badre, 2016). Input
gating refers to the selection of task-relevant information passed into working memory,
whereas output gating refers to the retrieval of information from working memory to
inform action selection. A recent study suggests that children are as effective as adoles-
cents at input gating, although they engage this strategy less often (Unger et al., 2016).
Instead, children tend to rely on output gating, despite reduced efficacy in their use of
this process when a subset of information must be retrieved from working memory. Se-
lective output gating of specific items from working memory, rather than retrieving all
maintained information, may impose greater cognitive demands and undergo more pro-
tracted development. Age-related improvements in output gating, along with increased
reliance on input gating, may promote the deployment of working memory in a manner
that better supports goal-directed behavior. Input and output gating of working memory
are proposed to respectively support the engagement of proactive and reactive control.
Thus, these findings corroborate the previously discussed evidence of a developmental
shift toward increased reliance on proactive control.

The age-related transition toward preferential reliance on proactive control is a key
component of goal-directed decision-making. In the two-step task described earlier
(Decker et al., 2016), the age-related dissociation between knowledge and action
may reflect developmental changes in cognitive control. Although children demon-
strated verbal knowledge of the task transition structure, they were unable to translate
this knowledge into goal-directed actions. This dissociation disappeared with age,
potentially as individuals shifted from engaging reactive to proactive cognitive control.
Development of proactive control in older participants may have supported the timely
retrieval of transition structure knowledge at the first stage of the task, when it could be
productively used to select the most likely path to a previously received reward. This
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proposal is consistent with evidence in adults that a tendency to engage proactive control
is predictive of greater model-based choice in the two-step task (Otto, Skatova,
Madlon-Kay, & Daw, 2015).

The development of proactive control may also improve the ability to use explicitly
communicated rules to support goal-directed behavior. Rules are consistent stimuluse
response mappings that apply under specific contextual conditions (Bunge, 2004; Dayan,
2007). In certain contexts, specific actions may be consistently advantageous (e.g., stop-
ping when a traffic light is red), obviating the need for evaluation of their consequences.
In such conditions, action selection can be productively informed by rules. Rules are
often learned through explicit communication. For example, a child may learn to be
quiet in a classroom through explicit instruction from a teacher, or a sign stating “Use
your inside voice” displayed at the entrance. Use of explicitly communicated rules re-
quires translation of a verbally encoded policy for action into a representation of both
the preconditions that must be satisfied in order for the rule to apply (i.e., “What is
the stimulus or context?”), as well as the action that should be performed under those
conditions (i.e., “What is the response?”). Successful deployment of rules often requires
verification, prior to action, that the preconditions for its application are satisfied.

Importantly, successful deployment of a rule to accomplish a goal may engage either a
habitual or a goal-directed learning process, with important implications for the flexibility
of the rule-guided behavior. While adults are adept at using rules to guide behavior
(Cole, Laurent, & Stocco, 2013), the ability to act on the basis of explicitly communi-
cated rules exhibits marked developmental changes. Three-year-olds are able to use
explicitly instructed rules to guide behavior (e.g., “sort cards into piles based on their
shape”), but they have difficulty adjusting their behavior when the task demands change
and conflict with the original rules (“now sort the cards into piles based on their color”).
While 3-year-olds exhibit difficulty adhering to this new rule, they show explicit knowl-
edge of the rule, and can repeat the rule when asked, suggesting that the challenge lies in
implementing this rule. By 4 years of age, children in this task are able to accomplish this
switch (Zelazo et al., 1996). However, studies employing more complex tasks to assess
rule-guided behavior have observed that such switch costs decrease gradually with age
and persist into young adulthood (Davidson, Amso, Anderson, & Diamond, 2006).
While rule use requires translation of instruction into a behavioral procedure, individuals
may differ in the extent to which successful deployment of a rule harnesses a habitual
learning process. To the extent that performance of a first-learned rule in younger indi-
viduals results in the formation of a habitual stimuluseresponse association (as opposed to
an actioneoutcome representation), this may undermine their capacity to flexibly alter
behavior in accordance with novel rules.

Proactive control and reactive control evoke dissociable patterns of neural and phys-
iological activity. Frontal and parietal regions are broadly implicated in the selection and
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maintenance of goal-relevant information during the engagement of cognitive control
(MacDonald, 2000; Miller & Cohen, 2001). Supporting the role of prefrontal develop-
ment in proactive control, a longitudinal study in nonhuman primates found that the
age-related enhancement of goal representation in prefrontal neurons, from adolescence
to adulthood, was correlated with the ability to plan goal-directed actions (Zhou et al.,
2016). Differences in the timing of activation in frontoparietal regions have been found
to relate to the type of cognitive control engaged. Younger children exhibit greater acti-
vation in frontoparietal regions right before a goal is obtained, as is characteristic of reac-
tive control. Greater recruitment of these regions during the preparatory period parallels
age-related increases in proactive control (Andrews-Hanna et al., 2011; Church et al.,
2017; Manzi, Nessler, Czernochowski, & Friedman, 2011). Similar temporal differences
in pupil dilation, an index of cognitive effort, parallel developmental shifts from reactive
to proactive control (Chatham et al., 2009; Chevalier et al., 2015). Younger children,
who preferentially relied on reactive control, exhibited greater pupil dilation in response
to the probe, whereas greater pupil dilation following the cue, in preparation of the
probe, was evident in older children engaging proactive control. Developmental
changes in frontoparietal circuitry and the temporal dynamics of pupil dilation reflect
the shift from a tendency to rely on reactive control to greater engagement of proactive
cognitive control across development (Bunge & Wright, 2007).

Collectively, this work suggests that developmental increases in proactive control, as
well as effective deployment of reactive control, play an important role in the use of
learned cognitive models or instructed task rules to inform action selection. The devel-
opmental shift from reactive to proactive control affords flexible, adaptive actions in
which individuals are not simply reacting to goal-relevant cues but instead maintaining
goal-relevant information in anticipation of the goal. Proactive control confers the
obvious benefit of advanced preparation prior to pursuit of a goal (Braver, 2012). How-
ever, engaging in proactive cognitive control involves a narrowing of the focus of atten-
tion to task-relevant information, which may have the side effect of impeding the
learning of information that is not currently goal-relevant (Thompson-Schill, Ramscar,
& Chrysikou, 2009). Consistent with this notion, whereas adults instructed to make a
suboptimal reward-driven choice learn action values that are biased by this inaccurate in-
struction, children’s and adolescents’ learning appears to more accurately reflect their
experienced reward statistics (Decker, Lourenco, Doll, & Hartley, 2015). Similarly, chil-
dren instructed to attend to a specific attribute of a multidimensional cue are better than
adults at learning about its uninstructed attributes (Plebanek & Sloutsky, 2017). Accord-
ingly, reliance on reactive versus proactive cognitive control may confer distinct advan-
tages across development, with increasing engagement of proactive control promoting
goal-directed behavior.
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SUMMARY AND OPEN QUESTIONS

In this chapter, we examined how goal-directed decision-making changes over the
course of development, adopting a conceptual framework stemming from animal
learning theory, which distinguishes goal-directed from habitual instrumental action.
We presented findings in human and animal models suggesting that the choices and ac-
tions of younger individuals are less sensitive to changes in outcome value or degradation
of actioneoutcome contingency, two key assays of goal-directedness. These age-related
differences in goal-directed choice were corroborated by evidence that the recruitment
of model-based computations to evaluate reward-driven actions increases with age,
whereas use of model-free computations appears stable from late childhood to adulthood.
We discussed how developmental changes in the cognitive processes that support the
construction and recruitment of a cognitive model of a task might contribute to such
developmental changes in goal-directed decision-making. Our review of this literature
suggests that developmental improvements in the capacity to flexibly integrate learned
associations might facilitate the construction of mental models that inform goal-directed
behavior. Increases in the tendency to engage cognitive control proactively, in anticipa-
tion of goal-relevant information or choices, promotes the effective use of these cognitive
“maps” to guide action. We proposed that the development of structural connectivity and
functional integration between the prefrontal cortex, the striatum, and the hippocampus
plays a central underlying role in these cognitive and behavioral changes.

Many gaps in our understanding were highlighted in the course of this discussion that
represent fruitful avenues for future research. Developmental studies directly relating as-
says of goal-directed behavior to neural structure and function are needed to improve our
understanding of the mechanisms underlying the development of goal-directed action.
Characterizing age-related changes in functional and structural connectivity between
the prefrontal cortex, hippocampus, and striatum, and their functional consequences
for the construction and use of cognitive models, will help to relate developmental
changes in goal-directed behavior to their neural substrates. The relationship between
the dopaminergic system and the control of instrumental action across development
also has yet to be well characterized. An improved understanding of how memory inte-
gration and consolidation processes change over development, whether reward plays a
unique role developmentally in modulating such processes, and the role of sleep in these
developmental changes will help to clarify how cognitive model formation contributes to
the emergence of goal-directed behavior. Investigating the neurocognitive mechanisms
through which prospective representations of goals are elicited will help to elucidate how
and when proactive cognitive control is recruited to support goal pursuit. Research
addressing these questions would greatly augment our understanding of developmental
changes in the key cognitive components of goal-directed behavior that were the focus
of this chapter.
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While our discussion here focused on neurocognitive developmental changes in the
construction and use of cognitive models that may facilitate goal-directed action, addi-
tional processes likely influence the development of goal-directed behavior. For
example, we have not addressed the question of how the arbitration between goal-
directed and habitual action evaluation might shift over development. In adulthood,
goal-directed and habitual evaluation processes have been proposed to operate in parallel,
effectively competing for control over behavior (Balleine & O’Doherty, 2010). This
competitive model is supported by studies in adult animals demonstrating that lesions
to the circuitry supporting goal-directed evaluation do not eliminate instrumental
behavior but instead render it habitualdinsensitive to changes in outcome value or
actioneoutcome contingency (Yin et al., 2005). Conversely, lesions to the circuitry
implicated in habit learning restore the sensitivity of previously habitual actions to
such changes (Yin, Knowlton, & Balleine, 2004). These findings suggest that while typi-
cally only one action evaluation system is revealed in an individual’s behavior, both sys-
tems might carry out action evaluation using their respective computations and undergo
some type of arbitration process to determine whether goal-directed or habitual behavior
is expressed.

Alternative accounts of this arbitration process propose that the action evaluation
strategy selected for behavioral expression may depend on the accuracy of its predictions
(Daw et al., 2005), the costs and benefits of its computations (Kool, Gershman, &
Cushman, 2017), or some combination of these factors (e.g., speedeaccuracy trade-
offs; Keramati, Dezfouli, & Piray, 2011). While a developmental bias toward habitual
action in younger individuals could reflect difficulty in carrying out goal-directed eval-
uation, it might also reflect an age-related shift in such an arbitration process. For
example, known developmental increases in cognitive processing speed (Kail &
Salthouse, 1994; Luna, Garver, Urban, Lazar, & Sweeney, 2004) may gradually confer
a competitive advantage to model-based evaluation if arbitration between these two stra-
tegies is determined via optimization of speedeaccuracy trade-offs. This would be consis-
tent with evidence that adults with higher processing speed make more model-based
choices (Schad et al., 2014). The computationally intensive calculations involved in
model-based evaluation (particularly for complex multistep plans) may simply take too
long in children to effectively compete with the more efficient model-free computations
of action value. Future studies directly probing such arbitration processes are essential for
our understanding of developmental changes in the balance between these two learning
systems in the control of behavior.

The distinction drawn between goal-directed and habitual action implies a dual-
system perspective of behavioral control. However, there is clearly greater diversity,
beyond these two “systems” in the cognitive processes that inform our motivated
behavior. Through Pavlovian learning, stimuli predictive of positive or negative environ-
mental events can acquire the capacity to elicit evolutionarily “prepared” behavioral
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responses. These Pavlovian reactions (e.g., rodents freezing in anticipation of a threat) can
be thought of as implementing a default behavioral response in motivated contexts.
Importantly, Pavlovian behaviors can facilitate or interfere with instrumental action
through a process known as Pavlovianeinstrumental transfer (Estes, 1943; Lovibond,
1983). For example, instrumental actions that lead to reward can be facilitated by the ac-
tion invigoration typically elicited by Pavlovian reward anticipation. However, the ten-
dency toward the inhibition of action typically elicited by Pavlovian anticipation of threat
might impair performance of the same instrumental behavior. Thus, the functioning of
the Pavlovian learning system is proposed to strongly modulate the performance of goal-
directed instrumental action (Dayan et al., 2006). Consistent with this proposal, adults
who exhibit strong Pavlovian interference with instrumental behavior also show reduced
reliance on model-based evaluation (Sebold et al., 2016). Pavlovian learning emerges
early in development and exhibits dynamic developmental shifts in its expression (Hartley
& Lee, 2015), suggesting that age-related changes in the interaction between Pavlovian
and instrumental learning may be critical for understanding the development of goal-
directed decision-making.

Goal-directed and habitual instrumental learning are distinct means of action selection
that both integrate over multiple past episodes to derive action values. Recent theoretical
proposals and empirical data in adults suggest that value predictions derived from single
episodic memories can also drive action selection in a manner that differs from both forms
of instrumental evaluation (Bornstein, Khaw, Shohamy, & Daw, 2017; Gershman &
Daw, 2017; Lengyel & Dayan, 2008; Ludvig, Madan, & Spetch, 2015). This mechanism
for action selection has been proposed to be particularly influential in situations where
individuals have little prior experience, which may be true of more choice contexts
encountered at earlier developmental stages. However, developmental changes in this
behavioral control process remain largely unexplored. The neurocircuitry implicated
in both Pavlovian and episodic behavioral control exhibits substantive developmental
changes and overlaps with the neural circuits involved in instrumental action evaluation,
suggesting the potential for dynamic interactions between these evaluation systems across
development. Thus, a mechanistic account of the development of goal-directed behavior
must expand beyond the narrow focus presented here to examine the diverse means by
which an individual can pursue a goal.

In recent years, a large body of research has focused on understanding the computa-
tional, cognitive, and neural mechanisms underlying goal-directed action. The vast ma-
jority of this work has focused on characterizing these processes in adulthood, while the
changes in these processes over development have remained largely unexplored. In this
chapter, we reviewed the small number of studies that have directly examined develop-
mental changes in goal-directed behavior. Leveraging our knowledge from studies con-
ducted in adult humans and animals, as well as our understanding of neurocognitive
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development more broadly, we discussed the mechanisms that might contribute to age-
related increases in goal-directed action while highlighting the many gaps in our current
understanding. Our hope is that in the coming years, increased efforts to characterize the
development of goal-directed decision-making, across multiple levels of investigation,
will begin to fill these gaps.
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Oriel FeldmanHall1, Luke J. Chang2
1Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI, United States;
2Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States

INTRODUCTION

Goal-directed behavior plays an enormous role in everyday human life. Goal pursuit allows
humans to navigate through life in a purposeful way, facilitating the conceptualization
and achievement of highly abstract and complex goals (“I want to be a doctor when I
grow up”), as well as simpler, more immediate goals (“I have a hankering for a good burger,
I wonder where I can find one?”). Achieving outcomes along this spectrum of goals
requires a cognitive system that can translate higher level, conceptual goals into tractable,
concrete actions (Gollwitzer & Moskowitz, 1996, pp. 361e399). Decades of work have
been devoted to understanding the neurocognitive system that governs such goal-
directed behavior. We now know much about how we represent goals and keep them
in our working memory (Badre, Satpute, & Ochsner, 2012), how we update goals
(Daw, Niv, & Dayan, 2005), and what happens when conflicts arise between multiple
goals (Botvinick, Cohen, & Carter, 2004). However, much less is known about how
goal-directed behavior unfolds in dynamic and evolving social environments. And yet,
many of our most important goalsdfor example, being a caring parent, teacher, or citizen
of the communitydhave enormous social and emotional qualities.

Here we propose a psychological model that captures goal-directed behavior within
the social domain. Because society and social groups function better and are more
effective when individuals cooperate and help others (Tyler & Blader, 2000), one
long-term superordinate goal is to maintain the well-being of the group. We argue
that upholding the group’s welfare can be broken down into a handful of basic social
needs (e.g., preventing harm to others), which serve as a core suite of goal-directed
motivations. These basic goals typically act in direct opposition to the more immediate
goal to self-enhance and promote one’s own welfare (i.e., one’s own well-being does
not always bear a one-to-one correspondence with the group’s well-being) (Thibaut
& Kelley, 1959, 1978). The integration and subsequent resolution of these conflicting
goal states is paramount to successful socialization. The affective signals (i.e., emotional
prediction errors) that accompany the representations of social goals facilitate the
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resolution of conflicts between different goals, helping to arbitrate between whether a
goal is actively pursued or abandoned.

Subsequently, translating these goals into actionable outputs requires that an
individual dynamically learn and update their goals through experience. Individuals
constantly shift goals and strategies according to the outcomes of their previous choices
and other information received from the changing environment. Since people are
motivated to adapt their choices to correspond with the ever evolving social world,
we posit that goal-directed behavior is flexible across contexts. In other words, social
goals, and their implementation, are not stable, but rather are modulated by the context
in which the goal-directed behavior arises. Finally, we conclude by proposing a social
value cost function model that, depending on how each basic social need is weighted,
can dictate the type of goal-directed behavior that is employed. This model facilitates
a formalized testable hypothesis of the mechanisms underlying goal-directed social
behavior.

Motivation and representation of social goals
Successfully navigating the social world requires that one’s goals be represented in a
manner consistent with promoting social well-being. Social goals are internal mental
representations that relate to attaining an end state involving the welfare of others or
the group (Kruglanski & Webster, 1996). Because social goals are so intimately linked
with individual experiences, they can vary widely between people (Reeve, 2008).
Here we argue, however, that irrespective of an individual’s experience, there are a
handful of goalsdthat manifest as needs and desiresdwhich help to facilitate successful
socialization. This set of goals are internal states that motivate behavior and goal pursuit
within social environments (Ajzen & Fishbein, 1969). We suggest there are three basic
goals that operate most potently within the social domain: (1) preventing harm to others,
(2) social affiliation, and (3) minimizing uncertainty. This set of social goals can, at times,
act in direct opposition to enhancing one’s own well-being (a conflicting goal). The
result is a tension between behaving in ways that facilitate successful socialization
and acting in ways that augment one’s own welfare.

Harm prevention
One of the most deeply held social goals is to prevent harm to others (Haidt, 2012). This
desire to prevent harm has a long evolutionary lineage that can be traced back through
our phylogenetic tree to ancestors common to other primate species (de Waal, 1997).
Research illustrates that people are not only averse to performing harmful actions
(Cushman, Gray, Gaffey, & Mendes, 2012; Greene, Sommerville, Nystrom, Darley, &
Cohen, 2001; Mikhail, 2000), but will go to great lengths to avoid harming another,
even in the face of a superordinate goaldsuch as being commanded by an army officer
to kill during battle (Grossman, 1996). Indeed, observing another in pain is enough to
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increase one’s physiological reactivity (Cushman et al., 2012), an indication of being in
a highly aversive state. Individuals also report increased feelings of psychological distress
in the wake of applied harm (Batson, Van Lange, Ahmad, & Lishner, 2003). This height-
ened aversive emotional state is generated even in the absence of actual harmful out-
comes, for instance, when using a rubber knife to simulate stabbing (Cushman et al.,
2012). The “avoid harm” goal manifests both as a need to refrain from impulses that
may result in harm to others and as a desire to actively behave in ways that thwart
harm (Bandura, 1991). Effectively, this potently experienced “avoid harm” goal helps
to buoy collective social welfare and successful socialization.

Individuals who routinely exhibit behavioral patterns consistent with breaking
the “avoid harm” goal (e.g., psychopaths), fail to inhibit impulses to harm, and exhibit
little remorse, guilt, or empathy in the aftermath of harmful actions. Most diagnosed psy-
chopaths do not farewell in society (Petherick, 2014), as they are three times as likely to
partake in violent, criminal behavior and spend a significant portion of their adult lives
behind bars (Kiehl & Hoffman, 2011). One theory posits that psychopaths do not
hold the “avoid harm” goal because they exhibit generally low levels of affective phys-
iological responsivity (Wang, Baker, Gao, Raine, & Lozano, 2012). Without sufficient
levels of physiological responding, psychopaths seek out behavior that stimulates their
heart rate and arousal levels, which can often take the form of violent behavior.

Affiliation
A second overarching social goal is the need to affiliate with others (Baumeister & Leary,
1995; McClelland, 1985). Examples from both inside and outside the laboratory reveal
the strength by which humans feel and act on the desire to belong. Even the existence
of a superficial social connection to another person (e.g., sharing a birthday) or group
(e.g., finding out that you belong to an arbitrarily defined minimal group) makes the
goal of needing to belong more accessible and relevant, and can ultimately bolster the
motivation to affiliate (Walton, Cohen, Cwir, & Spencer, 2012).

Affiliative motivations can be so strong that an individual may conform to the
behavioral patterns of others, even if the individual does not agree or approve of their
own conforming behavior (Asch, 1956). In some instances, conforming to the group
can be quite innocuous, such as when individuals shift their own preferences for how
much they like certain musical styles (Berns & Moore, 2011; Campbell-Meiklejohn,
Bach, Roepstorff, Dolan, & Frith, 2010) or how attractive they find another individual
(Klucharev, Hytonen, Rijpkema, Smidts, & Fernandez, 2009; Zaki, Schirmer, &
Mitchell, 2011). In other cases, conforming can have positive social consequences,
such as enhancing one’s own cooperative or charitable behavior after watching others
behave prosocially (Fowler & Christakis, 2010; Nook, Ong, Morelli, Mitchell, &
Zaki, 2016).
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This canon of work illustrates that explicit social influence can readily induce
compliant behavior (Asch, 1956; Cialdini & Goldstein, 2004). Emerging research reveals
just how deep the need to affiliate goes: people are so sensitive to subtle social dynamics
that they are even willing to alter their own behavior in the absence of overt social
influence. For example, simply observing risk-taking behaviors in others increases
one’s own risk-taking profile (Suzuki, Jensen, Bossaerts, & O’Doherty, 2016). Within
the moral domain, learning to implement the punishment preferences of a person
who was the victim of a fairness violation enhances one’s own desire to punish once
they are affronted with a similar moral violation (FeldmanHall, Otto, & Phelps, 2018).
Together, these findings indicate the strength by which individuals desire to affiliate
and gain approval from others (Baumeister & Leary, 1995).

Converging evidence of affiliative behavior can also be observed in real-time
laboratory interactions, such as when two or more individuals engage in economic
games. In one-shot public goods games, where players can choose whether or not to
put their own money into a common pool (which subsequently gets divided equally
among the group members), contributions are typically high (Levitt & List, 2007).
The fact that most people contribute, even when they understand that in order to
maximize their own payout they should free ride, suggests that people are willing to
forgo monetary rewards in order to signal a positive reputation to others. These findings
are mirrored in one-shot prisoner’s dilemmas, where 50%e60% of individuals choose to
cooperate despite knowing they can potentially receive an even higher payoff if they
were to defect (so long as their opponent chooses to cooperate, Barcelo & Capraro,
2015). Additional evidence from the priming literature illustrates that subconsciously
activating the representation of a goaldin this case, priming participants with words
related to “cooperation”dcan also cause people to work together more in economic
games (Bargh, Lee-Chai, Barndollar, Gollwitzer, & Tr€otschel, 2001).

The need to affiliate is also exemplified by how strongly individuals adhere to and
enforce social norms, oftentimes at a cost to themselves. This type of goal setting is
triggered by environmental cues that direct and motivate social goals to cooperate,
socialize, trust, punish, and reciprocate (Charness & Rabin, 2002). If we take the
case of punishment as an example, the social norm in Western cultures prescribes
that a transgressing perpetrator should be punished, even if the individual who is
enacting the punishment does not directly benefit herself. Many studies have demon-
strated that people are willing to punish on behalf of others (i.e., third-party
punishment), even when it is highly costly (Fehr & Gachter, 2002). Since it can be
monetarily costly for an individual to punish a perpetrator on behalf of another victim,
punishing can be likened to an altruistic act. Therefore, third-party punishment typically
reflects the shared communal demands of the environment, revealing that behavior is
oriented toward the collective goals of the social community and not simply the interests
of the self. Indeed, without such situational cues dictating appropriate social behavior
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alongside a strong desire to affiliate, individuals would likely behave in ways that would
maximize their own welfare, without regard for the greater good.

Typically, the need to belong and affiliate is strongest among one’s own group
members: Individuals will go to great lengths to behave in ways that accord with
behavioral patterns elicited from people deemed similar (e.g., conformity with ingroup
but not outgroup, Cikara & Van Bavel, 2014). This need to affiliate with one’s own
group can be so strong that people are even willing to endure pain (in the form of electric
shocks) to prevent other group membersdeven previously unknown individualsdfrom
receiving electric shocks themselves (Hein, Silani, Preuschoff, Batson, & Singer, 2010).

Minimize uncertainty
Daily social life is rife with the constant need to navigate uncertain social exchanges,
including deciding who to trust and confide in, whether or not to loan money to
an acquaintance, or contemplating whether to participate in a potentially dangerous
activity with your friends (e.g., consume alcohol or drugs). These social choices can be
risky, as it is uncertain how outcomes will unfold (e.g., Can my friend keep a secret?
Will my money be returned?). Most people experience uncertainty as highly aversive
(Bar-Anan, Wilson, & Gilbert, 2009; Ellsberg, 1961; Hirsh, Mar, & Peterson, 2012)
and therefore have a strong desire to resolve it (Kahneman, Slovic, & Tversky, 1982).
These aversive feelings that accompany the experience of uncertainty become especially
acute in the social domain, which acts as a potent motivator for reducing such
uncertainty.

The goal to reduce social uncertainty can be met by acquiring information about
other individuals. This can happen through direct experiencedrepeated engagements
where trust or cooperative behavior can be explicitly experienced or tested (Chang,
Smith, Dufwenberg, & Sanfey, 2011; Fareri, Chang, & Delgado, 2012, 2015;
King-Casas et al., 2005), or by vicariously learning about the social value of another
(Olsson, Nearing, & Phelps, 2007). Either route allows an individual to gain more
information and update their social value estimates of other people, which leads to a
stable and restricted set of expectations about the personalities and potential emotional
and cognitive states of each person. In doing so, an individual can better predict what
others will do, which in turn allows them to better predict their own future states.
Ultimately, an individual’s social success and well-being is tied to her ability to resolve
the uncertainty associated with other people and social situations, with failures to do
so often manifesting in clinical mood disorders (Engelmann, Meyer, Fehr, & Ruff, 2015).

Enhance self-benefit
The basic goals described above can often act in direct opposition to the desire to enhance
one’s own well-being and self-benefit. The ability to enhance the selfdwhether through
money, power, or prestigedserves as an evolutionarily primal drive that aims to optimize
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survival. For example, research suggests that the appeal of money can have a profoundly
negative influence on people’s willingness to engage in prosocial behavior. If given the
opportunity to make more money through cheating and lying, individuals routinely
cheat and lie (Ariely & Gino, 2011; Greene, Rand, & Nowak, 2012). Other research
illustrates that when the monetary incentive is great, the number of individuals willing
to break social norms, such as reciprocal trust, increases dramatically (Gneezy et al.,
2011). Indeed, our own work reveals that if the monetary enhancement is sufficiently
compelling (approximately $300), individuals administer electric shocks to others,
willingly forgoing the “avoid harm” goal in order to enhance their own monetary
self-benefit (FeldmanHall, Mobbs, Hiscox, Navrady, & Dalgleish, 2012; Feldmanhall,
Dalgleish, & Mobbs, 2013).

The ease with which individuals abandon prosocial goals (e.g., affiliation, harm preven-
tion) in the service of enhancing their own welfare, suggests that self-benefit is an equally
potent and accessible goal. For example, amplifying an individual’s dominance and prestige
(through priming manipulations) can enhance the salience of the self-benefit goal state,
which ultimately reduces the willingness to engage in prosocial acts (Guinote, 2007).
Converging evidence also reveals how feeling powerful can enhance reward-seeking
and disinhibited social behavior across a variety of contexts (Galinsky, Gruenfeld, &Magee,
2003; Keltner, Gruenfeld, & Anderson, 2003). In these cases, feeling powerful typically
increases the rate at which an individual engages in antisocial acts, such as increased sexual
aggression and harassment (Bargh, Raymond, Pryer, & Strack, 1995). In contrast, reduced
power is associated with inhibited, avoidant social behavior, which traditionally aligns
with group norms or the promotion of social welfare.

Translating goals to action
How do we translate social goals into actions? In order to elucidate the mechanisms
governing goal-directed social behavior, we must understand the computational
processes that are involved in translating superordinate goals into behavioral outputs.
Quantitative disciplines such as economics, engineering, and computer science have
been successful in developing normative frameworks that can describe an optimal
decision policy given a set of specific goals. However, while computationally viable, these
decision policies do not always capture how people actually behave (Camerer, 2003;
Kahneman, 2003; Kahneman & Tversky, 1979). For example, standard economic
theory, which assumes a rational agent is solely motivated by self-interest, is particularly
poor at predicting behavior in cooperative social interactions such as bargaining (Guth,
Schmittberger, & Schwarze, 1982), trust (Berg, Dickhaut, & Mccabe, 1995), and public
goods games (Yamagishi, 1986). Subsequent theories that incorporate psychological
motivations associated with emotions (Bell, 1982; Charness & Dufwenberg, 2006;
Loewenstein, 1987, 1996; Loomes & Sugden, 1982; Mellers, Schwartz, Ho, & Ritov,
1997), concern for others’ intentions (Rabin, 1993), and the collectives’ outcomes
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(Bolton & Ockenfels, 2000; Fehr & Gachter, 1999) have dramatically improved the
ability to predict actual social behavior.

Decision policies
We review several quantitative frameworks that can be used to characterize motivated
social behavior. In particular, these decision policies describe how, given an individual’s
social goals, selecting certain actions can maximize a stimulus’ subjective value. Broadly,
this process can be viewed as an optimization problem where an agent selects actions that
maximize the likelihood of achieving their current social goal. We assume agents
consider the expected costs and benefits associated with the outcome of a given choice
and select the choice with the highest overall expected outcome for the self. There are
several different types of decision policies. For example, consider a set of choice options
X, where i describes a specific choice i˛X . Selecting the action that most aligns with
the agent’s goal requires applying an explicit decision policy. These policies can be
deterministic, such as the greedy rule that always selects the available action ai associated
with the highest predicted expected outcome value or utility u, ai ¼ argmax(u(X)).

Alternatively, policies can select options stochastically. In these cases, choices are
selected in proportion to their overall value, and the degree of stochasticity is controlled
by a temperature parameter. This is traditionally modeled as a softmax function, more
formally

ai ¼ e
ui
b

Pn
j¼1

e
uj
b

; (14.1)

where ai is the probability of selecting action i, ui is the value of action i, n is the total
number of actions, and 0 < b < 1 is the temperature parameter representing the
stochasticity of the decision policy. Social decisions can be modeled as weighing the
expected costs and benefits associated with each choice outcome and applying a
decision policy to select the action with the highest overall expected utility (e.g.,
greedy, softmax, etc.).

Common valuation system
These various decision policies provide a principled rule for how to select an action after
comparing the pros and cons of each available choice. The ability to apply a decision
policy in order to carry out the desired social goal is predicated on the assumption that
we can quantitatively compare the value associated with each option in the goal set.
Traditionally, the pros and cons of each choice are only considered with respect to
self-interested goals (e.g., how much money will I win or lose?). However, it remains an
open question as to how we can incorporate social goals (e.g., harm prevention, affiliation,
and social uncertainty) into a common value function, which can be compared across
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choices. This requires establishing a common value metric (Levy & Glimcher, 2012) to
integrate all of the costs and benefits associated with the available options including
one’s social goals (Rangel, Camerer, & Montague, 2008; Ruff & Fehr, 2014).

Economics, for example, has developed a number of tools to help establish a common
value metric at the behavioral level. TheWeak Axiom of Revealed Preferences (WARP)
establishes the existence of a convex utility function that describes a rational agent’s
preferences for bundles of goods by only assuming transitivity (i.e., if A > B, and
B > C, then A > C, Samuelson, 1938). Importantly, this function can also be usefully
applied to social contexts, including how agents value the outcomes of others (i.e., an
altruistic response, Andreoni & Miller, 2002). These are commonly referred to as social
or other-regarding preferences in behavioral economics.

Expected Utility Theory is another framework for describing expectations of
subjective value that adds several additional axioms to WARP in addition to transitivity
(i.e., completeness, independence, and continuity) (Bernoulli, 1738; von Neumann &
Morgenstern, 2007). This theory provides a powerful normative framework to describe
optimal decision-making strategies when making choices under uncertainty. For
example, the expected utility resulting from selecting a given choice ui can be formally
described as the sum of the value of each attribute c associated with the outcome vi,c scaled
by the expectation of the outcome being realized pi,c,

ui ¼
Xn
c¼1

pi;c$vi;c (14.2)

Though Expected Utility Theory has been very successful at providing a normative
framework to understand how policies can impact economies, it has not fared as well
describing how individuals make decisions. Indeed, the impressive growth and popularity
of behavioral economics in the 1970s and 1980s can be attributed to an increasing
realization that such normative theories of how people ought to make decisions
substantially deviated from observations of how people actually behaved (Camerer,
2003; Kahneman, 2003; Kahneman & Tversky, 1979). This groundbreaking work
resulted in a number of extensions to the Expected Utility Theory framework which
incorporates psychological values, such as sources of value originating from social
preferences (Fehr & Camerer, 2007), empathic concern for others (FeldmanHall,
Dalgleish, Evans, & Mobbs, 2015), and emotional motivations (Chang & Jolly, 2017;
Chang & Smith, 2015). In the following sections, we build on this framework and
outline how emotional value signals arising from approaching and avoiding social goals
can be integrated with self-interested value signals to impact subsequent actions.

Emotion motivates social goal-directed behavior
Emotions describe a set of phenomenological experiences that result from the intersec-
tion of our broader goals, moment-to-moment cognitive evaluations of the external
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world, and our internal physiological states. Similar to the somatovisceral sensations that
signal internal homeostatic goal states such as hunger, thirst, and sleep (Panksepp, 1998),
emotions provide motivational signals that guide us to approach resources, avoid harm
(Davidson & Irwin, 1999), and navigate the complexities of the social world (Chang
& Jolly, 2017; Chang & Smith, 2015; Chang et al., 2011; FeldmanHall et al., 2013,
2015). Emotions can impact the decision-making process in a variety of ways (Chang
& Sanfey, 2008; Loewenstein & Lerner, 2003). At the time of the decision, immediate
emotions (e.g., gut feelings associated with risk) or incidental emotions (e.g., transient
moods) can bias how we interpret information and value outcomes. Emotions can also
be anticipated as an affective experience resulting from the outcome of selecting an action
and incorporated directly into the value function associated with the choice. In general,
we tend to value things that will make us feel good and devalue things that will make us
feel bad. Ultimately, these valenced motivations can serve as signals to guide us to
approach or avoid outcomes depending on our broader goals (Carver & Scheier,
1990). In the following sections, we provide examples of how emotions can impact
behavior at both conscious and nonconscious levels.

Conscious emotions
Incorporating emotional motivations into utility functions through counterfactual value
can dramatically improve predictions of both social (Koenigs & Tranel, 2007) and
nonsocial behavior (Bell, 1982; Coricelli, Dolan, & Sirigu, 2007; Lohrenz, McCabe,
Camerer, & Montague, 2007; Loomes & Sugden, 1982). Imagine buying a brand-new
computer only to find out that if had you waited another week it would have been
discounted an additional 15%. Though we are equally satisfied with the product, we
often devalue the purchase as a consequence of regretting buying the computer a
week too soon. By modeling the emotion regret, researchers have been able to capture
the fact that although people are motivated by maximizing their own outcomes (e.g., the
goal to enhance self-benefit), they also care about minimizing making a suboptimal
decision, even if such a decision is associated with an overall positive outcome (Gilovich
& Medvec, 1995; Mellers & McGraw, 2001).

An additional extension to Expected Utility Theory provided by psychological
game theory is the ability to incorporate belief-dependent value into utility functions
(Dufwenberg & Kirchsteiger, 2004; Geanakoplos, Pearce, & Stacchetti, 1989). This
framework allows utility functions to incorporate a variety of psychological motivations,
such as sensitivity to fairness (e.g., reciprocating others’ good or bad intentions,
Dufwenberg & Kirchsteiger, 2004; Rabin, 1993) and social emotions such as guilt
from disappointing a relationship partner (Battigalli & Dufwenberg, 2007; Dufwenberg
& Gneezy, 2000) and anger from believing a social norm have been violated (Battigalli,
Dufwenberg, & Smith, 2015; Chang & Sanfey, 2013; Chang & Smith, 2015). The
marriage of these psychological motivations with formal models has provided a useful
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first-order approximation for how people integrate different sources of value and has
been successfully leveraged to predict behavior in cooperative socially interactive
contexts.

Nonconscious emotions
Goal-directed behavior is also known to be guided by nonconscious emotional mental
processes (Aarts et al., 2005; Aarts, Custers, & Veltkamp, 2008; Custers & Aarts,
2010). In these cases, an individual’s repertoire of readily available social goals is directly
accompanied by a suite of implicit affective signals, typically conceptualized in terms of
valence (e.g., positive or negative), that act as motivators or demotivators, depending on
the context (Fazio, Sanbonmatsu, Powell, & Kardes, 1986).

For example, by activating the reward system, positive affect motivates the pursuit of
approach-related social goals (Aarts et al., 2008; Custers & Aarts, 2010; Davidson, 1992).
If a goal previously exists as a desired state, then it is already yoked to a positive affective
signal that enhances how readily one pursues the goaldassuming the goal is primed. This
has been shown to influence a number of social phenomena, including socializing (Aarts
& Custers, 2007) and social equity concerns (Ferguson, 2007). Positive affect, however,
can also be paired with a neutral goal (Aarts et al., 2005). In these situations, priming
affectively valenced words outside of conscious awareness can activate evaluative
conditioning processes (De Houwer, Thomas, & Baeyens, 2001), such that repeatedly
pairing neutral goal concepts (e.g., drinking) with positive valenced phenomena (e.g.,
words such as “nice”) increases the motivation to pursue the formally neutral goal of
drinking.

In contrast, negative affect can act as a demotivator of social goal pursuit. For example,
subliminally priming undergraduates with negatively valenced words (e.g., “war” or
“trash”) in conjunction with the goal of partyingda well-documented desired state
(Sheeran et al., 2005)dmade participants work less to attain the goal of partying (Aarts,
Custers, & Holland, 2007). Dovetailing with this, pioneering work exploring the role of
physiological arousal processes, indexed through galvanic skin responses, found that
arousal levels bias how readily one continues to pursue rewarding or unrewarding
choices (Bechara, Damasio, & Damasio, 2000; Ferguson & Bargh, 2004; Phelps, 2005;
Winkielman & Berridge, 2004). Thus, even without conscious awareness, emotions
can serve to shape choices to either pursue or abandon a social goal.

From emotions to social goals
These findings, which were popularized in canonical control theory accounts of
motivated behavior (Carver, 1984; Carver & Scheier, 1981; Carver & Scheier, 1990),
highlighted two critical aspects of the relationship between affect and goal pursuit in
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the nonsocial domain. First, affective signals act as a basic input in determining the
motivation to pursue a goal. Second, they do so by changing the rate at which an
individual pursues or avoids certain goals (Cacioppo, Gardner, & Berntson, 1999; Phelps,
2005)da theory that has proved to be robust across time and disciplines. For example,
consider how we regulate our hunger. Glucose levels in our blood are constantly assessed
by the hypothalamus. When glucose starts to drop below a certain homeostatic level, we
begin to feel a proportional amount of hunger, which effectively prioritizes our control
system to set goals to seek out food. In the pursuit of food, we employ a decision policy to
find a meal that satisfies our resource constraints (e.g., location, time, and financial
budget) as well as our motivational desires (that juicy burger). Once food is found and
consumed, hormones begin converting the food into energy and our hunger dissipatesd
which then frees up our control system to prioritize other goals to pursue.

Although much less is known about how humans flexibly adapt their behavior as they
navigate through social contexts that require simultaneous pursuit of multiple goals, it
stands to reason that a similar relationship between emotions and goal-directed behavior
exists in the social domain as well. Indeed, the notion that the affect influences social goals
has been previously proposed outside the field of psychology. In sociology, for example,
it has been argued that emotions can help align both our actions and identities during
social interactions (Heise, 2007; Rogers, 2015; Schroder, Hoey, & Rogers, 2016). It is
likely that the computational processes supporting flexible social goal pursuit are similar
to other control systems that regulate human behavior (e.g., a common valuation
system), including low-level homeostatic processes (Panksepp, 2004; Robinson &
Berridge, 2013) and higher-level cognitive control processes (Miller & Cohen, 2001).
This analogous control system allows us to incorporate and prioritize multiple, and
sometimes competing, social goals. In these cases, emotions would provide both an
approach and avoid signal when monitoring progress toward one of our three
fundamental social goals to affiliate, minimize harm to others, or reduce our overall
uncertaintydespecially when these social goals come in direct conflict with the goal
to enhance one’s own self-benefit.

These goal-directed behaviors are also likely to be modulated by social context. For
example, if resources are scarce, one’s own needs are likely to be more salientdand with
it, the need to enhance self-benefit. In contrast, if resources are bountiful, one is likely
able to attend to the needs of others more readily. In a similar vein, if one knows they
will be repeatedly encountering a certain person, goals to affiliate and minimize harm,
for example, are likely to become more salient than in situations in which one
encounters a person they know they will never see again. The cues provided by social
environments help establish the appropriate social goal and the attendant emotional
signal. Below, we outline how affective error signals might motivate us to achieve the
social goals to minimize harm to others and seek out social affiliation.
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Model of goal-directed social behavior
A social-affective control model
Building off accounts that illustrate affect as a key component of many goal-directed or
control theories of behavior, we propose a system for selecting actions that help pursue a
social goal (Fig 14.1). Critically, we believe social goals are regulated via positive and
negative emotional error signals that impact our decision policies. First, the system
establishes a social goal; take for instance the desire to affiliate. Values associated
with different attributes of the decision spacedin this case, ensuring that affiliative or
conforming actions are takendare integrated, and a decision policy (e.g., softmax) is
applied to select the next action from the set of possible choices. The system then
continually monitors the environment for outcomes that result from selecting this action.
By evaluating how our position changes relative to the goal of social affiliation (e.g.,
actions that bring one closer to successfully or unsuccessfully affiliating), progress toward
achieving this goal can be monitored after every action. If the action resulted in
deviations from affiliating with others, this creates an error signal in the form of an
emotion (e.g., negative affect, Chang & Jolly, 2017; Montague & Lohrenz, 2007).
This emotional error signal is then integrated into the value function, which ultimately
biases which action is selected next. The rate of change (e.g., how quickly actions are
updated in accordance with the emotional error signal) reflects how quickly we are
motivated toward achieving our goal to affiliate and directly corresponds to the
attendant-affective responses that monitor our ongoing progress.

This framework can be used to illustrate how behavior can be optimized to maximize
multiple social goals that can dynamically change and shift as our priorities also shift across
various contexts. Moreover, when goals compete with one another (e.g., enhance one’s
own benefit or affiliate with others), the associated affective responses that monitor
actions that bring one closer to either goal will shape which goal is ultimately pursued.
For example, if the negative emotions that accompany failing to pursue the goal to affil-
iate is stronger than the negative emotional response for failing to increase the money in
one’s bank account, then one should pursue the goal of affiliating.

Negative affect
One way in which we can satisfy our goal to affiliate with others is to avoid acting
differently from the group norm. This can be described as minimizing the distance

Social
Goal 

Emotion
Error Value

Integration
Decision

Policy
Action

Monitoring
Environment

Figure 14.1 Theoretic model of how emotional error signals help us to adaptively select actions that
are aligned with our social goals (e.g., preventing harm to others).
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between our own behavior and shared beliefs about appropriate behavior for a specific
context (i.e., social norms). Classic experiments demonstrate that we are motivated to
behave in ways that consistently align with such “descriptive norms”dthat is, what
we believe most people would do, even when it counters our own beliefs (Asch,
1956; Cialdini & Goldstein, 2004). One instantiation of needing to affiliate with others
stems from feeling intense negative affect when we are ostracized from the group or feel
that we do not fit in with our peers (Leary & Richman, 2009). These negative feelings
can be so powerful that the mere anticipation of being excluded, shunned, or at odds
with others can generate attendant negative feelings, which in turn motivates people
to act in ways that accord with the group’s behavior. Within the framework of our
model, the value of affiliation can be formulated as a utility function, where an agent
receives utility from selecting the choice that maximizes their payoff pi, while
minimizing the deviation from the group’s behavior. Here, we define a descriptive
norm set by the group as the expectation of our beliefs about the likelihood of others
taking certain actions i, E[fi] (Sanfey, Stallen, & Chang, 2014). Deviations from the
group behavior generate negative affect signals.

uðiÞ ¼ pi � a$maxðE½fi� � i; 0Þ � b$minði� E½fi�; 0Þ; (14.3)

where a and b differentially scale signed deviations from the groups’ normative behavior
and are constrained between [0,1].

This utility function can describe a host of affiliative behaviors, including norm
adherence and enforcement in the two-person bargaining task known as the ultimatum
game (UG). In the UG, Player A proposes a split of an endowment to Player B. Player B
then decides whether to accept the split as proposed, or reject the offer, thereby
punishing Player Adin which case both players receive nothing (Guth et al., 1982).
Chang and Sanfey tested a variant of this conformity model using participants’ self-
reported beliefs about the type of proposals they expected to encounter in the game
(Chang & Sanfey, 2013). This model provided a better account of players’ decisions
compared to another social preference model that proposes that players prefer equitable
outcomes (Bolton & Ockenfels, 2000; Fehr & Schmidt, 1999).

In a related experiment, Xiang and colleagues provide even stronger evidence for
how we track social norms (Xiang, Lohrenz, & Montague, 2013). In this study, the
experimenters manipulated participants’ expectations in the UG by exposing different
participants to three different distributions of offers (high, medium, low). In the test
phase, all groups of participants were given offers from the medium distribution.
Participants decided whether to accept or reject the offers and reported their affective
responses by selecting from a set of emoticons. The authors combined an ideal Bayesian
observer model with a social preference utility function to track how beliefs about the
social norm are updated after each offer (Chang & Sanfey, 2013; Fehr & Schmidt,
1999). This provided trial-by-trial estimates of the prediction error and variance
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prediction error for a given offer conditional on prior beliefs. Identical offers were
rejected more frequently when participants expected offers from a high distribution
compared to when participants expected offers from a low distribution, indicating that
the social norm manipulation successfully changed attitudes toward fairness violations
and subsequent decisions to refrain from punishing norm violators. Effectively, specific
social norms can influence expectations, which in turn allow individuals to update their
social goalsdin this case, deciding whether to punish.

Regret
Importantly, this social-affective control system can also operate on simulated actions and
does not require that the system only update after experiencing an outcome consequent
to our actions (Chang & Jolly, 2017). This is a critical feature, as it allows for anticipated
feelings resulting from expected outcomes to create emotional error signals (Chiu &
Montague, 2008) that provide value with an associated action (Mellers & McGraw,
2001). One example of this simulated processdand one we touched on briefly befored
is anticipated regret (Coricelli et al., 2007), or when an emotional error signal results from
making a decision that does not align with the goal of making the best decision. If a
decision turns out to have an unfavorable outcome, the deciding agent will most likely
feel disappointment. However, if an agent makes a decision and learns that they could
have made an even better decision regardless of outcome favorability, they will feel regret
(Bell, 1982; Loomes & Sugden, 1982; Mellers et al., 1997). Thus, regret serves as an error
signal that indicates deviations from the broader goal of making an optimal social choice
(e.g., deciding to help someone who may subsequently return the favor, thereby eliciting
better future outcomes for yourself). Importantly, regret can be anticipated at the time of
decision, which can change our valuation of the choice set, and can ultimately motivate
current behavior to minimize future regret (Bault, Coricelli, &Wydoodt, 2016; Coricelli
et al., 2005).

Guilt
As discussed above, another important goal for agents as they navigate their social
landscape is to minimize harm to others. Guilt occurs in these interpersonal contexts
when one believes they have harmed or disappointed another individual (Battigalli &
Dufwenberg, 2007). Guilt is considered a prosocial emotion in that agents have a
tendency to take actions that repair the relationship following social transgressions
(Baumeister, Stillwell, & Heatherton, 1994; Regan, Williams, & Sparling, 1972). Like
regret, even the anticipation of guilt through simulating the act of committing a
transgression can provide a powerful motivation for goal-directed choices to act
prosocially (Massi Lindsey, 2005). This has been successfully demonstrated in the context
of honoring a relationship partner’s trust in the Trust Game (Berg et al., 1995). In this
game, Player A invests in Player B by transferring a portion of his initial endowment
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to Player B. The investment amount is multiplied by a predetermined factor (typically
fourfold), and Player B then decides how much, if any, of the multiplied investment
to return to Player A.

If Player A invests money in Player B, Player B generally reciprocates by sending
back some portion of the money, despite there being no advantage in doing so. In
fact, if Player B wanted to solely maximize her monetary payout, she should keep all
the money and return nothing to Player A, as there is no fear of reprisal in one-shot Trust
Games. Why then is there overwhelming evidence that Player B routinely behaves in
classically “irrational” ways by sending back the money to Player A? One possibility is
the anticipated guilt that Player B would feel if she kept the money, thereby failing to
uphold the social contract of trust. Indeed, models that consider other-regarding
preferences such as warm-glow altruism (Andreoni, 1990), intention-based reciprocity
(Dufwenberg & Kirchsteiger, 2004; Rabin, 1993) and inequity-aversion (Charness &
Rabin, 2002; Falk, Fehr, & Fischbacher, 2008; Fehr & Schmidt, 1999) reveal that
minimizing anticipated guilt provides a powerful signal to motivate honoring a partner’s
trust (Battigalli & Dufwenberg, 2007; Chang & Smith, 2015; Charness & Dufwenberg,
2006; Dufwenberg & Gneezy, 2000)daccounts which dramatically outperform models
derived from classical economic theory (Cox, 2004). According to this model, Player B
receives positive value from the money they keep and negative value from the anticipated
guilt of disappointing Player A by not returning any money. Player B has a second-order
belief about the amount that Player A expects them to return, and any difference
between the expectations that Player A may hold, and what Player B intends to return,
can create anticipatory guilt in Player B that shapes their goal to reciprocate. Formally,
Player B’s utility function UB for selecting action i can be described as

UBðiÞ ¼ pBðiÞ � qB$max
�
E2
B½pA� � pAðiÞ; 0

�
; (14.4)

where pB(i) is B’s payoff for action i, pA(i) is A’s payoff for action i, E2
B½pA� is B’s second-

order belief about what they believe A expects his payoff to be, and qB is a free parameter
representing Player B’s sensitivity to feeling guilt. In this formalization, guilt has negative
value and is represented as an emotional error signal resulting from disappointing a
partner’s expectations.

There have been several laboratory studies providing support for guilt-aversion
stimulating prosocial behavior (Charness & Dufwenberg, 2006; Nihonsugi, Ihara, &
Haruno, 2015). The amount of money that Player B returns is directly proportional to
their beliefs about Player A’s expectations (Dufwenberg & Gneezy, 2000) such that
Player B will be even more likely to reciprocate if he/she believes that his/her partner
has expectations of cooperation (Chang et al., 2011; Reuben, Sapienza, & Zingales,
2009). The fact that guilt can induce strategy changes during these tasks reveals how
emotional prediction errors make individuals flexible in their choice selectiondable to
adaptively respond during dynamic social exchanges to achieve a common social goal.
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CONCLUSIONS

How humans pursue goals has been a topic of great interest for many decades. We now
know much about how goals are represented and translated into action. Much less
research, however, has focused on how goal-directed behavior unfolds during social
interactions. And yet, many of our most important and primary goals are qualitatively
social in nature. Indeed, the success of one’s social experience is directly linked with
how readily one achieves their social goals. Here, we argue there are three social goalsd
preventing harm, affiliating with others, and resolving social uncertaintydthat serve as
the basic building blocks of promoting social well-being. However, these social goals
often come into direct conflict with an equally potent goaldthe desire to enhance
our own well-being.

How humans translate these oftentimes conflicting goals into concrete actions
requires learning about the world and updating the relevance of each goal according
to the outcomes of previously taken actions. Here, we argue that errors in pursuing these
goals can manifest in the form of specific emotional feelings such as guilt, regret, or anger,
and can provide a powerful motivational signal for how people update their goals and
alter their actions. These emotional error signals result from monitoring how our actions
help us progress toward (or away from) a goal, acting to regulate our behavior to be
consistent with our social goals akin to a control theoretic system. Accordingly, our
social-affective control model offers a tractable framework for understanding how these
emotional prediction errors might guide individuals to undertake or circumvent certain
social behaviors during social goal pursuit. Indeed, such a formal model offers both
testable hypotheses about when and how these emotional prediction errors shape social
goal pursuit and provides a useful roadmap for developing future experiments that can
better parse the role of emotion in guiding certain social goals.

While we primarily focused on how various negative emotional phenomena act
as prediction errors to guide social goal pursuit, it is likely that there are several other
positive emotional experiences, such as empathy, that also provide an error signal to
promote prosocial goals (FeldmanHall et al., 2015; Lockwoord, Apps, Valton, Viding,
& Roiser, 2016). Although there is little work that we are aware of that formally
quantifies this process, we hypothesize that a prediction error likely motivates empathy
in a similar way to those previously described above. Future work aimed at elucidating
this process will deepen our understanding of the relationship between emotional
experiences and social goal pursuit.

Finally, there is relatively little work that has explored how social contexts bias the
relationship between emotions and goal pursuit. And yet, there are arguably many cases
in which one’s social goals to affiliate, minimize uncertainty or prevent harm are more
salient than others. Take for example situations in which one is caring for a child versus
entertaining friends. In these cases, the actions taken surrounding the care for a child will
likely prioritize harm prevention, whereas the salient actions when engaging with friends
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will likely correspond with the social goal to affiliate. In other words, the desire to
minimize harm is not stable across all social environments but is rather modulated by
the context in which the goal-directed behavior arises. Our hope is that future work
can help identify and document the various contexts that either increase or decrease
the selection of certain social goals.
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CHAPTER 15

The Balance Between Goal-Directed
and Habitual Action Control in
Disorders of Compulsivity
Sanne de Wit1,2
1Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; 2Amsterdam Brain and
Cognition, University of Amsterdam, Amsterdam, The Netherlands

INTRODUCTION

There is universal agreement that habits play an important role in failures to flexibly
adjust behavior when goals change. In other words, habits contribute to the “intentione
behavior gap” (Sheeran, 2002). In certain psychopathologies, habits may even present a
serious threat to health and well-being, as well as an important target for therapeutic in-
terventions. In line with a transdiagnostic approach to compulsivity, the present chapter
focuses on an imbalance between habitual and goal-directed control as a key mechanism
in disorders of compulsive behavior, focusing specifically on: substance abuse, obesity and
eating disorders, and obsessiveecompulsive disorder (OCD). The specificity of the goal-
directed/habitual balance as a transdiagnostic factor will be discussed, as well as the rele-
vance for clinical interventions. Recently, many articles and chapters have appeared on
the role of habits in compulsivity. The specific aim of this chapter is to present the evi-
dence in an accessible yet critical manner, with an emphasis on behavioral research with
outcome devaluation paradigms, and minimal reference to the neurobiological basis,
except for when this serves to link the neural dual-system architecture of goal-directed
and habitual control to these different disorders. In the next section, the theoretical
framework and experimental measurement of the balance between goal-directed action
and habits will be briefly introduced.

The balance between goal-directed action and habit
According to a definition derived from folk psychology (which has been widely applied to
animal models of instrumental action control), goal-directed action meets two criteria
(Heyes & Dickinson, 1990). According to the belief criterion, goal-directed actions are
mediated by knowledge of the causal actioneoutcome relationship. According to the
desire criterion, goal-directed actions are only executed when the outcome is currently
desirable, or in other words, a goal. In associative terms, performance is mediated by
responseeoutcome (R-O) associations, which allow behavior to meet the belief criterion.
This associative structure needs to be integrated with a motivational system that allows
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current motivation to determine whether the action is performed (e.g., see associativee
cybernetic model, de Wit & Dickinson, 2009). Consider the example of drinking a glass
of wine at the local bar in order to relax and more freely engage in social interactions. At
first, this may be a goal-directed action, but when this behavior is repeatedly performed, it
can gradually turn into a habit, such that it is automatically elicited by environmental stim-
uli like the bar or the circle of friends with whom one usually enjoys a drink. The main
conditions for habit formation are captured in Thorndike’s law of effect (1911), according
to which the experience of a rewarding outcome (O) of an instrumental response leads to
the (positive) reinforcement of a mental association between the response (R) and the
contextual stimuli (S) that were present at the time of execution of the response. As a
consequence, on future occasions, the contextual stimuli will directly activate this response
through the S-R association. Furthermore, (negative) reinforcement through the cancel-
lation of a dreaded aversive event should similarly strengthen S-R links, thereby giving rise
to avoidance habits. For instance, as the development of alcoholism progresses, the cancel-
lation of withdrawal symptoms or depressive mood upon drinking may lead to a temporary
feeling of relief and should thereby negatively reinforce this habit. In contrast, the experi-
ence of an aversive outcome following an instrumental response (or cancellation of an
anticipated reward) should weaken the S-R association. However, because habits are
mediated by direct S-R associations, they are not directly influenced by a change in the cur-
rent desirability of the outcome. Strengthening or weakening of the S-R association can
only occur gradually as a consequence of extended experience with the instrumental con-
tingency and the outcome with its new incentive value.

To account for a gradual loss of goal-directed control as a function of behavioral repe-
tition, dual-system theories posit that repetition shifts the balance between a goal-
directed and habitual system (e.g., Balleine & O’Doherty, 2010; Dickinson, 1985).
According to one such model, the associativeecybernetic model, the degree to which
behavior is habitual (or goal-directed) is determined by the relative strengths of associa-
tions in an R-O system and S-R system (de Wit & Dickinson, 2009). These learning sys-
tems sometimes competedbut also cooperatedto control action (see Fig. 15.1).

Experimental assessment of the balance between goal-directed
and habitual control
To investigate the balance between goal-directed and habitual control, Dickinson et al.
developed the outcome devaluation paradigm. The first stage of this task consists of
instrumental learning. For example, hungry rats are trained to press a lever for food pel-
lets. Subsequently, they are removed from the learning context (i.e., the operant cham-
ber), and an aversion is conditioned to the food pellets by pairing consumption with
lithium chlorideeinduced nausea in half of the rats. Therefore, for these rats, the food
pellets are “devalued.” Subsequently, they are returned to the operant chamber where
they can once again press the lever. However, during this extinction test, the food pellet
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outcome is no longer presented. This is an important aspect of the design, as presentation
of the devalued outcomes contingent upon responding would be expected (according to
the law of effect) to gradually weaken or inhibit S-R associations. Only if rats formed R-
O associations during the initial training phase and are able to base responding on their
current motivation for the outcome, should they be able to immediately and flexibly
adjust performance following devaluation. To dissociate goal-directed from habitual
control, it is crucial therefore that the test is conducted in extinction. Importantly, using
this paradigm, Adams (1982) showed that rats that had received moderate training (100
lever presses), immediately decreased responding when the pellets were devalued. In
contrast, rats that had received extensive training (500 lever presses) continued to respond
for the devalued food in the extinction test. In other words, lever pressing had become a
relatively inflexible habit. Importantly, reduced behavioral sensitivity to outcome deval-
uation in the extinction test was not due to ineffectiveness of the devaluation procedure,
as the overtrained animals would quickly learn to refrain from responding for the deval-
ued food in a reacquisition test in which the outcome was once again presented contin-
gent on responding.

The development of insensitivity to outcome devaluation as a function of behavioral
repetition has since been replicated in several animal studies (Balleine & O’Doherty,
2010) and in one human study with healthy adults (Tricomi, Balleine, & O’Doherty,
2009). In the latter study, a computer task was used to study key pressing for M&M’s
and Frito’s by hungry participants in the presence of distinct fractal stimuli. Following
instrumental training, one of the two snacks was devalued through satiation, and subse-
quently, participants were once again offered the opportunity to press the keys during
exposure to the training stimuli. While moderately trained participants (12 trials/stim-
ulus) were sensitive to current outcome value, the extensively trained group (72 trials/
stimulus distributed over 3 days) continued to respond for the devalued outcome. How-
ever, a recent attempt to replicate those findings failed (de Wit et al., in press). Moreover,
the latter study also failed to show habits as a function of behavioral repetition with two

Figure 15.1 Factors influencing the shift in the balance from habitual to goal-directed action control.
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other existing outcome devaluation tasks (the slips-of-action paradigm and an avoidance
task). Clearly, experimentally demonstrating overtrained habits in humans is challenging
(for a more elaborate discussion, we refer the interested reader to de Wit et al., in press).
However, outcome devaluation paradigms with just the moderate training condition
have been used in many studies to investigate the neural basis of goal-directed and
habitual control in humans. The idea behind this line of research is that habits are formed
from the outset of acquisition, such that the balance between habitual and goal-directed
control can already be reflected in shifting activations following moderate training and
can vary between individuals and different psychopathologies.

Neural basis of goal-directed action and habits
Dual-system theories of goal-directed and habitual action control receive the strongest
evidence from animal lesioning and inactivation studies, which have provided strong ev-
idence for dissociable corticostriatal circuitries that support goal-directed action
(including prelimbic cortex and dorsomedial striatum [DMS]) and habits (including infra-
limbic cortex and dorsolateral striatum [DLS]) (for more detailed discussion, see Balleine
& O’Doherty, 2010; Lingawi, Dezfouli, & Balleine, 2016). In translational human
research using the technique of functional MRI, performance on outcome devaluation
paradigms has been found to be positively associated with activation of the ventromedial
prefrontal cortex (vmPFC) and caudate, implicating these regions in goal-directed action
(e.g., Valentin, Dickinson, & O’Doherty, 2007; de Wit, Corlett, Aitken, Dickinson, &
Fletcher, 2009). On the other hand, behavioral repetition has been shown to lead to
increased engagement of the posterior putamen, suggesting that this region may be
involved in habit formation (Tricomi et al., 2009). Furthermore, structural MRI studies
have provided evidence for neural dual-system architecture by relating estimated white
matter tract strength to performance on a “slips-of-action paradigm.” This is a variant of a
computerized outcome devaluation paradigm, in which instrumental discrimination
training with pictures serving as stimuli and as outcomes (e.g., stimulus 1: right key press -
/ outcome A; picture 2: right key press/ outcome B) is followed by “instructed
devaluation,” meaning that participants are instructed that a picture that was previously
worth points will suddenly lead to deduction of points (or financial credits) from a total
score (e.g., O(A) but not O(B) is devalued). Subsequently, participants are shown the
trigger cues (e.g., S1/S2, etc.) in rapid succession, and their task is to continue to respond
for valuable outcomes (e.g., O(B)) while withholding responses for devalued outcomes
(e.g., O(A)). Good performance on the slips-of-action task indicates relatively strong
goal-directed control and/or weak S-R habitual control. By relating performance on
this paradigm to individual differences in the estimated strength of white matter tracts,
a caudate-vmPFC network has been implicated in goal-directed control, and a posterior
putamendpremotor cortex network in habits (de Wit et al., 2012).
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A transdiagnostic perspective: the role of goal-directed and habitual
control in compulsivity
Compulsive behaviors are a central characteristic of many psychopathologies. For
example, drug abuse is characterized by a strong urge to seek out and use drugs despite
their harmful effects. Similarly, binge eating disorder (BED) and certain cases of obesity
are associated with an urge to consume large amounts of energy-dense food, while in
eating disorders, such as anorexia nervosa (AN) and bulimia nervosa, as little food as
possible is consumed in order to lose weight. Finally, patients with OCD feel compelled
to perform repetitive behaviors, such as checking, washing, and ordering. These
outwardly very different behaviors have in common their persistence despite awareness
of serious, adverse consequences regarding health, occupational, and social functioning.
Several researchers have argued, therefore, that we should adopt a transdiagnostic
approach to research into compulsivity across disorders like addiction, obesity and eating
disorders, and OCD (e.g., Gillan, Fineberg, & Robbins, 2017; Robbins, Gillan, Smith,
de Wit, & Ersche, 2012).

Transdiagnostic approaches focus on constructs of behavior (and their genetic and
neural bases), that play a role across different psychopathologies, rather than on
disorder-specific symptoms and diagnostic categories. A strong argument for this perspec-
tive is that there exist high degrees of comorbidity between different psychopathologies,
as well as overlap in their core symptoms, as in the case of compulsivity. These are not
captured by categorical distinctions in current classification systems, such as the Diagnostic
and Statistical Manual of Mental Disorders (DSM) and International Classification of Diseases. In
the context of compulsivity, several researchers have made a strong stance for investi-
gating the balance between goal-directed and habitual control as a potentially important
mechanism underlying compulsivity across different disorders (e.g., Gillan, Robbins,
Sahakian, van den Heuvel, & van Wingen, 2016; Robbins et al., 2012).

The different ways in which reliance on habits could contribute to compulsive behav-
iors have been summarized in Fig. 15.1. Firstly, extensive behavioral repetition in stable
contexts, which is usually a feature of compulsive behavior, fosters the transition from
goal-directed to habitual control. Secondly, strong (positive/negative) reinforcement
(for example, by the rewarding experience of drugs or the neutralization of fear in
OCD patients) can further accelerate this process. Finally, a general tendency to form
strong habits fast, referred to in this chapter as “habit propensity,” may constitute an
important transdiagnostic trait in compulsive conditions (Robbins et al., 2012). Habit
propensity could be due to weak goal-directed control, strong habitual control, or a
combination of the two. Unfortunately, outcome devaluation paradigms (with just the
moderate training condition) do not allow one to determine the origin of impaired
behavioral flexibility, although this issue can perhaps to some extent be mitigated by
combining behavioral assays with neuroimaging. However, impaired goal-directed
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control and aberrantly strong habit formation could both render certain individuals
particularly vulnerable to the development of maladaptive and even compulsive habits.
Alternatively, habit propensity could be an emergent characteristic that arises, for
example, as a consequence of neuroadaptations that result from substance abuse. These
three different factors that determine habit strength may lead to aberrantly strong, mal-
adaptive S-R habits in disorders of compulsivity and contribute to a sense of loss of con-
trol over behavior and to treatment resistance. Another factor that has been incorporated
in Fig. 15.1 is the effect of stress on habit propensity, with acute as well as chronic stress
increasing habit propensity and disrupting the balance between the underlying cortico-
striatal circuitries as revealed by functional and structural MRI (with the latter showing
decreased caudate and increased putamen volume) (Schwabe & Wolf, 2009; Soares
et al., 2012). Chronic/acute stress is highly prevalent among psychiatric disorders and
is therefore an important factor to consider. Another factor concerns cognitive control
capacities, including working memory and response inhibition. From a limited cognitive
resources perspective, goal-directed control is more dependent on those functions being
intact than habit. Impairments in these functions are ubiquitous in disorders of compul-
sivity (Fineberg et al., 2010; Robbins et al., 2012) and may therefore contribute to habit
propensity.

DISRUPTIONS OF THE BALANCE BETWEEN GOAL-DIRECTED AND
HABITUAL CONTROL IN DISORDERS OF COMPULSIVITY

Substance abuse
Many people use drugs recreationally. However, in some people, frequent goal-directed
drug seeking may ultimately lead to the formation of drug habits (Tiffany, 1990), through
both positive reinforcement by the powerfully rewarding properties of drugs and nega-
tive reinforcement by temporarily relief from anxiety or depression and ultimately from
withdrawal symptoms (Koob, 2013). Stress may further accelerate the transition from
goal-directed control to habits (Schwabe, Dickinson, & Wolf, 2011). According to the
influential model of Everitt et al., habits pave the way for the development of compulsive
drug seeking that persists despite severely harmful effects on one’s health, problems in re-
lationships, and impaired professional functioning (Everitt & Robbins, 2015; Everitt,
Dickinson, & Robbins, 2001). By now, there is a wealth of evidence for an imbalance
between goal-directed and habitual control in addiction (more than in any other clinical
condition), mainly coming from animal studies that allow for experimental control over
drug-seeking history.

Repeated alcohol seeking in rats has been shown to result in habit formation. In a
study by Corbit, Nie, and Janak (2012), rats were trained to press a lever for unsweetened
ethanol. A “minimal training group” received 14 consecutive daily training sessions,
while an “extensive training group” received 56 sessions. Each rat was tested twice in
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extinction, once following devaluation through “satiation” (i.e., drinking a substantial
amount of alcohol) and once in a nondevalued condition. The results showed that the
minimal training group reduced responding in the devalued condition relative to the
nondevalued, while devaluation failed to affect responding in the extensive training
group. Furthermore, temporary inactivation of the DMS (through infusion of a
GABA-agonist) led to habitual alcohol seeking even after minimal training, while DLS
inactivation after 8 weeks of training restored goal-directed control. These results support
the idea that repeated alcohol seeking gradually transitioned from DMS-driven
goal-directed behavior to DLS-driven habits, in the same way that responding for natural
rewards (like food) becomes habitual and DLS-dependent with overtraining
(Yin, Knowlton, & Balleine, 2004).

If drugs are especially powerful reinforcers of habits, then habit formation should be
accelerated with drug rewards relative to natural rewards like food. To investigate this,
Dickinson, Wood, and Smith (2002) compared sensitivity to outcome devaluation in
rats trained to lever press concurrently for alcohol and food pellets (e.g., right/ alcohol;
left/ food). Subsequently, half of the rats received alcoholeLiCl pairings, and the other
half received foodeLiCl pairings. In support of the notion that drug habits form faster,
rats pressed less for food if this had been devalued through LiCl pairings, while alcohol
devaluation failed to reduce responding on the corresponding lever (but for discussion
of caveats of research into drug alcohol-seeking habits, see O’Tousa & Grahame,
2014). This failure to adjust performance following devaluation was not due to a failure
to devalue the alcohol, as both outcomes no longer acted as an effective reinforcer in a
subsequent reacquisition test. This finding is not limited to alcohol, as a similar study pro-
vided evidence for impaired devaluation sensitivity of cocaine seeking (Miles, Everitt, &
Dickinson, 2003). These studies strongly suggest that drug seeking leads to aberrantly
strong habit formation.

In humans, there has been far less experimental investigation into the formation of
drug-seeking habits, and studies in smokers by Hogarth and colleagues have failed to pro-
vide converging evidence. Hogarth and Chase (2011) trained smokers to press two keys,
one for cigarettes and one for chocolate. On each trial, each key press had a 50% prob-
ability of being reinforced. Subsequently, the cigarette outcome was devalued by allow-
ing participants to smoke ad libitum (i.e., through satiation). In the choice test that
followed, smokers appeared goal-directed, meaning that they were able to reduce
responding for cigarettes following the devaluation procedure. However, this very simple
concurrent choice test that assesses choice in the absence of trigger cues does not seem
optimal for the behavioral expression of habits. It would be interesting to follow this
research up with a test during which external cues are presented with a strong association
with the habitual response.

A related line of research has addressed whether drug abusers show a general tendency
to rely on habits at the expense of flexible, goal-directed control. To investigate this
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possibility, Sjoerds et al. (2013) trained their participants to respond for (fruit and drink)
pictures that were worth financial credits, before devaluing some of these through in-
struction. Alcohol-dependent patients were found to perform significantly worse than
healthy matched controls in the instructed outcome devaluation test. Further support
for the idea that alcohol dependents relied more on the habit system than the control
group, came from the fMRI finding that they showed greater activation in the habit cir-
cuitry (posterior putamen) and weaker activation of the vmPFC during instrumental
acquisition. Furthermore, vmPFC activation was inversely related to disease duration.
More recently, Ersche et al. (2016) used the slips-of-action paradigm to investigate sensi-
tivity to devaluation in cocaine abusers, with pictures of animals (that counted toward
supermarket vouchers) functioning as the trigger cues and instrumental outcomes.
Cocaine addicts showed more cue-triggered responding for devalued outcomes than
healthy controls. These two studies provide convergent support for the idea that addic-
tion is associated with a general tendency to rely on habits. The question remains, how-
ever, whether this habit propensity arises as a consequence of aberrantly strong habit or
from impaired goal-directed control, or a combination of the two. Furthermore, cross-
sectional research in humans does not inform us about causality. Habit propensity may be
a consequence of chronic drug use but could alternatively constitute a predisposing trait
that contributes to vulnerability to addiction.

Animal research suggests that habit propensity can i as a consequence of prolonged
drug use. Corbit et al. (2012) found that rats trained to respond for sucrose still showed
a devaluation effect after 8 weeks, but this was not the case in a group of rats that during
the same time period was given alcohol to drink in their home cages. Similarly, Nelson
and Killcross (2006) showed that sensitization to amphetamine accelerated the transition
from goal-directed to habitual responding (see also Nordquist et al., 2007). As of yet, it is
less clear whether habit propensity also constitutes a vulnerability factor. This question
could be addressed in future research, e.g., in longitudinal investigations.

The studies reviewed so far suggest that accelerated habit formation and habit propen-
sity play a role in drug addiction but do not directly implicate habits in compulsive drug use
despite aversive consequences. Outcome devaluation tests are usually performed in
extinction, meaning that the devalued outcome is not presented contingent on respond-
ing. As such, this paradigm can capture mindless, habitual behavior or so-called “slips of
action,” but it fails to provide a model of compulsive behavior. Indirect evidence for the
notion of compulsive habits comes from an animal study showing that extended self-
administration of cocaine leads to persistent responding despite punishment in the
form of aversive, electric shocksdin a subset of w20% of rats (Deroche-Gamonet,
2004; see also,; Belin, Mar, Dalley, Robbins, & Everitt, 2008). In a related procedure,
a seekingetaking chain schedule was adopted, in which during half of the trials the
outcome of seeking responses was the opportunity to take cocaine but unpredictably
on the other half of the trials, the outcome was an aversive foot shock (Pelloux, Everitt,
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& Dickinson, 2007). As a result, rats seeking cocaine ran the risk of foot shock punish-
ment. After a brief cocaine history, drug seeking was goal-directed such that rats reduced
responding when the punishment contingency was introduced. In contrast, after an
extended history of cocaine self-administration, a subset of rats (w20%) continued to
seek cocaine despite receiving foot shocks on half of the trials (but see, Jonkman, Pelloux,
& Everitt, 2012). Furthermore, in vivo optogenetic stimulation of the prelimbic cortex
(the rodent functional homologue of the vmPFC) reduced drug seeking in a subset of
compulsive animals, while for the remaining rats, optogenetic inhibition of this brain re-
gion led to increased cocaine seeking under the punishment schedule (Chen et al., 2013).

Fig. 15.2 summarizes the different ways in which habits could contribute to compul-
sive drug seeking. Of course, this figure is not exhaustive, and there are many other
factors that could contribute to addiction. Importantly, next to triggering habits, drug-
associated stimuli can induce drug craving or “wanting” (Berridge & Robinson, 2011).
According to Berridge and Robinson, aberrantly strong “wanting” of drugs, rather
than habits, is the driving force of compulsive drug seeking. They attribute a very modest
role for habits, in the development of drug rituals and absent-minded drug seeking, as for
example lighting a cigarette in the absence of a strong desire to smoke. One of their ar-
guments against a central role of habits is that daily habits are not compulsive despite
extensive repetition, and compulsive drug seeking is not “absent-minded” but rather is
accompanied by an urge or desire. However, compulsive drug-seeking habits may differ
from daily habits in these respects due to extremely strong reinforcement by drugs that
hijack the dopaminergic motivational system in vulnerable individuals, thereby giving

Figure 15.2 Habits in substance abu-
se. Summary of hypothesized links
between different factors influencing
the shift in the balance from habitual
to goal-directed action control.

The Balance Between Goal-Directed and Habitual Action Control in Disorders of Compulsivity 339



rise to a subjective urge to engage in drug seeking and taking. Another argument is that
addicts are perfectly well capable of novel, complex behaviors if these are required to
secure access to drugs. It is true that current experimental models that focus on simple
motor responses fail to capture this complexity of drug-seeking behavior. It is an impor-
tant outstanding question at what level of abstraction habits can be represented. For
example, a concrete motor response could be turning left to get to the usual hangout
of the drugs dealer, whereas a broader, abstract response representation could be to go
to the drugs dealer. The latter response representation could lead to different motor re-
sponses dependent on the dealer’s current whereabouts. A related question is whether the
trigger cue always needs to constitute an external stimulus in the environment or whether
internal cues like moods and even thoughts can also trigger habits. In the latter case, habits
could readily generalize across different external contexts.

These different arguments notwithstanding, as reviewed here, there is a lot of evi-
dence for accelerated habit formation in addiction, next to evidence for aberrantly strong
craving in substance abuse. It seems plausible, therefore, that both of these processes
contribute toward compulsive drug seeking, with their relative contributions changing
in the course of the development of an addiction. Indeed, Everitt and Robbins (2015)
proposed that craving plays a dominant role early in the development of an addiction,
while habits develop later and ultimately turn into compulsive behavior. Finally, subjec-
tive reports of craving as the main driving force in addiction may partially arise as a posthoc
rationalization of a mismatch between explicitly held goals and excessive drug-seeking
habits; or in other words, a way to resolve cognitive dissonance (Everitt & Robbins,
2005).

Obesity
Obesity can have many different causes, including metabolic disturbances that are genet-
ically rooted. However, the recent increase in the percentage of overweight
(BMI � 25 kg/m2) and obese adults (BMI � 30 kg/m2) to 40% globally (Ng, Fleming,
Robinson, Thomson, & Graetz, 2014) suggests that changes in the environment play a
very important role. Specifically, increasing availability of palatable, high-calorie food
and aggressive marketing is thought to lead to excessive consumption of energy-dense
food. Furthermore, certain technological advancements may encourage a sedentary life
style. The combination of high calorie intake and low calorie expenditure is thought
to ultimately drive the recent rise in overweight and obesity. Obesity is associated
with increased mortality, with serious health risks including diabetes, cardiovascular dis-
ease, high blood pressure, certain cancers, breathing problems, and osteoarthritis.
Furthermore, it is associated with stigmatization, depression, and decreased quality of
life (Jia & Lubetkin, 2010). It also is related to high medical costs and a significant loss
in productivity as a result of increased sick leaves (Neovius, Neovius, Kark, & Rasmussen,
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2012). Despite full awareness of these detrimental consequences, and often despite inten-
tions to adhere to a healthier diet, many obese patients struggle to adhere to a healthier
life style, which has led some researchers to reframe obesity in vulnerable individuals in
terms of “food addiction” (e.g., de Jong, Vanderschuren, & Adan, 2012). A neurobiolog-
ical finding that supports this idea is that obesity as well as stimulant abuse is associated
with low striatal dopamine D2 receptor binding and reduced prefrontal metabolism
(including orbitofrontal cortex (Volkow, Wang, Tomasi, & Baler, 2013)). In this section,
we will explore whether, as in substance abuse, aberrantly strong habit formation con-
tributes to the inability of these obese individuals to break harmful habits (see Fig. 15.3).

As discussed in the Introduction, continued food seeking leads to the formation of
habits (Adams, 1982; Tricomi et al., 2009), and stress is associated with dominant habitual
control over food seeking (Schwabe &Wolf, 2009). Relatedly, high stress levels are asso-
ciated with obesity and can lead to “comfort eating” of palatable food (Morris, Beilharz,
Maniam, Reichelt, & Westbrook, 2015). An unhealthy diet may have a negative influ-
ence on cognitive functioning, which could be speculated to foster habit propensity in
obesity (Jansen, Houben, & Roefs, 2015).

So far, food-seeking habits in obesity specifically have not been investigated as a func-
tion of behavioral repetition, but there have been several human outcome devaluation
studies that investigated action control after limited training. Horstmann et al. (2015)
conducted the first such study to investigate habits in obesity. Obese and lean men
were trained to press keys for two snack rewards (in a task akin to that used by Tricomi
et al. (2009), but just with minimal training) before one of the two was devalued through

Figure 15.3 Habits inobesity. Sum-
mary of hypothesized links between
different factors influencing the
shift in the balance from habitual
to goal-directed action control.
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specific satiety. Overall, satiation successfully reduced self-reported desire to eat the snack
in question. However, there was a negative correlation between BMI and behavioral
sensitivity to outcome devaluation through specific satiety, supporting the notion of
accelerated habit formation in overweight/obesity. In a more recent study, Janssen
et al. (2017) used Hogarth’s simple choice version of the outcome devaluation paradigm
(Hogarth & Chase, 2011), to show that the ability to immediately reduce responding
following specific satiety was impaired in (mostly female) individuals with higher obesity
scores (based on BMI, waist circumference, and waist-to-hip ratio). These two studies
support the hypothesis that action control is shifted toward habitual control in obesity.
To rule out that differential success of outcome devaluation through satiation contributed
to these correlations, future research should include a reacquisition test following the
extinction test, during which the food outcomes are once again presented contingent
on responding (Adams, 1982). If devaluation is equally effective in reducing food desire
in participants with higher obesity scores, they should reduce responding for the devalued
outcome during this reacquisition test (as opposed to the extinction test). Another related
question is whether inflexible action control in obesity is restricted to responses that are
reinforced with food rewards, or whether there is a general tendency to rely on habits in
obesity.

To investigate general habit propensity in obesity, Dietrich, De Wit, and Horstmann
(2016) used the slips-of-action paradigm with animal pictures functioning as the trigger
cues and as the outcomes. They found no evidence for increased vulnerability to habitual
slips of action in relation to BMI (in a group of healthy-weight, overweight, and obese
[male and female] participants). A more recent study replicated this null result using the
same paradigm to compare obese individuals and matched lean controls, except that food
pictures instead of animal pictures were used (Watson, Wiers, Hommel, Gerdes, & de
Wit, 2017). These studies suggest that habit formation is not generally accelerated in
obesity. An interesting remaining possibility is that reliance on compulsive habits may
be a specific issue for obese individuals with a diagnosis of BED. BED is characterized
by recurrent episodes of eating large quantities of food, accompanied by a feeling of a
loss of control. Some researchers have argued that the food addiction model may be
most readily applicable to obese individuals with BED (de Jong et al., 2012). In support
of this idea, a recent study showed that obese individuals with BED relied on inflexible,
“model-free” as opposed to “ model-based” decision-making (which have been pro-
posed to capture habitual and goal-directed control, respectively; see Discussion) while
those without BED performed at the same level as healthy-weight controls (Voon
et al., 2015). However, an outcome devaluation study is required to investigate habitual
and goal-directed control more directly in this population.

In order to gain insight into the causal link between obesity and an imbalance be-
tween habitual and goal-directed control, we again turn to animal research. Animal
work shows that obesogenic diets can lead to impaired cognitive functioning, including
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deficits in goal-directed control over food seeking. Kendig, Boakes, Rooney, and Corbit
(2013) showed that chronic restricted access to sucrose solution reduced sensitivity to
outcome devaluation. Subsequently, Furlong, Jayaweera, Balleine, and Corbit (2014)
investigated the effect of a 5-week high-fat/high-sugar diet of sweetened condensed
milk on instrumental responding for different food rewards (food pellets and sucrose so-
lution). They showed that intermittent, but not continuous, access to the sweetened milk
diet led to reduced goal-directed control over food seeking. Furthermore, they impli-
cated the DLS in this impairment, by providing evidence for greater activation of this re-
gion in the restricted access group and demonstrating that experimentally decreasing this
activity (through infusion of an AMPA-receptor or dopamine D1-receptor antagonist
into the DLS) restored goal-directed performance in the restricted group. Their results
indicate, therefore, that a palatable, high-sugar/high-fat diet can have a drastic impact
on the flexibility of food seeking by affecting the neural substrates of habits.

Cyclic patterns of food availability can also affect the general balance between habitual
and goal-directed control over food seeking. Parkes, Furlong, Black, and Balleine (2017)
investigated the effect of repeated cycles of restriction and feeding on standard lab chow on
sensitivity to outcome devaluation. Firstly, all rats were trained to respond for two distinct
food outcomes (grain and purified pellets). Subsequently, one group of rats received the
alternating, bingelike feeding schedule during 30 days, while a control group was on
restricted access during the first 20 days followed by 10 days of unrestricted access. The re-
searchers found that rats on a bingelike feeding schedule persisted in responding for a food
reward they had just been sated on (in contrast to the control rats), pointing to a general
propensity to rely on habits at the expense of goal-directed control.

In summary, there are several ways in which reliance on habits may develop and play
a role in compulsive food seeking in obesity (see Fig. 15.3). Food seeking has been shown
to become habitual as a consequence of behavioral repetition. Furthermore, there is pre-
liminary evidence that goal-directed control over food seeking is impaired in obesity
(Horstmann et al., 2015; Janssen et al., 2017), but further investigation is warranted.
Finally, animal research suggests that calorie-dense and bingelike diets can lead to habit
propensity. This emergent characteristic may contribute to failures of overweight and
obese individuals to change their dietary habits. Convergent (indirect) evidence comes
from a large neuroimaging study (Medic et al., 2016), that provided evidence for a nega-
tive association between BMI and gray matter volume of the vmPFC, an area that has
been implicated in goal-directed control. The relationship between (structural and func-
tional) neuronal alterations in obesity and BED and action control should be investigated
in future studies.

Eating disorders
AN predominantly affects adolescent girls and young women and is characterized by
compulsive dietary restriction and overexercise aimed at losing weight despite serious
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adverse consequences, including lowered body temperature, low blood pressure, a dis-
rupted menstrual cycle, reduced bone mineral density, a slow heart rate, and in extreme
cases death. Anorexia patients report an intense fear of gaining weight, even when they
are severely underweight.

Self-starvation in AN may start out as goal-directed to achieve the rewarding
outcome of weight loss. To illustrate with an example, Janet Caldwell started dieting
when she was 12 years old. “At first, she was quite pleased with her weight reduction, and
she was able to ignore feelings of hunger by remembering the weight loss goal she had set for herself.
However, each time she lost the number of pounds she had set for her goal she decided to lose just a
few more pounds. Janet felt that, in her second year of dieting, her weight loss had continued
beyond her control. although there had been occasions over the past few years where she had
been fairly ‘down’ or unhappy, she still felt driven to keep on dieting.” (Leon, 1984, pp.
179e184). As this example illustrates, extensive repetition of dieting and exercising in
AN may foster the formation of compulsive behavior. At first, fixed behavioral patterns
may develop regarding the purchasing, preparation, and consumption of fooddwith
strong preferences for certain ingredients and meal consumption at fixed times and in
specific orders. Similarly, rigid patterns emerge for exercising such as running a fixed
route every morning or performing 100 abdominal exercises before going to bed
(Treasure, Claudino, & Zucker, 2010). These habits may become aberrantly strong in
AN as a consequence of the strong positive reinforcement and positive experience of
“being in control” that patients experience when they achieve weight loss, which may
be further boosted by heightened reward sensitivity as a consequence of starvation. There
is also a negative reinforcement component in AN, as a consequence of the avoidance of
consumption of energy-dense food and weight gain, which can give rise to feelings of
relief. As a result, dietary and exercise habits in AN may transition into compulsive
behavior. Indeed, the commonly reported experience of a gradual loss of control that oc-
curs as rigid restrictive eating and excessive exercising patterns develop, is in line with the
possibility that habit formation contributes to compulsive behavior in AN. Accordingly,
several researchers have proposed that outcome-insensitive habits play an important role
in AN and may contribute to treatment resistance (Godier & Park, 2014; Walsh, 2013),
similarly to habits in addiction (Godier & Park, 2015) and in OCD (Steinglass &
Walsh, 2006).

Chronic dietary restriction and starvation are sources of stress in AN (Park, Godier, &
Cowdrey, 2014) that could further accelerate habit formation. Another effect of starva-
tion is to impair cognitive function. However, a recent study failed to provide direct ev-
idence for habit propensity in AN (Godier et al., 2016). Patients performed as well as
controls on two outcome devaluation paradigms. Firstly, in the slips-of-action paradigm
(with animal or with fruit pictures functioning as the trigger cues and outcomes), they
successfully withheld responses to cues that signaled the availability of outcomes that
were no longer valuable. Secondly, they performed an avoidance task in which they
were trained to avoid electrical shocks, before one of the electrodes was removed,
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thereby effectively devaluing this aversive outcome. AN patients reduced avoidance of
the removed electrode, just like healthy controls. It is noteworthy in this respect that
there appears to be a discrepancy between the neural changes in AN and what would
be expected for habit propensity. For example, Foerde, Steinglass, Shohamy, and Walsh
(2015) showed that food choices by AN patients in a computerized task were associated
with hyperactivity in the caudateda region previously implicated in goal-directed control
(for a review of the neurobiological basis, see Steinglass et al., 2016). However, the neural
basis of the balance between goal-directed and habitual control has hitherto not been
directly assessed in AN.

A failure to find evidence for general habit propensity in AN does not exclude the
possibility that over time their dietary and exercise behaviors become compulsive habits.
Furthermore, it remains possible that AN patients are relatively prone to form habits fast
in their daily lives, as a consequence of perfectionism, a character trait that people with
AN tend to score high on (Egan, Wade, & Shafran, 2011). At first, the rigid rules that AN
patients apply to their dieting and exercise patterns may support efficient goal achieve-
ment, but this also ensures the reinforcement of highly consistent S-R associations be-
tween stable contextual variables and behaviors, thus forging strong habits.

To conclude, few studies have investigated the role of habits in AN, but Fig. 15.4 il-
lustrates how aberrantly strong habit formation could contribute to compulsive behavior
in AN. So far, research has failed to provide evidence for general habit propensity, but it
remains possible that disorder-specific weight loss behaviors become aberrantly strong
habits. Lab investigations using computerized tasks may fail to capture the influence of
perfectionism on consistent performance of rigid S-R rules that play an important role
in the daily routines of patients, and thereby underestimate the role that habits play in

Figure 15.4 Habits in eating disor-
ders. Summary of hypothesized
links between different factors
influencing the shift in the balance
from habitual to goal-directed ac-
tion control. The dotted arrows
represent hypothesized links that
are not supported by current
empirical evidence.
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AN. Another important factor that deserves further attention is the influence of starvation
on the balance between goal-directed control and habitual control. Also, it would be
interesting to explore the role of habits in the related eating disorder bulimia nervosa
(Berner & Marsh, 2014). Finally, future neuroimaging research with outcome devalua-
tion paradigms is required to shed light on the role of habits and corticostriatal circuitries
in compulsive behavior in AN.

Obsessiveecompulsive disorder
A young mother washes her hands excessively upon recurring, anxious thoughts about
strangling her own daughter: “Whenever the thought occurs, I wash my hands. It seems that
I can rinse this terrible thought away causing the anxiety to decrease (.) At the moment I find
washing my hands more annoying than the thought itself. It takes a long time and I become very
anxious when I don’t have the facilities to wash my hands.” (Denys, 2011). The OCD patient
in this example initially washes her hands to reduce distress at fear-provoking thoughts.
However, after a while, she develops tolerance, leading her to wash her hands even more
excessively and ultimately to washing despite little or no alleviation of stress. At this point,
the behavior has turned into a compulsive act that for some patients is even more prob-
lematic than the obsessive thoughts that characterize OCD. In this regard, OCD resem-
bles addiction (Denys, 2011).

OCD is characterized by repetitive behaviors (e.g., hand washing, ordering, check-
ing) or mental acts (e.g., praying, counting, repeating words silently) that the individual
feels driven to perform in response to an obsession or according to rules that must be
applied rigidly. According to the DSM-5, the goal of these behaviors or mental acts is
to prevent or reduce anxiety or distress, or prevent some dreaded event or situation,
even when these behaviors or mental acts are not connected in a realistic way with
what they are designed to neutralize or prevent, or are clearly excessive. The DSM-5
thus offers the conventional view that compulsions are goal-directed behaviors. Cogni-
tive therapy of OCD is based on this goal-directed account of OCD and focuses on a
number of “cognitive biases” that may drive the excessive performance of compulsive
acts (van Oppen & Emmelkamp, 2000). A collaborative team of researchers in the field
of OCD, the Obsessive Compulsive Cognitions Working Group, identified three cogni-
tive domains that best represent these biases: an inflated sense of responsibility and height-
ened threat estimation; perfectionism and intolerance of uncertainty; and importance and
control of thoughts (Steketee et al., 2003).

More recently, there has been growing interest in the alternative hypothesis that com-
pulsions result from aberrantly strong habit formation and, if anything, impaired goal-
directed control (Evans, Lewis, & Iobst, 2004; Robbins et al., 2012). We will present
here arguments for and against this hypothesis. First of all, the experiences of patients
(and their clinicians) are often in line with the goal-directed perspective on OCD. For
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example, at least initially, the young mother in our example reported that she washed her
hands to achieve the goal of alleviating stress. However, we should be cautious in inter-
preting such subjective accounts. Excessive repetition of compulsions could cause
“cognitive dissonance,” an unpleasant tension or conflict between one’s behavior and
one’s explicitly held convictions. To reduce this tension, people may offer posthoc
rationalizations of their compulsions. For example, “I check the door to prevent bur-
glary” could be a goal-directed posthoc rationalization for extreme checking whether
the door is locked, to the point that it becomes almost impossible to leave the house.
Accordingly, Robbins et al. (2012) suggested that OCD may be better characterized as
COD, with obsessions arising as a reaction to compulsions, rather than the other way
around.

An argument against the goal-directed perspective is that compulsive behavior in
many OCD patients is of an egodystonic nature, which means that the symptoms are
inconsistent with the individual’s self-perception. To illustrate, consider an OCD patient
who has to check that his front door is locked three times in a row. He may be perfectly
aware that this is excessive and that the behavior holds no realistic relationship with the
aim of preventing burglary. Still, he finds himself unable to disengage from this checking
behavior. In some cases, the absence of a realistic link is even more obvious, as in the case
of someone who washes his hands to prevent that loved ones will be harmed by bad peo-
ple (Rachman &De Silva, 1978). This egodystonic nature of compulsions is in line with a
habitual account of OCD.

According to a habitual account of compulsive behavior in OCD, the excessive repe-
tition of behaviors according to strict rules, and reinforced by a temporary sense of relief
or stress reduction, should foster the development of habits. As a consequence, contextual
stimuli will start to trigger the behavior habitually, as for example the sight of the front
door evoking an urge to check the lock. While in most people habits such as these never
turn into compulsions, some people may be especially vulnerable. A general propensity
to rely on habitsdeither due to aberrantly strong habit formation or to impaired goal-
directed controldcould lead to these habits spinning out of control. The first direct ev-
idence for habit propensity in OCD came from a study with the slips-of-action paradigm
(with neutral fruit pictures functioning as trigger cues and outcomes). This study demon-
strated that OCD patients were impaired at directing their responses toward still-valuable
outcomes and away from devalued ones (Gillan et al., 2011). Furthermore, their vulner-
ability to slips of action was directly related to symptom severity. As compulsive behaviors
in OCD are usually avoidant, Gillan et al. (2014) set out to further investigate habit pro-
pensity in an aversive context. To this end, they tested patients and matched controls on a
shock avoidance paradigm in which mild shocks, administered through electrodes
attached to the left and right wrist, could be avoided by pressing a foot pedal on the cor-
responding side. Following the learning phase, one of the electrodes was disconnected in
full view of the participants, in order to “devalue” this shock. Following minimal
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training, both patients and controls performed less avoidance responses for the “deval-
ued” shock. However, when the training duration was extended, thereby providing
more opportunity for habit learning, a subset of the OCD patients showed evidence
for dominant habitual control by continuing to press the pedal that avoided the “deval-
ued” shock, which was associated with a self-reported urge to respond. In a subsequent
fMRI study, this subjective urge was related to hyperactivity of the caudate (Gillan et al.,
2015). The authors concluded that, counterintuitively, more activity in the goal-directed
network (in the absence of changes in the habit network) relates to a goal-directed
impairment in OCD, shifting the balance of control toward compulsive habits. Relat-
edly, hyperactivity of components of the goal-directed networkdthe caudate and the
vmPFC/orbitofrontal cortexdhas been identified as a relatively consistent neurobiolog-
ical marker of OCD (Whiteside, Port, & Abramowitz, 2004).

The relationship between habit propensity and compulsive symptomatology may not
be restricted to OCD patients, but rather appears to be continuous in the general pop-
ulation. In a sample of 93 healthy, young adults, scores on the ObsessiveeCompulsive
InventorydRevised were related to goal-directed performance on the slips-of-action
paradigm. All subscales except for Hoarding were negatively related to the ability to
selectively withhold responses toward no longer-valuable outcomes (i.e., Washing,
Checking, Neutralizing, Ordering, and Obsessing), although after other variables were
controlled for (including stress, anxiety, and depression), only the Checking subscale
remained a significant predictor of the balance between goal-directed and habitual con-
trol. Interestingly, a recent metaanalysis suggested that this symptom dimension is
strongly related to cognitive deficits in planning and inhibition (Leopold & Backenstrass,
2015), which could contribute to impaired goal-directed control.

Finally, a habitual account of compulsions may not necessarily be at odds with the
view that cognitive biases play an important role in OCD. As mentioned before in the
context of eating disorders, perfectionism in OCD (Egan et al., 2011) could foster
the formation of habits by leading to strict behavioral rules and routines. Indeed, perfec-
tionism has been related to symmetry and ordering behaviors that may be aimed at or
reinforced by reaching the feeling of “just right” (Brakoulias et al., 2014). Memory un-
certainty (and intolerance thereof) is another cognitive bias that has been hypothesized to
contribute toward OCD symptoms. It is possible, however, that memory uncertainty
arises as a consequence (rather than cause) of dominant S-R habitual control over avoid-
ance behavior. In line with this idea, several studies have provided preliminary evidence
that memory uncertainty increases with repeated checking (Boschen & Vuksanovic,
2007; Radomsky, Dugas, Alcolado, & Lavoie, 2014; Van Den Hout & Kindt, 2004).
For example, participants were instructed to engage in repeated checking in an interac-
tive computer animation that displayed light bulbs or gas rings. The researchers found
that repeated checking reduced subjective trustworthiness, vividness, and detail of mem-
ory of the checked events (while accuracy of the memory was unaffected). To the extent
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that habits are triggered by cues and performed with less awareness, this could account for
this increase in OCD-like memory uncertainty. Of course, memory uncertainty could
motivate further checking, thus creating a vicious cycle. Finally, another effect of behav-
ioral repetition is to undermine the subjective experience of having exerted effort and of
having acted responsibly, which relates to another cognitive bias in OCD (Van Den Hout
& Kindt, 2004).

The evidence for, and speculations regarding, a role of habits in OCD are summarized
in Fig. 15.5. Firstly, as reviewed above, there is converging evidence for general habit
propensity in OCD. At least, in part, this appears to be driven by impaired goal-
directed control, with one study relating this to hyperactivity of the goal-directed neural
circuitry. It remains an outstanding question whether aberrantly strong habitual control
also contributes to the imbalance. To gain a deeper understanding of habit development
and the balance with goal-directed control, this field is in urgent need of suitable animal
models that allow for investigation of causal links between behavioral repetition and
OCD symptoms, and the neural basis thereof (Camilla d’Angelo et al., 2014). Finally,
the relationship between cognitive biases and avoidance habits in OCD offers an inter-
esting avenue for future research.

Habit propensity in other disorders
In the previous section, evidence was reviewed for a role of habits in compulsive behavior
in addiction, obesity, eating disorders, and OCD. However, an imbalance between goal-
directed and habitual control has also been demonstrated in several other disorders, as will
be reviewed below.

Figure 15.5 Habits in obsessiveecompulsive disorder. Summary of hypothesized links between
different factors influencing the shift in the balance from habitual to goal-directed action control.
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Gilles de la Tourette syndrome
Gilles de la Tourette syndrome (GTS) is characterized by recurrent stereotyped move-
ments or vocalizations, which are often performed unintentionally. GTS shows overlap
with OCD, with complex tics sometimes being hard to distinguish from compulsions.
Like habits, these tics are exacerbated by stress. GTS patients have been shown to perform
worse than healthy controls on the slips-of-action task, providing evidence for habit pro-
pensity (Delorme et al., 2016). Furthermore, the severity of their tics correlated nega-
tively with performance, and an exploratory analysis revealed that the latter correlated
with estimated white matter tract strength between the putamen and motor cortex,
implicating the integrity of the habitual system in their tendency to rely on habits. Finally,
tic severity in a subset of unmedicated patients correlated with tract strength between the
putamen and the supplementary motor. Therefore, it appears that integrity of the
habitual network is related to both habitual control and tics severity.

Autism spectrum disorder
Another clinical condition in which evidence has been found for habit propensity is
autism spectrum disorder (ASD) (Alvares, Balleine, Whittle, & Guastella, 2016).
Restricted and repetitive behaviors, as well as insistence on sameness, are core symptoms
of ASD. To investigate whether a tendency to rely on habits underlies these symptoms,
Alvares and colleagues tested adult patients on an outcome devaluation task that was
based on that used by Tricomi et al. (2009; but without an extended training condition).
They showed that the ability to selectively reduce responding for a prefed food reward
was reduced in autism. Interestingly, however, an earlier study had failed to find evidence
for habit propensity as assessed with the slips-of-action task, in children between 8 and
12 years with ASD (Geurts & de Wit, 2013). A possible explanation for this discrepancy
is that the adults had a longer history of habitual behavior which may have led to stronger
development of the underlying neural circuitry (Alvares et al., 2016). Future research
should address this interesting hypothesis about the interaction between disease history
and habit propensity in ASD (and indeed other disorders). Relatedly, healthy aging
has been shown to lead to reduced goal-directed control (de Wit, van de Vijver, &
Ridderinkhof, 2014). Thus, the aging brain may become increasingly vulnerable to
the development of a general imbalance between goal-directed and habitual control,
which may compound with disorder-related habit propensity.

Schizophrenia
Patients with schizophrenia were tested with a novel task that displayed a snack machine
that could be tilted to the right or left to obtain snacks (Morris, Quail, Griffiths, Green, &
Balleine, 2015). Following instrumental training, one of the snacks was devalued by
showing a movie of one of the snacks infested with cockroaches. This devaluation pro-
cedure led to reduced responding in healthy controls but failed to affect responding by
patients. This impairment was related to reduced caudate engagement during valued ac-
tions over devalued.
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Social anxiety disorder
Social anxiety disorder (SAD) patients (Alvares, Balleine, & Guastella, 2014; Alvares et al.,
2016) performed worse than matched healthy controls on an outcome devaluation
(through satiation) task that was based on the design by Tricomi et al. (2009; but without
an extended training condition). SAD is not typically considered to be compulsive, but
still the results do not seem altogether surprising in light of the finding that SAD patients
scored significantly higher on anxiety and stress than the matched controls, taken
together with several demonstrations that stress impairs goal-directed control (e.g.,
Dias-Ferreira et al., 2009; Schwabe & Wolf, 2009). Furthermore, individual differences
in general anxiety and psychological stress (as well as impulsivity) within the social anxiety
group correlated negatively with test performance (Alvares et al., 2014).

Parkinson disease
Finally, Parkinson disease (PD) has also been associated with a disease severitye
dependent goal-directed impairment (de Wit, Barker, Dickinson, & Cools, 2011), in
line with progressive dopamine depletion of ventral corticostriatal circuitry.

To conclude, habit propensity has been demonstrated in a number of different psy-
chopathologies. GTS is very closely related to OCD, but for the other disorders it is less
obvious that compulsivity is a core characteristic. This begs the question as to how spe-
cific habit propensity is to disorders of compulsivity.

DISCUSSION

Challenges and future directions
In the previous section, evidence was presented for habit propensity not only in compul-
sive disorders but also in ASD, schizophrenia, SAD, and PD. Habit propensity may be
fostered across these different disorders by factors that are shared by most psychiatric disor-
ders, such as stress and cognitive control impairments. As discussed by Gillan et al. (2017),
this raises the possibility that habit propensity as a mechanism for compulsivity lacks clinical
specificity. Alternatively, it could be argued that categorical diagnoses obscure common-
alities between these disorders, specifically relating to compulsivity. In line with the latter
option, there are high rates of comorbidity between these different disorders, and arguably
there is some degree of compulsivity present in all of these disorders. To address this issue,
Gillan et al. (2017) propose that to further advance the field, dimensional studies should be
conducted that transcend disorder-specific studies. The first such dimensional study was
conducted into model-based/model-free decision-making (computational parameters
that have been proposed to capture goal-directed/habitual action control) with a large
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sample of almost 2000 participants that completed the two-step task online and filled out
several questionnaires (Gillan, Kosinski, Whelan, Phelps, & Daw, 2016). Model-based
decision-making was negatively correlated with self-reported OCD symptomatology
and was also related to alcohol abuse and eating disorders. Finally, a factor analysis was con-
ducted to distill three factors from the different questionnaires that were used, one of which
pertained to a loss of control over repetitive action and thought. This factor was a better
predictor of model-based decision-making than any of the individual questionnaires and
was dissociable from the two other factors (anxious depression and social withdrawal).
This study thus provides support for the specificity of impaired model-based decision-
making as a transdiagnostic mechanism for compulsivity.

A further improvement of this line of research into habits in compulsivity would be
the development of tasks that tap more specifically into the mechanisms underlying the
balance between goal-directed and habitual control (i.e., strong habit formation, weak
goal-directed control, or both), which may reveal more subtle differences between dis-
orders. An indirect way to achieve this is to combine the outcome devaluation task with a
neurobiological measure that can assess the neural dual-system balance (e.g., Sjoerds et al.,
2013). However, the most direct way to tap more directly into impairments of goal-
directed control versus aberrantly strong habit formation would be to study behavioral
flexibility as a function of behavioral repetition. It is a caveat of current outcome deval-
uation studies in patient populations (unlike several animal studies in the addiction liter-
ature) that these usually fail to manipulate the extent of training (for one notable
exception, see Gillan et al., 2014). Unfortunately, at present there is no experimental
paradigm available that reliably reveals habit formation as a function of behavioral repe-
tition (de Wit et al., in press). Yet another alternative approach is offered by the afore-
mentioned computational approaches that attempt to dissociate between two learning
algorithms for goal-directed (“model-based”) and habitual strategies (“model-free”) in
a two-step task (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). Using this
approach, alcohol and stimulant use have been shown to be negatively related to the
model-based parameter. Furthermore, obese individuals with BED (but not without)
and OCD patients also showed impaired model-based control (Voon et al., 2015; for
a review, see Voon, Reiter, Sebold, & Groman, 2017). The observation that variations
in the model-based parameter are related to disorders of compulsivity could suggest
that habit propensity in these disorders is primarily driven by impaired goal-directed con-
trol. However, a caveat of this interpretation is that the model-based parameter appears to
explain most of the variance in performance across (clinical and nonclinical) studies with
this paradigm. The question arises whether the model-free parameter adequately captures
habits, and indeed several researchers have recently raised this concern (Lingawi et al.,
2016; Voon, Reiter, Sebold, & Groman, 2017).

An alternative behavioral paradigm that can be used to dissociate between flexible
goal-directed control and stimulus-driven habits is the (outcome-specific) Pavloviane
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instrumental transfer (PIT) task. During the instrumental learning phase of the standard
PIT task, subjects learn to perform instrumental responses to obtain a rewarding outcome
(e.g., R1-O1; R2-O2). In the second phase, they learn that Pavlovian stimuli are predic-
tive of these outcomes (e.g., S1-O1; S2-O2). Finally, in the critical test phase, they are
given the opportunity to perform the instrumental responses while the Pavlovian stimuli
are presented in the background.With this design, it has been shown that Pavlovian stim-
uli will bias responding toward the signaled outcome (e.g., S1 triggers R1 and S2 triggers
R2, presumably through S1-O1-R1 and S2-O2-R2 associations). An elaborate discus-
sion of this paradigm is beyond the scope of the present chapter, so the interested reader
is referred to recent reviews (Cartoni, Balleine, & Baldassarre, 2016; Corbit & Balleine,
2016). Importantly, however, the PIT effect is undiminished by outcome devaluation,
e.g., through satiation (Watson, Wiers, Hommel, & De Wit, 2014; but for contrasting
findings, see, e.g.,; Seabrooke, Le Pelley, Hogarth, & Mitchell, 2017) and engages the
habit neural circuitry (e.g., van Steenbergen, Watson, Wiers, Hommel, & de Wit,
2017). Therefore, the PIT task shows promise as a model of stimulus-driven reward
seeking, in for example addiction (Corbit & Janak, 2016; Hogarth & Chase, 2011) and
obesity (Watson et al., 2017). The potency of PIT effects lies in the fact that they will
readily generalize to any Pavlovian stimulus that becomes associated with a certain
outcome, like drugs or food. In other words, the drug-/food-seeking behavior does
not need to be extensively repeated in the presence of that stimulus for it to trigger future
habitual responding. PIT could therefore provide another important pathway to
stimulus-driven, outcome-insensitive, and possibly even compulsive behavior.

Another important suggestion for future research concerns the consideration of indi-
vidual differences in cognitive control functions. It is plausible that cognitive control
functions, such as working memory and response inhibition, influence habit propensity,
but this relation is still not well understood and should be investigated in future research.
In light of well-documented impairments in these functions in disorders of compulsivity,
future patient studies should control for this by including standardized behavioral mea-
sures of these constructs.

Finally, to link habit formation directly with the development of compulsive
behavior, insensitivity to outcome devaluation in extinction in animal/human models
needs to be directly related to persistence of behavior despite the experience of negative con-
sequences, as has been reported in animal studies in the substance abuse literature (e.g.,
Pelloux, Everitt, & Dickinson, 2007).

Treatment
A transdiagnostic approach to compulsivity encourages the translation of successful treat-
ments across diagnostic boundaries. Insight into the processes that underlie
compulsivitydincluding potentially the balance between goal-directed and habitual
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controldcan further guide the development of effective treatments of disorders of
compulsivity and formulation of treatment targets.

Impairments in goal-directed control may limit the capacity for behavioral change
through standard cognitive-behavioral treatment. This possibility received support
from a recent study in patients with SAD (Alvares et al., 2014), with goal-directed
impairment being a negative predictor of treatment outcome. In this case, standard
cognitive-behavioral treatment may be boosted by strengthening goal-directed control,
by procedures that aim to break the maladaptive habit, and/or by capitalizing on the rela-
tively strong habitual system to encourage positive behavioral change. Below, several
such treatments are mentioned and summarized in the framework of dual-system theory
in Fig. 15.6. By no means is this intended to be an exhaustive overview, and all of these
different treatments should be regarded as promising components of a larger cognitive-
behavioral therapy protocol, as opposed to being stand-alone treatments.

Strengthening goal-directed control
Clinical interventions that aim to strengthen goal-directed control (and related cognitive
control functions) include cognitive remediation therapies (CRTs). Preliminary investi-
gations in this area suggest that CRT can in some cases increase the effectiveness of stan-
dard cognitive-behavior therapy. For example, a working memory training in alcoholics
appeared to be effective in decreasing alcohol intake (Houben, Wiers, & Jansen, 2011),
and CRT is also thought to improve cognitive flexibility in individuals with AN
(Dingemans et al., 2014; Tchanturia et al., 2007). Promising results have also been found
with CRT aimed at improving response inhibition to counter overeating and obesity (for
a review, see Jansen et al., 2015). Another approach is offered by episodic future thinking
(EFT). EFT aims to support goal-directed control over behavior by training people to

Figure 15.6 Behavioral therapeutic interven-
tions that may predominantly target the goal-
directed versus habitual system.
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mentally simulate future events. For example, this treatment has been shown to reduce
calorie intake in obese individuals (Daniel, Stanton, & Epstein, 2013).

Relatedly, efforts to reduce stress in patients could improve goal-directed behavioral
control. Soares et al. (2012) showed that in college students, a period of no stress reversed
the negative effects of stress (during exam period) on the balance between goal-directed
and habitual control and partially reversed associated decreases in caudate and increases in
putamen volume.

Identifying habit trigger cues
Habits are contextually dependent. Changing habits starts, therefore, with insight into the
(external and/or internal) cues that trigger these. This can be achieved through behav-
ioral monitoring (e.g., a food diary) and can be used for the formulation of a functional
analysis that describes the three-term (stimulus: response / outcome) contingency be-
tween the triggers, maladaptive behaviors, and outcomes. Psychoeducation is an addi-
tional tool that can be used to teach patients about identifying trigger cues and
creating awareness of the development of maladaptive habits.

Removal or avoidance of habit triggers
According to the “habit discontinuity hypothesis,” S-R habits can be disrupted by a
change in context, thereby providing a window of opportunity for adapting behavior
in light of one’s current goals (Verplanken, Walker, Davis, & Jurasek, 2008). Therefore,
once triggers of maladaptive habits have been identified, these shoulddif feasibledbe
removed from the individual’s direct environment, or otherwise avoided. Triggers can
be part of a physical environment (e.g., a bar where one regularly goes to drink) or a social
environment (e.g., the group of people in whose company ones uses drugs). In line with
this idea, Heatherton and Nichols (1994) found that attempts to change some undesirable
aspect of one’s life were more successful in participants who moved to a new location
around the same time. Less invasive ways of changing the context could be, for example,
redecorating one’s house after a return home from rehab. Finally, triggers of (maladap-
tive) habits can also be internal, i.e., certain moods or thoughts, in which case those
need to be addressed (e.g., as part of cognitive-behavioral therapy).

Implementation intentions
Avoiding triggers of habits is often not entirely feasible. In these cases, when the
stimuluseresponse associations that underlie a maladaptive habit have been identified,
implementation intentions (IIs) can be used to replace these with a more desirable habit
(which has been proposed to be more effective than simply suppressing the old habit; see,
e.g., Adriaanse, van Oosten, de Ridder, deWit, & Evers, 2011). IIs are concrete “if-then”
plans that link the critical trigger cue or situation with the new behavior (Hagger et al.,
2016). It has been proposed that IIs create “instant automaticity” (Gollwitzer, 1993).
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Therefore, this strategy may capitalize on a relatively intact habitual system to encourage
behavioral change. Implementation intentions have been shown to successfully change
existing unwanted habits, such as unhealthy diets (Adriaanse, Vinkers, De Ridder,
Hox, & De Wit, 2011). A recent metaanalysis suggested that this strategy is also effective
in clinical samples (Toli, Webb, & Hardy, 2016), but more research is needed to assess
their effectiveness in reducing compulsive behavior.

Contingency management
Contingency management (CM) means that desirable behavior is positively reinforced,
which could lead to the formation of adaptive habits. For example, abstinence or refrain-
ing from an undesirable behavior is positively reinforced with vouchers, tokens, or
money. CM is most regularly employed in the treatment of drug abuse (Higgins, Heil,
& Sigmon, 2013).

Habit reversal therapy
Habit reversal therapy (HRT) is an intervention that is used to reduce a wide range of
undesired, repetitive behaviors, including tics. It consists of several components, but an
important one is that the patient is trained to link critical situations with a behavior
that replaces the tic and that is incompatible with the tic at the motor level, as for example
isometric tensing of the muscles opposite to the tic movement (Bate, Malouff,
Thorsteinsson, & Bhullar, 2011).

Exposure response prevention
Exposure response prevention (ERP) is the behavioral treatment of choice for OCD. In
ERP, OCD patients are exposed to stimuli that trigger an obsession and/or compulsion,
and they practice suppressing the compulsive behavior (Abramowitz, 1996). ERP has also
been used in addiction (Kaplan, Heinrichs, & Carey, 2011), and has been translated to
eating behavior, with food cue ERP aiming to break the association between food-
associated cues (like the sight and smell of food, or specific situations/moods or thoughts)
and thereby reduce overeating and binge eating (Jansen et al., 2015). However, for a
detailed discussion of the limitations of extinction treatments, the interested reader is
referred to Bouton (2014).

Cognitive bias modification
Cognitive bias modification (CBM) aims to change automatic biases regarding disorder-
related stimuli, as for example the sight of drugs in substance abuse. Such stimuli are
thought to strongly attract the attention, thereby allowing the cue to trigger habitual re-
sponses (next to inducing craving). Attentional bias retraining aims to train attention
away from the location of these stimuli (e.g., using a visual probe task) and has proven
to be effective in alcohol-dependent individuals (e.g., Schoenmakers et al., 2010).
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Another bias concerns the tendency to approach reward-associated cues, as for example
drugs. The approach bias can be retrained with the approach-avoidance task. For
example, participants are trained to use a joystick to move away from alcohol pictures
(e.g., Wiers, Eberl, Rinck, Becker, & Lindenmeyer, 2011). CBM may also be effective
in the context of OCD (Najmi & Amir, 2010), and food reward (Kemps, Tiggemann,
Orr, & Grear, 2014), but further research is required to establish whether this is a prom-
ising avenue for treatment of these conditions.

Pharmacological and neuromodulatory treatment
The different behavioral treatments of compulsive behavior discussed here may be further
enhanced by psychopharmacological and neuromodulatory interventions. Neuroscien-
tific investigations of compulsivity across disorders and of the balance between goal-
directed and habitual control are of crucial importance here to identify pharmacological
targets, which requires not only human studies but, importantly, also animal research
with adequate models of compulsivity.

For instance, the role of dopamine in habit formation and the dysregulation of the
dopamine system across disorders of compulsivity suggest that this is a promising thera-
peutic target. Indeed, although OCD is typically treated with selective serotonin reup-
take inhibitors (SSRIs), antipsychotic (dopamine antagonists) have also shown promise
as an add-on medication (Cavedini, Bassi, Zorzi, & Bellodi, 2004). Conversely, Pelloux,
Dilleen, Economidou, Theobald, and Everitt (2012) found that an SSRI reduced (over-
trained) compulsive drug seeking in rats, thereby pointing to its potential to reduce
compulsive cocaine seeking in patients (Ersche et al., 2011).

Deep brain stimulation (DBS) is a neuromodulatory intervention that involves
implanting electrodes in the brain that send electrical impulses. The reported efficacy
of DBS to the striatum (specifically, the nucleus accumbens) in OCD (Denys et al.,
2010) and addiction (Muller et al., 2009) is consistent with the involvement of cortico-
striatal circuits across compulsive disorders. DBS (to the nucleus accumbens) may also
lead to symptom alleviation in AN patients (Wu et al., 2013). Another neuromodulatory
intervention is repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain
stimulation technique that targets the dorsolateral PFC. There is preliminary evidence
that rTMS has some efficacy across disorders, reducing cravings and consumption in sub-
stance dependence (Barr et al., 2011), decreasing compulsions and obsessions in OCD
(Blom, Figee, Vulink, & Denys, 2011), and reducing anxiety and potentially the urge
to exercise in AN (McClelland, Kekic, Campbell, & Schmidt, 2015). Future research
should determine to what extent DBS and TMS affect the balance between goal-
directed and habitual control.

Summary and conclusions
The present chapter provides a transdiagnostic perspective on compulsivity and identifies
as an important underlying mechanism an imbalance between goal-directed and habitual
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control. Clearly, multiple processes play a role in disorders of compulsivity, such as sub-
stance abuse, obesity, eating disorders and OCD, with the main determining factors of
compulsivity differing between disorders and even between individuals with the same
diagnosis. However, there is evidence that in each of these disordersdto different extents
and due to different reasonsdan imbalance between goal-directed and habitual control
plays a central role. As highlighted in this chapter, there still remain many unanswered
questions in this field, exposing the need for integrated future research effortsdin animals
and humans, behavioral and neurobiologicaldto uncover the role of habits in
compulsivity.
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CHAPTER 16

Drug Addiction: Augmented Habit
Learning or Failure of Goal-Directed
Control?
Teri M. Furlong1, Laura H. Corbit2
1Neuroscience Research Australia, Randwick, NSW, Australia; 2Department of Psychology, The University of Toronto,
Toronto, ON, Canada

INTRODUCTION

A striking feature of drug addiction is the individual’s continued drug use despite extreme
negative consequences to long-term health and well-being. This apparent lack of flexible
control over behavior has led to increased interest in the role of a habit learning process in
addiction (Everitt & Robbins, 2016; Everitt et al., 2008; Ostlund & Balleine, 2008).
Drugs of abuse are proposed to alter the brain to influence decision-making, reducing
behavioral control of reward seeking and promoting habitual drug-seeking behaviors
that continue without consideration of their consequences (Everitt & Robbins, 2013,
2016; Ostlund & Balleine, 2008). Thus, one possibility is that drug habits form like other
habits as a result of repeated performance of drug-related behaviors and incremental
strengthening of associations with environmental stimuli which, in time, come to trigger
drug craving and seeking responses (Belin, Jonkman, Dickinson, Robbins, & Everitt,
2009). However, the habitual nature of drug abuse displayed by addicts differs from
normal, adaptive habits, which can be more readily suppressed in the face of direct nega-
tive feedback. Therefore, another possibility is that drug habits form, not as a result of
direct strengthening of stimuluseresponse associations, which are thought to underlie
habit learning, but rather because flexible, goal-directed control of behavior is compro-
mised. This could be due to direct effects of drug exposure on the brain, or, at least in
humans, could relate to preexisting traits. A failure of goal-directed control would allow
for premature and predominant habitual control of behavior where it would not other-
wise exist, as well as a failure to suppress established habits when they no longer serve the
needs or desires of the individual. The aim of this chapter is to summarize research
demonstrating accelerated habitual control following exposure to drugs of abuse and
to evaluate whether such habits are the result of augmented habit learning and/or failures
of flexible control. By examining drug-related changes to the parallel neural circuits
known to mediate goal-directed and habit learning, we can begin to understand how
drug use impacts the balance between these systems. The research presented supports
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the idea that behaviors performed following exposure to drugs of abuse are not only the
result of augmented habits but also result from the failure of the goal-directed system that
otherwise regulates these habits.

Experimental models of habitual versus goal-directed behavior
We perform many behaviors with a specific goal in mind. Such behaviors can be
controlled flexibly; we choose to respond when the anticipated outcome of responding
is desired and can also withhold responding when the outcome is unwanted. Thus,
so-called goal-directed behaviors are controlled by both the contingent relationship be-
tween a response and its outcome and evaluation of that outcome (Balleine & Dickinson,
1998). This flexible, ongoing deliberation over the potential outcomes of our behaviors is
cognitively demanding. In contrast, habitual actions are efficient since they are performed
without consideration of their consequences (Ostlund & Balleine, 2008). Habits are
instead based on reinforcement history; over time, environmental stimuli that are present
when particular responses are reinforced come to elicit those same behaviors again. Such
responses are adaptive; they develop, after all, out of extended experience where a partic-
ular response has been successful in producing reinforcement. Further, they allow for
automated behavior and free up limited cognitive resources for more demanding tasks
(Ostlund & Balleine, 2008). Associative learning accounts propose that initially actions
are driven by responseeoutcome associations, but that with repeated performance
stimuluseresponse associations are strengthened and, under constant conditions, eventu-
ally dominate behavioral control (Adams, 1982; Dickinson, 1985).

In the laboratory, goal-directed actions are best distinguished from habitual actions
using an outcome devaluation task. In a commonly used version of this task, hungry
rats are trained to press a lever for a food outcome. The value of the food is then typically
reduced either by prefeeding it to induce outcome-specific satiety or by conditioning a
taste aversion (Adams & Dickinson, 1981; Balleine & Dickinson, 1998). Performance of
the instrumental response is then tested to assess any impact of the devaluation treatment.
Rats will reduce responding if lever pressing is driven by expectation of the outcome
because of an encoded responseeoutcome association and the current value of the
outcome. However, when under habitual behavioral control, for example, following
extended instrumental training, responding will continue despite the reduced desirability
of the outcome (Adams, 1982). Under these conditions, behavior is argued to be stimulus
driven, i.e., driven by the context and situational cues or more proximal stimuli such as
the sight of the lever. Over time, these stimuli have become linked with the response
resulting in a stimuluseresponse association that triggers responding when encountered,
without consideration of the current value of the outcome. Importantly, tests of habitual
versus goal-directed responding are typically conducted in extinction in order to assess
which association underlies responding (responseeoutcome or stimuluseresponse)
without the opportunity for new learning via feedback within the session. When
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feedback is provided during the session, usually by contingent delivery of the outcome,
animals displaying habitual behavior will typically come to suppress responding for the
devalued outcome over the course of the session (Adams, 1982; Furlong, Corbit, Brown,
& Balleine, 2017; LeBlanc, Maidment, & Ostlund, 2013; Ostlund & Balleine, 2008).
Thus, habits are not entirely without cognitive control as they are suppressed by negative
feedback to the action, which then allows for a goal-directed strategy that is sensitive to
outcome value to again regulate performance. Conceptually similar tasks have also been
developed for human subjects that distinguish between goal-directed and habitual re-
sponses (as described in more detail below) (deWit et al., 2012; Hogarth, Chase, & Baess,
2012; Tricomi, Balleine, & O’Doherty, 2009).

The impact of drugs of abuse on experimental models of habitual
behavior
A vast number of studies have examined drug use in animals. However, relatively few
have directly assessed whether animals flexibly control drug-seeking behavior. Several
studies demonstrate that extended self-administration of cocaine, alcohol, or nicotine pro-
motes habitual control of drug-seeking behavior (Clemens, Castino, Cornish, Goodchild,
& Holmes, 2014; Corbit, Nie, & Janak, 2012; Zapata, Minney, & Shippenberg, 2010).
For example, in order to demonstrate habitual cocaine seeking, animals were trained to
perform a sequence of responses; a seeking response (e.g., press left lever) followed by a
taking response (e.g., press right lever) that ultimately lead to response-contingent intra-
venous cocaine (Olmstead, Parkinson, Miles, Everitt, & Dickinson, 2000; Zapata et al.,
2010). The drug-taking link of the chain was then devalued by extinction by allowing
animals access to only the taking lever and withholding any cocaine. The effect of this
manipulation on performance of the seeking response was then assessed after different
amounts of self-administration training (Zapata et al., 2010). With limited training,
extinguishing the taking lever reduced responding on the seeking lever when it was
made available in a subsequent session. However, this sensitivity to devaluation was
reduced by extended training, indicating that control of cocaine seeking had become
habitual.

Similarly, extended but not brief, nicotine and alcohol self-administration have also
been shown to produce habitual control (Clemens et al., 2014; Corbit et al., 2012). In
these studies, animals were trained to self-administer intravenous nicotine (Clemens
et al., 2014) or oral alcohol (Corbit et al., 2012) and were then tested for sensitivity to
devaluation of the drug itself by either pairing its administration with lithium chloride
injection or by allowing it to be consumed to satiety, respectively. In both cases, animals
were sensitive to devaluation following limited but not extended training. These types of
studies involving drug self-administration provide the most direct evidence that drug-
seeking behaviors become habitual over the course of extended training. They demon-
strate that drug use can start casually and be flexibly controlled, but with extended
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training and drug exposure, this flexibility is lost, which contributes to the transition from
recreational to problem drug use.

While relatively few studies have directly examined the habitual control of drug
taking itself, a larger number of studies have examined how drug exposure affects behav-
ioral control more generally, in situations unrelated to obtaining drugs. In such studies,
the experimenter administers drugs to the subjects who are then subsequently trained
to perform an instrumental response for food. Outcome devaluation is then used to
manipulate the value of the food reward, and sensitivity of performance is assessed.
Mere exposure to a range of psychostimulants promotes habitual responding, including
D-amphetamine, methamphetamine and cocaine (Corbit, Chieng, & Balleine, 2014;
Furlong, Corbit, et al., 2017; LeBlanc et al., 2013; Nelson & Killcross, 2006; Nordquist
et al., 2007). In each instance, relatively low doses of the drug are administered over a
number of days, which is likely to better model initial drug use than chronic, heavy
drug use.

Although these studies demonstrate that augmented habitual control following psy-
chostimulant exposure resembles that resulting from extended instrumental training, such
habits differ in that they are insensitive to feedback and continue in the face of negative
consequences. As described in the previous section, overtraining-based habitual responses
can be suppressed with response-contingent feedback, whereas it has been shown that
drug-induced habitual responses are not (Furlong, Supit, Corbit, Killcross, & Balleine,
2017; Furlong, Corbit, et al., 2017; LeBlanc et al., 2013). That is, chronic pretreatment
with cocaine or methamphetamine produces lever responses that are insensitive to deval-
uation not only when tested in extinction but also when the now unpalatable food
outcome is delivered during test (Furlong, Corbit, et al., 2017; Furlong, Supit, et al.,
2017; LeBlanc et al., 2013). This resistance to feedback provided by the delivery of a
“punishing” food suggests that the resulting habit differs from those produced by over-
training (Furlong, Corbit, et al., 2017; Furlong, Supit, et al., 2017; LeBlanc et al., 2013;
Ostlund & Balleine, 2008). In accordance, it has also been demonstrated that extended,
but not limited, access to cocaine leads to drug-seeking behavior that is also insensitive to
response-contingent punishment. Specifically, cocaine seeking is not suppressed by
pairing cocaine delivery with a mild-footshock or with a conditioned tone stimulus
that signaled footshock following extended self-administration training (Deroche-
Gamonet, Belin, & Piazza, 2004; Ducret et al., 2016; Vanderschuren & Everitt, 2004).
Thus, both experimenter- and self-administered psychostimulants lead to behavior that
is insensitive to feedback, unlike normal adaptive habits.

Paradigms where the drugs are administered by the experimenter lack the face validity
of drug self-administration paradigms. However, one advantage is that when these
animals are subsequently trained to respond for food, the acute effects of the drug on
locomotion, memory, appetite or other aspects of the task do not affect the interpretation
of performance at test. However, because these studies do not directly assess flexible
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control of a drug-seeking response, the utility of these paradigms for understanding drug
use itself is reduced. Nonetheless, the fact that drug history impacts learning and control
of behaviors reinforced with other rewards is striking. These findings suggest that the
effects of drugs on decision-making capacity are quite general and that even behaviors
learned after the end of drug exposure are prone to control by the habit system, presum-
ably because of long-lasting effects of drugs on the brain. These types of findings are likely
to be equally relevant for understanding the struggles of a recovering addict.

Indeed, chronic drug users demonstrate altered ability to assess outcome value in
decision-making tasks. In these tasks, symbolic rewards are often sought, such as points
in the task or monetary reward upon completion, and so, as described for preclinical
studies above, decision-making capacity in general rather than drug-related behaviors
per se are being assessed. These studies show that chronic drug users have greater diffi-
culty overcoming well-learned responses than healthy individuals (Ersche et al., 2016;
McKim, Bauer, & Boettiger, 2016). For example, following extended training where
participants earned points toward monetary gain by pressing a keypad button, cocaine
addicts continued to respond to stimuli even when they were no longer rewarded (Ersche
et al., 2016). In contrast, healthy controls were sensitive to this change in contingency
and reduced responding to nonrewarded stimuli compared to stimuli that continued
to be rewarded, thus showing sensitivity to the consequences of their responding. Simi-
larly, individuals with a history of a substance use disorder (any drug or alcohol) demon-
strate greater perseverative responding when response contingencies are changed
compared to healthy controls (McKim et al., 2016). These subjects were trained to
respond to particular visual stimuli by making one of four keypad choices. The response
contingency was then changed so that a different keypad choice was required, and the
subjects were given immediate feedback as to whether their responses were now correct
or incorrect. Subjects with a history of substance abuse made more incorrect choices,
which were consistent with the original contingency, than healthy controls, indicating
greater perseverative responding (McKim et al., 2016). Both of these studies suggest
that drug addicts are less sensitive to negative feedback to their actions, and that drug
exposure alters general decision-making capacity, similar to the effects that drugs have
in preclinical studies.

Neurocircuitry underlying habitual versus goal-directed behavior
Drugs of abuse have powerful effects on the central nervous system and interact with the
brains’ reward system. This provides the opportunity for drugs to alter learning-related
plasticity, and such effects presumably underlie the ability of drugs to alter drug-
seeking behaviors (Gremel & Lovinger, 2017; Wolf, 2016). There are a number of
ways this might happen, and to understand how drugs might shift the balance between
goal-directed and habitual control, it is important to consider the neural circuits that
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underlie these response systems. It is now well recognized that two distinct systems
mediate goal-directed versus habitual actions. These center on the dorsomedial striatum
(DMS) and dorsolateral striatum (DLS), respectively (Balleine, Liljeholm, & Ostlund,
2009; Balleine & O’Doherty, 2010; Yin & Knowlton, 2006).

The striatum can be subdivided into dorsal striatum (i.e., DMS and DLS) and ventral
striatum (i.e., nucleus accumbens core and shell). The dorsal striatum is the primary input
site of the basal ganglia and receives glutamatergic projections primarily from the cortex
and thalamus and dopaminergic inputs from substania nigra pars compacta (Gerfen &
Surmeier, 2011; Joel & Weiner, 2000; Yager, Garcia, Wunsch, & Ferguson, 2015).
The dorsal striatum can be further divided across its mediolateral axis on the basis of
distinct anatomical connections (Alexander, DeLong, & Strick, 1986; McGeorge & Faull,
1989). For example, cortical inputs to the dorsal striatum are topographically organized
with DMS receiving inputs from association regions including prelimbic and agranular
insular cortices (Reep, Cheatwood, & Corwin, 2003), and DLS receiving input
from largely somatosensory and motor regions (Alloway, Lou, Nwabueze-Ogbo, &
Chakrabarti, 2006; Ramanathan, Hanley, Deniau, & Bolam, 2002). Another anatomical
consideration is that the dorsal striatum consists predominately of two types of inter-
mingled medium spiny neurons (MSNs; approx. 90%) that differ according to their
downstream projections and neurochemistry (Gerfen & Surmeier, 2011). MSNs of the
so-called direct pathway project directly to the basal ganglia output nuclei (i.e., the
substantia nigra pars reticulata and globus pallidus internus) and express dopamine D1
receptors and the neuropeptide dynorphin (Gerfen & Surmeier, 2011; Kreitzer &
Malenka, 2008; Yager et al., 2015). On the other hand, MSNs that make up the indirect
pathway project indirectly to the basal ganglia output nuclei (i.e., via the globus pallidus
externus and subthalamic nucleus) and express dopamine D2 and adenosine 2A receptors
and the neuropeptide enkephalin (Gerfen & Surmeier, 2011; Kreitzer & Malenka, 2008;
Yager et al., 2015). A balance in activity between these pathways has been proposed to
regulate a variety of striatal functions, the most well studied being motor control,
including the initiation and termination of movement (Kreitzer & Malenka, 2008).
However, the importance and potential dysregulation of the so-called “go” and
“no-go” pathways for behavioral control in general, and in particular for drug addiction,
have also been considered (Yager et al., 2015).

In addition to the anatomical differences between DMS and DLS, important distinc-
tions have also been made regarding the contribution of each to learning and behavioral
control. The DMS is essential for the acquisition and expression of goal-directed
behaviors. When lesions or pharmacological manipulation of the DMS occur prior to
instrumental training, rats can acquire an instrumental response but do not appear to
encode specific responseeoutcome associations. For example, they demonstrate instru-
mental performance that is insensitive to outcome devaluation or manipulations of the
actioneoutcome contingency, following limited training when control rats are sensitive
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to such manipulations (Corbit & Janak, 2010; Yin, Ostlund, Knowlton, & Balleine,
2005). The DMS is also critical for the expression of goal-directed behavior as posttrain-
ing lesions or pharmacological inactivation impair previously established goal-directed
control (Corbit & Janak, 2010; Yin et al., 2005). Furthermore, lesions of the prelimbic
cortex, basolateral amygdala, or mediodorsal thalamus, which provide inputs to DMS,
also reduce sensitivity to outcome value, suggesting that these regions are also part
of the neurocircuitry regulating goal-directed action control (Balleine, Killcross, &
Dickinson, 2003; Corbit & Balleine, 2003, 2005; Corbit, Muir, & Balleine, 2003;
Killcross & Coutureau, 2003; Ostlund & Balleine, 2005). In contrast, the DLS is recog-
nized to mediate habitual behavior as rats with lesions of the DLS fail to develop habitual
responding despite extended training (Faure, Haberland, Conde, & El Massioui, 2005;
Yin, Knowlton, & Balleine, 2004). Further, lesions of the infralimbic cortex or central
amygdala that functionally interact with the DLS also disrupt the normal expression of
habit learning and leave animals sensitive to outcome devaluation under conditions
where control animals are not (Killcross & Coutureau, 2003; Lingawi & Balleine,
2012). Thus, together these findings demonstrate that there are two distinct neural
circuits that mediate goal-directed and habitual behavior that center on medial and lateral
divisions of the dorsal striatum.

In addition to insensitivity to devaluation under extinction conditions, lesions of the
goal-directed neurocircuitry also lead to instrumental actions that are not regulated by
response-contingent feedback (Ostlund & Balleine, 2008). Thus, when the DMS,
basolateral amygdala or mediodorsal thalamus are lesioned, animals either remain
insensitive to outcome devaluation (as they are under extinction conditions) or are
slow to revert to a goal-directed strategy, when given immediate response-
contingent feedback during test (Balleine et al., 2003; Corbit & Balleine, 2005; Corbit
et al., 2003; Ostlund & Balleine, 2008). Thus, these findings suggest that the goal-
directed neurocircuitry is required for regulating sensitivity to outcome value when
feedback is provided.

Several studies also suggest that two distinct neurocircuits centered on the striatum
regulate goal-directed and habitual action control in humans. When goal-directed
actions are performed by healthy individuals (i.e., when there is explicit knowledge of
the responseeoutcome contingency), imaging studies reveal activation of the anterior
caudate (Tanaka, Balleine, & O’Doherty, 2008), as well as the ventromedial prefrontal
cortex and medial orbital cortex (Sjoerds et al., 2013; Tanaka et al., 2008). In contrast,
extensive training of the responseeoutcome contingencies, which leads to insensitivity
to outcome devaluation, and thus a shift to habitual control, is associated with activation
of the posterior putamen (Sjoerds et al., 2013; Tricomi et al., 2009). Furthermore, in
healthy individuals, stronger white matter connectivity between the caudate and its
cortical inputs (i.e., ventromedial prefrontal cortex) predicts goal-directed action control
(i.e., responding to a still-valued outcome), whereas stronger connectivity between the
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posterior putamen and its cortical inputs (i.e., sensorimotor cortex) predicts habitual ac-
tion control (i.e., responding for a no-longer-valuable outcome) (de Wit et al., 2012).
Together these studies suggest that two distinct neurocircuits are responsible for the
balance between goal-directed and habitual performance in humans, similar to those
identified in the rodent. In accordance, the anterior caudate is considered to be function-
ally equivalent to the DMS, which mediates goal-directed action in rodents, and the
posterior putamen in humans is thought to be equivalent to the habit-promoting DLS
in rodents (Balleine & O’Doherty, 2010; Tanaka et al., 2008; Tricomi et al., 2009).

DRUG EFFECTS ON GOAL-DIRECTED AND HABIT SUBSTRATES

While it is well established that actions and habits rely on largely independent circuits,
exactly how drugs act to promote habitual control is only beginning to be understood.
For example, drugs could act to augment plasticity in the DLS and thereby directly
strengthen habit learning. Alternatively, drugs could undermine normal plasticity and
activity within the DMS circuitry and consequently interfere with goal-directed control.
Of course, combinations of these effects are also possible. Importantly, these possibilities
are difficult to disentangle behaviorally (i.e., the outcome devaluation task does not disso-
ciate the two possibilities). However, examining the effects of drugs on the neural circuits
known to control goal-directed versus habitual behaviors can give insight into how each
system is affected and aid in the understanding of the nature of the observed shift in
behavioral control.

Before examining the persistent effects of psychostimulants and alcohol on the dorsal
striatum, it is worth considering that preexisting traits can also influence the development
of habitual behavioral control. One such trait is impulsivity, which is defined as an
inability to withhold responding or to act without thought (Furlong, Leavitt, Keefe, &
Son, 2016; Hogarth et al., 2012; Perry & Carroll, 2008). Impulsivity is highly correlated
with drug use, although for human drug abusers it is often difficult to determine which
came first (Everitt et al., 2008; Perry & Carroll, 2008). However, there is evidence that
impulsivity in drug users is in part genetically determined, e.g., it has been demonstrated
that while impulsivity is increased in drug users compared to healthy controls, the same is
true of the addicts’ siblings who were nondrug users (Ersche et al., 2012; Ersche, Turton,
Pradhan, Bullmore, & Robbins, 2010). Importantly, high-impulsivity traits in humans
are associated with a reduction in goal-directed behavior (Hogarth, Chase, & Baess,
2012). That is, nondrug users who score highly on measures of impulsivity also show
reduced sensitivity to outcome devaluation compared to individuals with low impulsivity
scores (Hogarth et al., 2012). Furthermore, the strength of white matter connectivity
between the putamen and its cortical inputs is associated with habitual actions in healthy
individuals (as described above) (de Wit et al., 2012). These findings suggest that individ-
ual differences in trait impulsivity and brain structure promote habitual behavioral
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control. Therefore, a tendency toward habits is possibly not only a consequence of drug
exposure but also a preexisting risk factor, as is the case for impulsivity (Everitt et al.,
2008; Perry & Carroll, 2008).

Psychostimulants
Psychostimulants act acutely to increase dopaminergic signaling in dorsal striatum (Barrot
et al., 1999; Bustamante et al., 2002), and repeated exposure, at doses that augment
habitual behavior, sensitize the dorsal striatum so that dopamine release is subsequently
potentiated, i.e., there is greater dopamine release in chronically exposed animals with
subsequent stimulation compared to drug-naïve animals (Howell & Kimmel, 2008;
Patrick, Thompson, Walker, & Patrick, 1991; Paulson & Robinson, 1995; Yamada
et al., 1988). Thus, it has been proposed that changes in dopamine activity may promote
the transition to habitual action (Nelson & Killcross, 2006; Wickens, Horvitz, Costa, &
Killcross, 2007). In addition, persistent structural changes to the dorsal striatal dopamine
system have also been reported following doses of psychostimulants that augment habits
(i.e., a relatively low dose, repeated over a number of days, with at a short abstinence
period so that findings are not confounded by the acute administration of the drug).
These changes include reductions in dopamine transporter binding (DAT), dopamine
D1 and D2 receptor binding and levels of dopamine’s precursor enzyme, tyrosine
hydroxylase (Kleven, Perry, Woolverton, & Seiden, 1990; Kousik, Carvey, & Napier,
2014; Luscher & Malenka, 2011; Maggos et al., 1998; Schwendt et al., 2009). However,
findings are largely inconsistent, especially for cocaine, where no changes to DAT or
dopamine receptor density have also been reported using similar dosing schedules
(Boulay, Duterte-Boucher, Leroux-Nicollet, Naudon, & Costentin, 1996; Claye,
Akunne, Davis, DeMattos, & Soliman, 1995; Pilotte, Sharpe, & Kuhar, 1994;
Przewlocka & Lason, 1995). Thus, it is possible that in order to detect these changes
to the dopamine system, longer exposure periods or moderately higher doses are required
(Nader, Sinnott, Mach, & Morgan, 2002; Thanos et al., 2017), or alternatively that
persistent structural changes to the dopamine system following low doses of psychosti-
mulants are not responsible for dopamine sensitization or the development of habits.

In addition to effects on dopamine, chronic exposure to psychostimulants is well
recognized to disrupt the glutamate system and produce neuroplastic changes that
contribute to the development of addiction. These changes have been extensively
examined and reviewed for the ventral striatum (Grueter, Rothwell, & Malenka,
2012; Kalivas, 2009; Kalivas & Volkow, 2011) and are thought to contribute to a
wide-range of drug-associated behaviors implicated in the development of addiction
including initiation and maintenance of drug intake, reinforcement learning, and drug
relapse (Belin et al., 2009; Grueter et al., 2012; Kalivas, 2009). A much smaller literature
also demonstrates persistent drug-induced changes to the glutamate system in the dorsal
striatum. Although one view is that a transition in behavioral control from the ventral to

Drug Addiction: Augmented Habit Learning or Failure of Goal-Directed Control? 375



the dorsal striatum may underlie the development of compulsive, habitual drug seeking
(Everitt & Robbins, 2013, 2016), it is unclear whether changes to ventral striatum are a
necessary first step or whether changes to ventral and dorsal striatum occur in parallel.

Doses of psychostimulants that augment habits produce persistent changes to dorsal
striatum that are indicative of increased excitability. That is, repeated exposure to rela-
tively low doses of amphetamines or cocaine are associated with persistent increases in
dorsal striatal N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission
(Moriguchi, Watanabe, Kita, & Nakanishi, 2002; Nishioku, Shimazoe, Yamamoto,
Nakanishi, & Watanabe, 1999) and increased density of glutamate receptors (both a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits, as
well as metabotropic glutamate receptors (Ary & Szumlinski, 2007; Furlong, Corbit,
et al., 2017; Kerdsan, Thanoi, & Nudmamud-Thanoi, 2009; Loftis & Janowsky, 2000;
Mao & Wang, 2001). Further, the density of vesicular glutamate transporters, which
package glutamate into synaptic vesicle for release, are increased, as well as the density
of glutamate transporters that are responsible for glutamate reuptake (Furlong, Corbit,
et al., 2017; Nishino et al., 1996; Shirai, Shirakawa, Nishino, Saito, & Nakai, 1996).
Together, these studies suggest that psychostimulants cause hyperactivity of glutamate
system and increased synaptic plasticity at glutamate synapses in dorsal striatum. Howev-
er, these studies largely examine the dorsal striatum as a whole and do not consider its
medial and lateral subdivisions or instead focus on DLS alone while the DMS is rarely
examined. Importantly, when the DMS and DLS are analyzed separately, it has been
demonstrated that methamphetamine has bidirectional effects within these regions that
are consistent with their differing roles in action control and decision-making (Furlong,
Corbit, et al., 2017; Jedynak, Uslaner, Esteban, & Robinson, 2007).

Specifically, methamphetamine exposure has been shown to increase the density of
dendritic spines on MSNs in the DLS, while reducing their density in DMS ( Jedynak
et al., 2007). Given that glutamatergic input to the dorsal striatum is predominately to
the spines of MSNs, this finding suggests that methamphetamine increases the excitability
of the habit-promoting DLS and reduces the capacity of the DMS to mediate goal-
directed behavior ( Jedynak et al., 2007). Further support for this idea comes from quan-
tification of the density of glutamate receptor subunits and vesicular transport proteins
located on synaptic membranes (Furlong, Corbit, et al., 2017). Rats were chronically
treated with low doses of methamphetamine over a 1-month period, and then a
2-month abstinence period was imposed in order to determine the persistent effects of
methamphetamine that may underlie the insensitivity to outcome value seen with this
dosing schedule (Furlong, Corbit, et al., 2017). In accordance with the effects on spine
density, methamphetamine exposure was found to increase the density of NMDA and
AMPA receptor subunits and vesicular glutamate transporters in the DLS, while there
was a reduction in the density of these proteins in the DMS. Hence, methamphetamine
exposure bidirectionally impacted the glutamate system across the subregions of the
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dorsal striatum in a manner that suggests that methamphetamine not only facilitates the
development of habitual behavior but also reduces goal-directed action control. Similar
studies are therefore required to determine whether other psychostimulants, like cocaine
and D-amphetamine, also differentially impact the glutamate system of the DMS and
DLS, as analyses treating the entire dorsal striatum as a single structure are obviously prob-
lematic if these drugs have bidirectional effects on these regions.

Alcohol
Alcohol exposure has been shown to produce a similar hyperexcitability of the DLS
to that seen following psychostimulant exposure. Extensive alcohol consumption in
primates increases the density of dendritic spines in the caudoventral area of the putamen
(which is homologous to the DLS) but not in the anterior caudate (which is homologous
to the DMS) (Cuzon Carlson et al., 2011). The changes to spine density in the puta-
men were also associated with enhanced glutamate transmission. Furthermore, alcohol
exposure reduced GABAergic synaptic transmission in the putamen, thus, reducing inhib-
itory tone on MSNs, which would allow for excitatory activity to predominate (Cuzon
Carlson et al., 2011). In addition, chronic alcohol downregulates endocannabinoid-CB1
receptor signaling and CB1-dependent long-term depression (LTD) (DePoyet al., 2013)
and promotes LTD at MSNs and fast-spiking interneuron inputs onto MSNs, within the
DLS (Patton, Roberts, Lovinger, & Mathur, 2016). Together, these results suggest that
alcohol reduces inhibition and increases the excitability of DLS, both of which would
lead to increased DLS output, and in turn favor habitual behavioral control. In accor-
dance, neuroimaging during a decision-making task where participants must make a left
or right response to particular picture stimuli reveals greater activity in habit-promoting
posterior putamen of alcoholics compared to healthy individuals (Sjoerds et al., 2013).
Dysregulation of DMS activity has also been reported and may contribute to behavioral
effects associated with alcohol exposure (Wang, Carnicella et al., 2007; Wang et al.,
2015). Notably, chronic intermittent alcohol exposure in mice is associated with reduced
excitatory cortical transmission to DMS, which is suggestive of hypoactive DMS func-
tioning and reduced goal-directed behavioral control (discussed in more detail below)
(Renteria, Baltz, & Gremel, 2018).

RESCUING ADAPTIVE BEHAVIOR FOLLOWING DRUG-INDUCED
HABITUAL BEHAVIOR

As described in the previous sections, psychostimulants and alcohol cause persistent neu-
roadaptations to both the DMS and DLS, which regulate goal-directed and habitual
behavior, respectively. Hence, the loss of behavioral control that results from exposure
to these drugs possibly results from neuroadaptations that produce an overactive DLS
and underactive or dysfunctional DMS. Consistent with this suggestion, goal-directed
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behavior can be restored following exposure to drugs of abuse by manipulations that
either reduce activity in the DLS that alter activity in the DMS. As noted above, extended
self-administration of either cocaine or alcohol produces behavior that is insensitive to
devaluation. Sensitivity is restored by pharmacological inactivation of the DLS (Corbit
et al., 2012; Zapata et al., 2010). Such results suggest that extended training and chronic
drug exposure leads to behavioral control dependent on activity in the DLS but that
when activity in this structure is suppressed, goal-directed control can be at least partially
restored.

Importantly, goal-directed behavioral control can also be restored by manipulations
that target the DMS rather than the DLS. Three recent studies provide compelling
evidence that normalizing DMS function reinstates goal-directed control (Corbit
et al., 2014; Furlong, Supit, et al., 2017; Renteria et al., 2018). One study used
in vitro electrophysiology to investigate the impact of cocaine on synaptic plasticity in
the dorsal striatum (Corbit et al., 2014). It was demonstrated that cocaine treatment,
which accelerated the development of habitual actions in rats, was associated with
increased frequency of spontaneous and miniature excitatory postsynaptic potentials
(EPSCs) recorded from MSNs of the DMS. In contrast, there were no such changes
in the DLS (Corbit et al., 2014). Hence, it was hypothesized that this change in activity
in the DMS contributed to the loss of behavioral control by dysregulating activity in the
goal-directed circuit. Therefore, the objective was to restore normal activity in the DMS
and examine the subsequent impact on behavioral control. Given that increases in EPSC
frequency can be accounted for by drug-induced alterations in glutamate homeostasis,
N-acetylcysteine, a regulator of cystine-glutamate exchange that normalizes glutamate
homeostasis, was utilized (Kalivas, 2009). It was found that the administration of
N-acetylcysteine not only prevented the effects of cocaine on EPSCs in DMS but also
protected goal-directed behavior in cocaine-exposed animals (Corbit et al., 2014).
Therefore, it is likely that cocaine exposure also influences behavioral control through
changes in DMS activity, and not just through the DLS.

In a second study, recruitment of the dorsal striatum was examined using the neuronal
activity marker c-fos during the expression of habitual behavior (Furlong, Supit, et al.,
2017). It was first demonstrated that testing in a methamphetamine-paired context tran-
siently renders behavioral performance habitual. Specifically, a distinct context was paired
with methamphetamine injection, and a second context that differed in its visual, tactile,
and olfactory properties was paired with vehicle-control injection. Rats were then
trained to press two levers, each for a different outcome, in a third context, and were
tested for sensitivity to outcome devaluation in both the drug and vehicle-paired
contexts. It was found that animals were goal-directed in the vehicle-paired context;
however, when the same animals were tested in the drug-paired context, they demon-
strated habitual behavioral performance (Furlong, Supit, et al., 2017). A similar context-
mediated effect on behavioral control has also been demonstrated for alcohol-paired
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contexts (Ostlund, Maidment, & Balleine, 2010), thus showing the importance of drug-
paired cues for mediating the expression of habitual behavior in addition to other aspects
of addiction-related behavior, such as reinstatement and Pavlovianeinstrumental transfer
(Bossert, Marchant, Calu, & Shaham, 2013; Corbit & Janak, 2016; Crombag, Bossert,
Koya, & Shaham, 2008). Additionally, when the outcome was contingently delivered
in a subsequent test in the methamphetamine-paired context, animals continued to
show insensitivity to outcome value and thus failed to respond appropriately to negative
feedback for their actions (Furlong, Supit, et al., 2017). As described above, these kinds of
“compulsive” habits, which continue in the face of negative feedback, are associated with
disruption in the normal functioning of neurocircuitry that promotes goal-directed
actions. In accordance, habitual actions induced by the methamphetamine context
were associated with reduced c-fos in the DMS, thus indicating reduced recruitment
of the DMS during habitual performance (Furlong, Supit, et al., 2017). Given that there
were no such differences in c-fos in the DLS, the DMS was subsequently targeted in an
attempt to attenuate habits. As the reduction in c-fos occurred selectively in direct
pathway neurons (which were identified by the absence of enkephalin coexpression),
activity in the indirect pathway was then reduced using an adenosine 2A receptor antag-
onist, to restore the balance in activity between these pathways. Adenosine 2A receptors
are selectively located on indirect pathway neurons, and antagonism of these receptors
inhibits the activity of these neurons (Tozzi et al., 2007), and it has previously been
shown that when they are genetically knocked out of striatum in a mouse model, it pre-
vents the development of habits (Yu, Gupta, Chen, & Yin, 2009). When the adenosine
2A antagonist was infused directly into DMS prior to test, it restored sensitivity to
outcome value in the methamphetamine-paired context when feedback of action was
provided (Furlong, Supit, et al., 2017). Hence, these results provide further support for
the idea that drug exposure alters behavior, in part, by acting on the circuitry mediating
goal-directed behavior and that behavioral control can be restored by manipulations of
this circuitry.

Finally, a third study also confirmed that habitual behavior can be restored by target-
ing the goal-directed neurocircuitry (Renteria et al., 2018). This study first demonstrated
that exposure to alcohol, which promoted habitual behavior in mice, was associated with
attenuated cortical transmission to DMS. Specifically, patch-clamp recordings of direct or
indirect pathway neurons of cre-transgenic mice (dopamine D1 or D2 receptors, or
adenosine 2A receptors) were made 15 days after chronic intermittent inhalation of
alcohol vapor or air. Compared to air vapor, exposure to alcohol vapor was associated
with reduced probability of neurotransmitter release when orbital frontal cortex
(OFC) neurons projecting to direct pathway neurons were optically activated. There
was no such difference between treatment groups when OFC neurons projecting to
indirect pathway neurons were activated. Given that these results indicate reduced
cortical neurotransmission to DMS, the OFC-DMS pathway was subsequently activated
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using a DREADD approach during behavioral testing. It was demonstrated that
increasing the activity of this projection restored goal-directed behavior in alcohol-
exposed mice. Thus, this study further confirms that drug-induced alterations in the
functioning of the goal-directed neurocircuitry contribute to the expression of habitual
behavior.

Overall, the results of studies using inactivation or other pharmacological manipula-
tions are consistent with the idea that the goal-directed and habit learning systems exist in
parallel and that the relative dominance shifts across the course of extended training and/
or as the result of adaptations following drug exposure. One of the implications of this
account is that the goal-directed system is not entirely lost but that the habit system comes
to dominate control if activity in the DLS is potentiated or normal activity in the DMS is
reduced or dysregulated. Thus, multiple strategies that can restore balance between these
parallel circuits may improve behavioral control, as a growing literature seems to suggest,
yet understanding the specific effects of a particular drug will likely be important for
selecting the most effective intervention.

CONCLUSIONS

In the past decade, numerous reports have shown that drugs can act to accelerate
habitual control over drug-related behaviors, as well as decision-making strategies
more generally. Until recently, it has been unclear whether this shift in control is
due to drug effects that directly strengthen the habit system, or whether drug exposure
produces deficits in goal-directed learning and the emergence of habitual control
reflects compensation by, or early uncovering of, the habit system. These possibilities
are difficult to disentangle behaviorally as changes in the hallmark tasks, such as
outcome devaluation, do not dissociate between these accounts. However, examining
the effects of drugs on the neural circuits known to control goal-directed versus habitual
behaviors is beginning to reveal how each system is affected. This distinction will
ultimately be important for developing the most effective treatments using either
pharmacological or behavioral approaches.
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CHAPTER 17

Goal-Directed Deficits in Schizophrenia
Richard W. Morris1,2,3
1School of Psychology, University of New South Wales (NSW), Sydney, NSW, Australia; 2School of Medicine, University of
Sydney, Sydney, NSW, Australia; 3Centre for Translational Data Science, University of Sydney, Sydney, NSW, Australia

INTRODUCTION

Deficits in emotion and motivation are a core feature of schizophrenia, where scientists
and clinicians have observed that individuals with schizophrenia can have difficulty
expressing or experiencing emotion (i.e., flat affect and anhedonia) while at the same
time noting they are less likely to pursue courses of action and achieve goals (i.e., poor
motivation or avolition). For instance, Bleuler coined the term schizophrenia from
“splitting of the mind” after his clinical observations of a disconnect between a patient’s
emotional state and his/her apparent behavior. He wrote “Even in mild cases, where
wishes and desires still exist, [patients] will nevertheless do nothing towards the realization
of these wishes” (Bleuler, 1950). What this problem statement recognizes is the deficit is
not located in the distinct hedonic functions or cognitive functions subserving motivated
behavior themselves. That is, there is now evidence that the experience of pleasure upon
goal attainment or reward receipt is intact in schizophrenia, as is the cognitive planning of
actions. Rather, the failure is in the connection between otherwise intact hedonic
concerns and the control of actions. I will argue here that it is this disconnection that
produces a profound deficit in goal-directed decision-making in schizophrenia. The
aim of this chapter is to illustrate how psychological theories and computational models
of reinforcement learning can help us understand the form of this disconnection and its
consequences.

Goal-directed decision-making requires a close integration of our hedonic concerns
and our actionsda fact that has been recognized since Aristotle insisted that the distinc-
tion between “cold” cognitive reason and “hot” hedonic desire is arbitrary, and the best
decisions depend upon both reason and desire. Thinking about taking a walk, for
example, will not move me to actually take a walk. I must also think that taking a
walk will be good or pleasant. The close cooperation between these two concerns is
reflected in current accounts of a goal-directed decision as an action performed with a
desire for the outcome and a belief the action will achieve this outcome (Heyes &
Dickinson, 1990; de Wit & Dickinson, 2009). The importance of integrating these
two distinct prerequisites for goal-directed decision-making is illustrated by considering
the difficulty of maximizing the rewarding consequences of our actions. For instance, our
current motivational state, such as whether one is currently hungry or thirsty, will
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influence whether we will enjoy eating corn chips or drinking beer. The varying utility
of our decisions is formally acknowledged in the economic principle of marginal utility:
The first ice cream tastes delicious; however, by the third ice cream, we no longer enjoy
that sweet-iced confection. The everyday experience that ice cream tastes less delicious
after the third cone is easy to appreciate; however, planning on that contingency is
considerably more difficult. Allowing our future motivational states to influence current
decision-making is a challenge that is so common we often overlook itd“his eyes were
bigger than his stomach” is a widely recognized problem for children. An adult example
may be packing for a tropical beach holiday in the middle of a frozen winter climate; it
can be difficult to resist packing heavy winter clothing even when one is familiar with the
heat and humidity of the destination. This problem is more than just a failure to predict
our future motivational state; instead, it represents a widely experienced difficulty that
people (and especially people with schizophrenia) have connecting or integrating the cur-
rent value of their actions with their anticipated hedonic consequences. This integration
is necessary for goal-directed action selection, and it has been the focus of theories of
associative learning (Chapter 1 by Dickinson), and more recently formalized in compu-
tational models of model-based reinforcement learning (MBRL) (Daw, Niv, & Dayan,
2005; Sutton & Barto, 1998).

MODEL-BASED REINFORCEMENT LEARNING: A THEORY OF GOAL-
DIRECTED DECISION-MAKING

I argue there are at least three pertinent features of MBRL, which can help us understand
goal-directed decision-making. In general, MBRL is concerned with the estimation of
state transition probabilities in order to model the environment (Daw et al., 2005; Sutton
& Barto, 1998). In the present context, model implies a mental model of the task or
experiment, but it could be as simple as a map between particular states, the actions
available in each state, and their consequent outcome states. Thus, MBRL explicitly
learns the sequential contingencies of events and actions in a task, such as which
outcomes (states) follow which actions (and their respective states). The resulting map
is an associative network, which connects all the paths between the different states and
actions in the environment. Secondly, in order to motivate action selection in each state,
MBRL assumes that the final goal state will have some incentive value or reward associated
with it, which the agent is trying to obtain (or maximize). The value of the reward may
represent hedonic value (e.g., the learned incentive value of water, given a thirsty agent)
or more abstract values such as information (e.g., to promote exploration of unexplored
options, given an uncertain agent). Importantly, however, the agent must be able to
decide between actions prior to reward, e.g., in states with no direct reward value. In
order to do this, the value of the current action must be inferred from the values of its
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consequent states. The best action will ultimately be connected to the desired goal state
via the map of transition probabilities described above. To determine the best action,
MBRL calculates the value of the available actions by integrating over the value of every
consequent state that lies between the current action and the ultimate state. This integra-
tion is formally described by the Bellman equations (Bellman, 1957) but can be thought
of as a mental simulation of “what-ifs”. An obvious disadvantage of this approach is that it
quickly becomes overwhelming when simulating multiple options in large decision trees
(e.g., chess playing). However, the major advantage of MBRL is that action values are
dynamically updated by the addition of new information. It is the dynamic updating
of the action values, which distinguishes it from model-free approaches, since model-
free reinforcement learning must rely on direct experience with the reward contingency
before it can update action values. For instance, in MBRL, the action values can be
updated by new experiences of the consequences in the absence of the action itself, or
by inference after exposure to a new reward contingency (counterfactual reasoning).
All this is to say that it is the combination of all three of these processes: building a mental
map, learning where the reward is located in that map, and integrating the reward value
over multiple states back to the current action, which allows MBRL to dynamically
update and carry out decision-making in a goal-directed manner. The implication
from this analysis with regard to understanding schizophrenia is that any observed deficit
may be due to a failure in one or all of these processes.

Of course, apparent decision-making behavior, such as selecting among different
value-based options or navigating a maze, may be underwritten by other forms of
learning such as model-free reinforcement learning, where the learned response is a
simple form of Pavlovian approach to the learned incentive value of an environmental
cue. However, such behavior will not display the same dynamic features of goal-
directed decision-making. For example, sequential decision tasks, such as mazes or
more abstract multistep sequences, do not by themselves guarantee that a mental map
(and integration of value) is involved in adaptive behavior. Even seemingly complex
maze navigation may consist of a series of learned cues guiding approach behavior via
Pavlovian value or conditioned reinforcement. In such cases, allowing the agent to
know the reward location has changed or is empty will not produce an immediate change
in behavior. Instead, the agent will need to learn by experience that taking the same ac-
tions will no longer result in reward.

WHAT IS THE HISTORICAL EVIDENCE OF A GOAL-DIRECTED DEFICIT
IN SCHIZOPHRENIA?

The predominant cognitive paradigms used to investigate decision-making in schizo-
phrenia have typically employed instructed stimulus-response tasks (e.g., Stroop task,
Simon task, flanker task). Even in cases where the task involves adapting to
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uninstructed contingency changes (Iowa gambling task, Wisconsin Card Sorting), the
response and feedback is cued and so consists of a series of stimulus-response trials.
While these tasks have furthered our understanding of decision-making, they do
not capture the fact that goal-directed decisions involve choosing actions on the basis
of their consequences. As a consequence of focusing on stimulus-response tasks, the
deficits in decision-making in schizophrenia have been explained (incompletely) in
terms of a failure of response inhibition, or the salience of cues (e.g., aberrant salience),
or more recently, as a failure to anticipate cued rewards (e.g., reward prediction
errors). Thus, until very recently the goal-directed nature of decision-making has been
largely ignored in patient studies.

For instance, many studies of Wisconsin Card Sorting or serial reversal tasks have
observed an apparent deficit in reward learning in schizophrenia. That is, patients tend
to perseverate on previously rewarded responses rather than switch to the alternate
response. In the case of serial reversal tasks, the deficit has been explicitly identified
with the ability to learn from omitted rewards, rather than acquiring responses to
rewarded cues. Some authors have proposed that this may stem from an inability to
represent absent rewards (Gold, Waltz, Prentice, Morris, & Heerey, 2008; Waltz &
Gold, 2007). The representation of absent reward plays a key role in MBRL, allowing
agents to infer over the model space and reason from counterfactuals (i.e., to learn
from events that did not occur). Furthermore, recent reviews have proposed that tasks
such as serial reversal learning can distinguish MBRL because they contain an implicit
counterfactual structure based on deducing an absent reward (Doll, Simon, & Daw,
2012; Izquierdo, Brigman, Radke, Rudebeck, & Holmes, 2017). That is, a decrease in
the reward contingency of the current response implies an increase in the alternate
response contingency, and this can be inferred without requiring direct experience of
the increased contingency. This counterfactual structure implies the formation of a
mental model and the ability to infer from it when feedback is omitted. These are, of
course, cardinal features of model-based RL; however, concluding that the problem
lies in these processes on the basis of a performance deficit in such tasks is fraught. Apart
from the fact that most versions of serial reversal tasks involve learning stimulus-response
associations rather than requiring actioneoutcome learning as often assumed, there are
other difficulties with interpreting perseverative errors as a deficit in goal-directed
learning. In particular, the evidence for counterfactual reasoning is usually provided by
observations that people will shift responding to the alternate response as soon as they
detect the decrease in contingency on the current response. That is, they will switch
responding to the alternate without needing to experience the increased contingency
on that response, as if they are rigorously follow a win-stay, lose-shift strategydand
this highlights part of the problem. Are people who shift immediately at the first nonrein-
forced trial inferring over a mental model, or exploring uncertain response options, or
following a rule to achieve the same result? Such strategies or rules can be abstracted
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from experience over many trials or struck upon spontaneously; however, the involve-
ment of a mental model is uncertain in either case.

ARE NEGATIVE PREDICTION ERRORS IMPAIRED IN SCHIZOPHRENIA?

A different explanation of perseverative errors in schizophrenia may be provided by
considering the specific role of negative prediction errors in learning. Classically, associa-
tive models assume negative prediction errors drive learning when an event is expected
but does not occur, i.e., the unexpected omission of an event. Thus, a deficit in negative
prediction errors would explain a variety of evidence from tasks showing that people with
schizophrenia have difficulty learning from absent events. It would, for instance, explain
why patients can acquire rewarded responses to the same level as healthy adults but tend
to perseverate when the reward contingency changes (Gold et al., 2008; Murray, Cheng,
et al., 2008; Murray, Corlett, et al., 2008; Weickert, et al., 2002). It would also explain
why patients acquire fear conditioning as readily as healthy controls but are slower to
extinguish with nonreinforcement (Holt et al., 2009). Conversely, it is also consistent
with the acquisition of a conditioned response to a CS� in a conditioned discrimination
task (Jenson et al., 2008), since negative prediction errors are initially necessary to
discriminate between the CSþ and CS�. Similarly, we have found that people with
schizophrenia cannot downregulate attention to irrelevant cues (Morris, Griffiths, Le
Pelley, & Weickert, 2013), consistent with associative models, which assume negative
prediction errors drive the downregulation of attention (Mackintosh, 1975). Finally,
intact positive prediction errors in schizophrenia would account for patients displaying
a positive bias toward rewarding stimuli (Heerey, Bell-Warren, & Gold, 2008).

Despite its parsimony, evidence for a specific deficit in negative prediction error
signaling in schizophrenia is scant. Reinforcement learning tasks have been widely
used in schizophrenia, and on the basis of such tasks, people have concluded that pre-
diction errors are aberrant in schizophrenia (Gradin et al., 2011; Murray, Cheng, et al.,
2008; Murray, Corlett, et al., 2008; Schlagenhauf et al., 2014; Waltz et al., 2009). How-
ever, the role of prediction errors in driving performance in such tasks has never been
demonstrated in schizophrenia. To infer that performance in reinforcement learning
tasks is driven by prediction errors, versus simply eliciting errors (or surprise) without
any causal role in performance, requires demonstrations that learning can be blocked
or enhanced by the addition of another predictive cue (Niv & Schoenbaum, 2008;
Schultz & Dickinson, 2000; Tobler, O’Doherty, Dolan, & Schultz, 2006). Instead,
clinical studies have relied on correlational evidence from neuroimaging data (e.g.,
functional Magnetic Resonance Imaging or EEG) as evidence of aberrant prediction
error signaling. Yet here again, the evidence for the involvement of prediction errors
in any capacity, causal or otherwise, is weak. Prediction errors represent the unexpected
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delivery of reward or the unexpected omission of reward, which means they co-occur
with motivational events (such as rewards and punishers), as well as salient, surprising
events. Nevertheless, prediction errors are distinguishable from responses to surprise
and reward value (Morris, et al., 2012; Niv & Schoenbaum, 2008). To demonstrate a
neural response is not due to the salience of the cue or the motivational properties of
event but instead represents a bidirectional teaching signal that can adjust learning
weights, it is necessary to control for the effects of reward and salience. One way to
do this is to contrast unexpected rewards with expected rewards and unexpected reward
omission with expected reward omission (D’Ardenne, McClure, Nystrom, & Cohen,
2008; Morris et al., 2012; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003).
These contrasts hold the reward value constant in each comparison. Furthermore, by
testing for opposite changes in the direction of positive and negative prediction errors,
any result cannot be explained by the unidirectional effect of surprise or salience. Un-
fortunately, such analyses have rarely been performed in the context of schizophrenia
research.

The failure to appreciate the presence of the above confounds means that early
demonstrations of prediction errors in schizophrenia are confounded with differences
in motivational value or salience. Many early studies compared unexpected reward
deliveries and unexpected reward omission with each other, confounding differences
in reward value (Koch et al., 2010; Walter, Kammerer, Frasch, Spitzer, & Abler, 2009;
Waltz et al., 2009). For instance, one influential study (Waltz et al., 2009) found a group
difference in BOLD (blood oxygen level dependent) responses to unexpected rewards,
implying a deficit in positive prediction-error signals. But the same study also reported
a group difference in BOLD response to expected rewards versus implicit baseline
(they did not report the group interaction for differences in unexpected vs. expected re-
wards). This means that the patient deficit may be better explained as an attenuated
BOLD response to rewards (both expected and unexpected). Support for this is provided
by another early study, which compared reward events to neutral events, confusing the
effect of reward with prediction error and so inadvertently providing consistent evidence
of a deficit in reward responses rather than prediction error in schizophrenia (Murray,
Cheng, et al., 2008; Murray, Corlett, et al., 2008). More recently, two other studies
have separately tested for both positive and negative prediction-error signals in schizo-
phrenia (Dowd & Barch, 2012; Morris et al., 2012). In the case of Morris et al., we
were able to determine that the attenuated signals in each case were due to both hypo-
activation during unexpected events and hyperactivation during expected events in the
ventral striatum. On the other hand, Dowd and Barch found no evidence of a group dif-
ference in prediction error signals. This is possibly because the reward contingencies
remained constant in their task, providing little opportunity to engender prediction er-
rors. At any rate, while there is some further evidence from more recent neuroimaging
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studies that prediction errors are aberrant in schizophrenia (Radua et al., 2015; Schlagen-
hauf et al., 2014), the evidence for a specific deficit in negative prediction errors is weak.

In order to provide evidence (of a different form) for the claim of a deficit in negative
prediction errors in schizophrenia, I have reanalyzed published data in a simple compu-
tational model of prediction error learning in schizophrenia. We (Morris, et al., 2012;
Morris, Purves-Tyson, et al., 2015) have previously used a reward prediction task to
investigate BOLD-related ventral striatal prediction errors in schizophrenia. In this
task, participants had to learn to predict the occurrence of reward given a cue (i.e., pre-
dicting whether the hand of cards they were dealt contained the “trump” card). The
trump card was rewarded on 80% of trials, while nontrump cards were rewarded on
20% of trials. Furthermore, the identity of the trump card changed every five or six trials.
Thus, the task was a probabilistic serial reversal task, which was designed to provide ex-
pected and unexpected rewards, as well as expected and unexpected reward omissions
(for full details of the task, see Morris et al., 2012). This allowed us to ask whether pre-
dictions were more influenced by unexpected rewards or the unexpected omission of
reward. The participants were 35 people with schizophrenia aged 18 to 55 on stable anti-
psychotic medication and living in the community, and 25 healthy adults similar in age
and gender. As reported in Morris et al., the mean accuracy of the predictions of both
groups were both much greater than chance and very similar (w80%), indicating a similar
task engagement and understanding. However, a simple Q-learning model revealed the
role of unexpected outcomes in updating predictions in the task was quite different. The
Q-learning model fits learning rates for each individual’s predictions with a separate
parameter for positive changes (alpha) due to unexpected rewards and negative changes
(beta) due to the unexpected omission of reward. The model also included a parameter
for exploration/exploitation (tau). For each participant, maximum likelihood estimates
for the learning rate parameters alpha and beta were calculated. I excluded participants
whose data could not be fit at a significantly greater than chance level, i.e., relative to
a random model according to a Chi-square test. After exclusions, the n were 33 and
23, respectively. The average parameter estimates were compared between groups using
two-sample t-tests, an analysis strategy that effectively treats individual parameter values
as a random effect (Daw, 2011). The model provided a reasonably equivalent fit to both
groups as the average likelihood of the model for the healthy adults and people with
schizophrenia was 0.63 and 0.64, respectively (independent-sample t-test t < 1). Com-
parison of the learning rates is shown in Fig. 17.1. The t-tests of the learning parameters
revealed a significantly lower beta in schizophrenia than healthy adults, t54 ¼ 2.63,
P ¼ .01, but no significant group difference in alpha values, t54 ¼ 1.40, P ¼ .17 (a
2 � 2 factorial ANOVA confirmed the interaction was significant, F(1, 54) ¼ 11.387,
P < .001). This implies that the amount of change in predictions associated with the un-
expected omission of reward was less among people with schizophrenia than among
healthy adults. This provides some initial (albeit correlational) evidence that people
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with schizophrenia have difficulty learning from the unexpected omission of reward, a
deficit specifically associated with negative prediction error signaling.

More generally, most of the evidence historically used to support a deficit in goal-
directed decision-making in schizophrenia has to be reassessed in light of improvements
in our understanding of goal-directed learning and MBRL. Where deficits have histor-
ically been indicated in the literature, they are just as likely to be identifying problems in
simple associative processes or model-free reinforcement learning, such as negative
prediction error signaling.

WHAT IS THE CONTEMPORARY EVIDENCE FOR A GOAL-DIRECTED
DEFICIT IN SCHIZOPHRENIA?

Establishing the involvement of a particular learning process in any decision-making task
is a challenge since the likely availability of other processes to substitute for performance is
difficult to eliminate. This multipath problem is explicitly recognized in dual-process
theories of decision-making, which posit that habitual (or model-free) learning competes
with goal-directed (or model-based) learning for control of decision-making. In other
words, both processes are available and are likely to be contributing to action selection
at any point in time. Accounts differ in how these processes compete (or cooperate)
for control, but since both processes will contribute to performance, the emphasis shifts
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Figure 17.1 Positive (alpha) and negative (beta) learning rate parameters from a Q-learning model
fitted to healthy adults (CON) and people with schizophrenia (CASE) during a probabilistic serial
reversal learning task. On average, CASE had a significantly lower beta parameter, indicating that
learning from the unexpected omission of reward, or negative prediction errors, was impaired in
schizophrenia.
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from isolating individual learning processes to measuring their relative contribution.
Recently, one strategy has emerged, which offers to weigh the contribution of both
model-based and model-free learning, in a task commonly known as the two-stage task.

The two-stage task (Daw, Gershman, Seymour, Dayan, & Dolan, 2011) is a serial
reversal task over two stages, which might be best described in the form of a maze
problem. In the first room, participants are given the option of entering one of two
new rooms (i.e., a blue and red room), e.g., left button to get to the blue room and right
button to get to the red room. Each of these colored rooms contains two doors behind
which may be a reward. Participants learn the location of the reward via exploration and
experience (i.e., behind the left door in the blue room). The challenge lies in the fact the
location of the reward will change slowly over time. That is, it may be somewhere in the
blue room for 10 trials and then in the red room for 15 trials, and so on. How participants
learn about the changes in reward location also varies. That is, sometimes the location will
change, and the participant will be forced to take different actions to explore the other
room in order to discover where the reward is now located. When they discover the new
location, their choice on the next trial should reflect that discovery. Namely, if they have
just discovered the reward is now located in the blue room, they should try to return to
the blue room. Under these regular conditions, they could be taking the correct action
because they understand the reward is in the blue room or they could be simply repeating
the most recently rewarded action sequence (with no awareness of the room or involve-
ment of any mental map). At other times, they will be shifted against their actions to the
opposite room they were intending to enter (i.e., a rare transition). Here, they may
luckily discover that the reward has shifted to the new room they just entered. In this
case, after the participant discovers the new location, their first choice on the next trial
must be governed by their understanding that the reward is in the new room; since it
was a lucky rare transition that took them to the rewarded room on the previous trial,
repeating the same action will take them to the wrong room. Thus, the question of
interest concerns their room choice after a lucky rare transition: Will the participant
repeat the same (incorrect) choice as they did on the last trial (since this action began
the sequence, which led to reward on the previous trial), or will they (correctly) choose
the other action to get to the rewarded room. If the participant repeats the same action,
they appear to be making their choice on the basis of the just-experienced (cached) action
values, and as a result, they will end up in the incorrect room. On the other hand, if the
participant correctly makes the opposite choice and selects the rewarded room, they
appear to be using a mental map of the task structure along with an updated representa-
tion of the reward location in order to infer the best action. This would be an example of
integrating the new state value of the rewarded room back to the current choice in order
to select the best action. Thus, the two-stage task pits the cached action value against the
inferred value during the first choice after a lucky rare transition. In this instance, the
cached action value is acquired by a model-free process while the inferred action value
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is acquired by the integration of the reward value from its new location. By explicitly
measuring the contribution of both to decision-making, the results offer to provide a
unique insight into the resulting balance of control, which may differ between individ-
uals as well as between clinical groups.

A variety of clinical conditions have been assessed with the two-stage task (for review,
see Chapter 15 by de Wit), where it has tended to covary with transdiagnostic differences
in impulsivity (Gillan et al.). Recently, Culbreth, Westbrook, Daw, Botvinich, and Barch
(2016) provided the first investigation of schizophrenia with the task. They found that
schizophrenia was associated with a reduced model-based learning parameter compared
to healthy controls. The reduced model-based parameter means that patients were more
likely to select the reinforced choice rather than the state the reward occurred in, after a
lucky rare transition. In contrast, model-free estimates did not differ between groups.
The equivalent model-free parameters mean that in other trials (i.e., after regular transi-
tion trials), patients were as likely to pursue a reinforced choice after it was previously
rewarded as controls. There are at least three possible reasons worth discussing for why
patients might display the observed deficit in goal-directed performance. The first is
that patients were not motivated by the reward to the same extent as controls. The
second is that patients did not form a mental map of the task during the extensive
pretraining, from which they could infer the best action. The third possibility (the
preferred interpretation of Culbreth et al.) is that patients formed a map but could not
integrate the new reward values from the goal state back to the current choice state.

The evidence against the possibility that patients were not motivated by reward is
provided by the fact that model-free learning was driven by reinforcement in patients
as much as controls. This is bolstered by observations that in general, patients respond
to rewards in other contexts similarly as healthy controls (Cohen & Minor, 2010;
Gold et al., 2008; Kring & Moran, 2008; Strauss & Cohen, 2017; Ursu et al., 2011).
Furthermore, there are precedents of equivalent performance in reinforcement learning
tasks in schizophrenia and healthy controls (Deserno et al. 2017; Heerey & Gold 2007).
Whether the patients learned the task structure and formed a mental map is harder to
determine. While extensive instruction was provided with feedback, along with a chance
to demonstrate understanding, there was no explicit assessment of whether individuals
understood and remembered the transition structure for the duration of the test. The au-
thors did find that reaction times were slower after a rare transition to an unexpected state
in both groups, which they argue is evidence that patients had an expectation for the reg-
ular transition state (i.e., they learned the transition structure). However, reaction times
after a rare transition to an unexpected (undesired) state may be slower because the partic-
ipant no longer expected to receive any reward on that trialdthe usual outcome for a
rare transition trial in this case. And we have seen previously that patients can
acquire reward-seeking biases, such as faster reaction times to rewarded stimuli, in the
same manner as healthy people. So at present, this study by itself demonstrates a
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goal-directed deficit in decision-making but leaves it unclear as to the source of that
deficit. The problem may be due to a difficulty with forming mental maps, or it may
be due to difficulty integrating reward value over multiple states to infer action values.
Future studies using this task may help clarify the source of the problem in schizophrenia,
but for the moment, we must turn to other sources of evidence to answer these questions.

The other major source of evidence for goal-directed learning is provided by deval-
uation testsdin which adaptive action selection must utilize the updated state values after
learning that the outcome is no longer valuable (Balleine & O’Doherty, 2010; Schwabe
&Wolf, 2009; Valentin et al., 2007). In a typical devaluation experiment, subjects are first
trained to make two different instrumental actions for distinct food rewards. After
training, one of the food rewards is devalued by prefeeding subjects to satiety with
that food. Prefeeding, via sensory-specific satiety, devalues the marginal utility of that
reward more than any other food reward. It occurs in the absence of any access to the
action, in order to avoid directly changing the action values. The subsequent choice
test also occurs in the absence of any further exposure to the actioneoutcome contin-
gency since that will also provide the opportunity to update the action value directly.
For this reason, the choice tests are usually conducted without any feedback (i.e., extinc-
tion). If the subject adjusts their action selection to reflect the new value of the outcomes
after prefeeding, this demonstrates that the action values were derived by inference over
the updated value of the outcomes.

We developed a test of goal-directed decision-making for assessing peoplewith schizo-
phrenia. The initial participants were 18 people with schizophrenia (or schizoaffective dis-
order), on stablemedication and living in the community, and 18 healthy adults. To begin,
participants indicated their food preferences for different snack foods using a 7-point rating
scale. As expected, there were no differences between our two groups in the hedonic eval-
uations of those snacks, consistent with other evidence of intact hedonic responses in
schizophrenia. Then each participant was trained to tilt a virtual vending machine for
two of those snacks (e.g., left ¼ M&Ms, right ¼ crackers, counterbalanced between par-
ticipants). Participants correctly reported the learned actioneoutcome contingencies
before the experiment continued. In the devaluation procedure, instead of using
sensory-specific satiety (cf. Waltz et al., 2015), participants were shown a large, high-
definition video of cockroaches crawling through one of the snack foods. Immediately
after devaluation, participants were given the opportunity to earn snack foods by tilting
the vending machine again. Importantly, no discriminative cues and no outcomes were
delivered in this stage to avoid the influence of S-R learning. Participants were warned
that no snack foods would appear, but they believed the snacks were still accumulating
and they would have to eat them before leaving the experiment. Finally, after this choice
test, we asked participants to provide hedonic ratings of the snacks as before. The results
were strikingdhealthy adults displayed a clear choice preference for the nondevalued
snack, and their hedonic ratings reflected this, indicating that they had updated their state
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values and successfully integrated that value back to the original action to guide selection.
By contrast, the people with schizophrenia displayed no apparent preference for the
nondevalued snack, yet their posttest subjective ratings clearly indicated that they now
preferred that snack. Here, it appeared that state values had been successfully updated,
but those values had not been integrated back to the original action to guide selection.
And this cooccurred with a reduced BOLD response in the caudate nucleus of patients,
consistent with reduced input from prefrontal regions thought to carry the updated state
values for action selection. However, it was not that patients did not show any prefer-
ences in their action selectiondtheir test choices were not random. The correlation
between patients action selection prior to devaluation (during instrumental training)
and after devaluation was very high (r ¼ 0.80) (while the same correlation among the
healthy adults was low r ¼ �0.18, since devaluation had changed their preferences). In
other words, people with schizophrenia were still choosing the same snack they preferred
before devaluation, presumably on the basis of the cached action values acquired during
the original instrumental conditioning. We have repeated this demonstration in a further
16 patients with the same result (Fig. 17.2. For full details, see Morris, Cyrzon, Green, Le
Pelley, & Balleine, 2018). In the replication, the choice test had a nonreinforced stage as
well as a reinforced stage. That is, after 30 s of the nonreinforced choices, we began
displaying the snack images on-screen as they were earned. Once the onscreen feedback
was provided in this reinforced test stage, people with schizophrenia began to adjust their
choices to reflect their hedonic preferences in line with healthy adults.

The results of the devaluation test are in line with Culbreth’s results in the two-stage
decision task; however, the devaluation results provide some further precision as to the
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Figure 17.2 The effect of outcome devaluation on action selection and food ratings in people with
schizophrenia (CASE) and healthy adults (CON). When the decisions required integration of the
changed outcome values, devaluation had no impact on choices among CASE, relative to CON (left
panel extinction test), *P < 0.05. However, when the outcomes were delivered and allowed the
opportunity to update action values directly, devaluation selectively reduced actions for the devalued
outcome in both groups (middle panel reinforced test). The right panel (food ratings preepost) shows
devaluation selectively reduced the value of the devalued outcome similarly in both groups. (Adapted
from Morris et al. (2018), Translational Psychiatry.)
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source of the deficit in schizophrenia. Both tests indicate that people with schizophrenia
have a deficit in goal-directed decision-making. Plus in our hands, the fact that patients
rated the devalued outcomes similarly to those of healthy adults is evidence that they
successfully updated the outcome state values after devaluation. Furthermore, we explic-
itly determined that patients remembered the actioneoutcome contingencies, which
implies the mental map of the task was intact at the time of test. So what remains is a
potential deficit in the integration of the new outcome state values back to the current
action to infer the best choice. We also associated the deficit with BOLD responses in
the caudate of patients, which implicates a functional disconnection between the
prefrontal cortex and the associative striatum. The neuropathology in the caudate we
observed is consistent with recent PET studies, which found that schizophrenia is
characterized by elevated levels of presynaptic dopamine in the associative striatum
(Howes et al., 2009; Kegeles et al., 2010), rather than ventral striatum as previously
thought. Others have also found reduced functional connectivity with the caudate in
schizophrenia, as well as the prodromal state (Fornito et al., 2013; Quide, Morris,
Shepherd, Rowland, & Green, 2013). This site receives converging inputs from the
nigrostriatal path and glutamatergic inputs from the cortex, and neuroplasticity here is
critical for goal-directed learning (Shiflett & Balleine, 2011). Thus, the pattern of evi-
dence indicates the integration of state values back to actions is disrupted in schizophrenia
due to neuropathology in the connections to the associative striatum.

ARE THERE OTHER SOURCES RESPONSIBLE FOR THE DEFICIT IN
SCHIZOPHRENIA?

Identifying a specific deficit in schizophrenia with the integration of outcome state values
implies the other two processes we have described as essential for MBRL are intact.
However, this may not be the case. We also have evidence that forming the mental
map between different states (stimuli, outcomes, and actions) is somewhat compromised
in schizophrenia. For example, stimuluseoutcome (S-O) learning can influence action
selection, as demonstrated by outcome-specific Pavlovian-to-instrumental transfer
(PIT). That is, after learning a predictive S-O contingency as well as a responseeoutcome
(R-O) contingency for the same outcome, merely presenting the predictive stimulus can
bias action selection for the same outcome. In other words, without learning any direct
stimulus-response associations, the two associative connections (S-O, R-O) will combine
to allow action selection on the basis of the common associate (i.e., O, the outcome)
(Cartoni, Balleine, & Baldassarre, 2016). This would seem to require an associative
map allowing inference to the common associate: a map that depends on the contingent
relation among its elements (Bertran-Gonzalez, Laurent, Chieng, MacDonald, & Balline,
2013; Delamater, 1995). Furthermore, this mapping must occur without any represen-
tation of outcome value, since the ability of the stimulus to bias action selection during
PIT is insensitive to outcome devaluation (Hogarth & Chase, 2012; Watson, Weirs,
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Hommel, & de Wit, 2014). Thus, outcome-specific PIT appears to require the ability to
infer over an associative map without imposing any integration of value, which leaves it as
a unique assessment of a critical feature of MBRL.

We have assessed outcome-specific PIT in schizophrenia. In Morris, Quail, et al.
(2015), we trained the same participants to expect a snack after a warning light came
on the vending machine. Four different lights predicted four different outcomes: Two
of the outcomes had previously been associated with the instrumental actions (e.g., tilt
left /M&M, blue warning /M&M), while a third snack food outcome had never
been associated with any instrumental response. That is, participants knew of no action
to get this outcome and its warning light served as a general CSþ to determine the in-
fluence of food-predicting cues on total button pressing (general motivation). A fourth
outcome was simply “no snack,” so its warning light served as a CS�. Thus, we had
two specific S-O contingencies (CS-A, CS-B) to assess the effect of the stimulus on ac-
tion selection, and a CSþ and a CS� to assess stimulus effects on general motivation.
When tested with the warning lights while tilting the vending machine, both healthy
adults and people with schizophrenia displayed a robust influence of the specific cues
(CS-A, CS-B) over action selection, i.e., outcome-specific transfer. Nevertheless, the ef-
fect was slightly attenuated among patients indicating the mapping of the S-O and R-O
links via the common associate (the outcome) was somewhat compromised in schizo-
phrenia. The effect of the CSþ and CS� on the general motivation to button press in
schizophrenia was also attenuated, but press rates during the specific cues did not differ
between groups. The implication of this is that the formation and use of the mental
maps assumed in MBRL is compromised but achievable in schizophrenia, when it
does not require any integration with value.

THE FUTURE OF MODEL-BASED REINFORCEMENT LEARNING:
LEARNING CAUSAL MODELS

As discussed, MBRL is concerned with building a model of the environment, given the
state caused by each action (the estimation of a transition matrix). These state transition
probabilities form the mental map of the task structure. However, the transition
probabilities must describe more than the probability of the outcome (O) given the
action (A); i.e., P(OjA). A positive contingency such as P(OjA) only describes the conti-
guity between actions and outcomes; however, a negative contingency can also exist such
as P(OjwA). A negative contingency P(OjwA) describes how the same outcome state
can be reached via another path, without the action A. In order to represent the causal
relations between states in the environment, these competing contingencies must be
weighed against each other (Pearl, 2018). This is normatively described by the formalism
DP ¼ P(OjA) � P(OjwA). Consider, for instance, the case when two equally good
actioneoutcome contingencies are provided concurrently to participants. If one of the
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outcomes is also provided for free (i.e., without any action), then the noncontingent
outcome will selectively reduce the causal relationship of only one action and not the
other. This occurs simply because the noncontingent outcome is indistinguishable
from the outcomes caused by one action (i.e., both are M&Ms), but it is easily
distinguishable from the outcomes caused by the other action (i.e., the other outcome
is a cracker). Under these conditions, it has been amply demonstrated that both rats
and people prefer to select the causal action, and in the case of people, they also judge
the degraded action as less causal as well (Balleine & Dickinson, 1998; Dickinson &
Mulatero, 1989; Morris, Dezfouli, Griffiths, Le Pelley, & Balleine, 2017).

Demonstrations that people and animals prefer causal actions, even when there is no
difference in reward value between the actions are important because they suggest that
goal-directed decision-making depends on a causal model. Consider that the value of
the noncontingent outcome will diminish the reward value of both actions equally since
reward can now be obtained without making either action; hence, the impact of the free
reward will be equal for both actions. Also note that such demonstrations take care to
equalize the rate at which free rewards and earned rewards are provided, in order to
ensure there is no serendipitous differences in reward rate to explain the preference
(Dickinson & Mulatero, 1989; Morris et al., 2017). Thus, any preference for the nonde-
graded action cannot reflect differences in reward contingencies, as is assumed in some
computational models of goal-directed learning (Solway & Botvinick, 2012). Conse-
quently, such a preference must depend upon a causal model of the task, where the
transition probabilities weigh the competing contingencies between states to represent
more than the simple contiguity between states.

We recently tested outcome-specific contingency degradation in schizophrenia and
found evidence that learning such a causal model is severely impaired (Morris et al.,
2018). Briefly, we trained participants (SZ n ¼ 25, HA n ¼ 25) to liberate two different
snack foods from a virtual vending machine using two different actioneoutcome contin-
gencies (e.g., left ¼M&Ms, right ¼ crackers). In each 1-min block, participants could
press freely for snacks. The positive contingency (probability of obtaining a snack) for
each AO varied such that one action was reliably better than the other action and the
best action changed from block to block. Since there were no negative contingencies
(no free snacks delivered) in this stage, the best action in each block had the highest
reward contingency and the stronger causal relationship with the outcome. Under these
conditions, both groups learned the best action and rated it as more causal at similar levels.
Importantly, people with schizophrenia were able to learn the best action similarly to
healthy adults, even as it changed from block to block. That is, there was no evidence
of reversal learning deficits or perseveration, presumably because performance was
assessed over the 60-s block rather than trial to trial (Fig. 17.3, top panels. For full details,
see Morris et al., 2018.). However, the next stage of testing clarified whether their
performance was governed by differences in reward value or causal strength.
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In a second stage, participants learned about changes in the causal effects of their
actions after one AO contingency was degraded by delivery of noncontingent outcomes.
Thus, in this stage, we set the positive contingency for each AO as equal and ensured that
the reward contingencies were also equal. All that differed was the negative contingency,
since one action had a negative contingency (free outcomes) and the other action had no
negative contingency (no free outcomes). This means that on average, the degraded
action had a DP close to zero (equal number of free and earned outcomes for that action).
Even though in the first stage, people with schizophrenia had no difficulty distinguishing
the best action when it was defined by a difference in reward contingency (and it changed
from block to block), this was not the case in the degradation stage. People with
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Figure 17.3 Top panels show that during an instrumental learning task with only a positive reward
contingency (high vs. low), healthy adults (CON) and people with schizophrenia (CASE) distinguish
the best action, on average, rating it as more causal (left) as well as preferring it (right) over the other
response. Bottom panels show that people with schizophrenia do not learn to distinguish the causal
action when one actioneoutcome contingency is degraded by noncontingent outcomes. Average
causal ratings (left) and responses (right) for the degraded contingency were significantly higher
among CASE than CON, *P < 0.05. (Adapted from Morris et al. (2018), Translational Psychiatry.)
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schizophrenia could not distinguish the best action when it was defined by a difference in
causal strength in this stage, in either their actions or ratings (see Fig. 17.3, bottom panels.
For full details, see Morris et al., 2018.). This implies that schizophrenia is associated with
an impairment in forming a causal model of the environment. A causal model differs from
models usually assumed in MBRL by virtue of the fact that it must trade-off competing
contingencies to represent the causal relations between events (e.g., DP), rather than
simply the contiguities between states. That is, a transition matrix that only represents
the state-to-state contiguities is sufficient to navigate mazes and other spatial tasks for
which MBRL was developed, but it is inadequate to represent the causal texture of
our environment (Pearl, 2018). It is learning this form of causal model, quite different
from the usual form of mental map assumed in MBRL, which seems to be impaired
in schizophrenia.

CONCLUSIONS

The aim of this review is to provide a more nuanced understanding of the goal-directed
deficit in schizophrenia. We have argued that MBRL as a theory of goal-directed
learning has highlighted three critical features: learning a mental map of the environment,
learning where reward is located within that map, and the ability to integrate the reward
value of the goal state back to the current action. To date, the focus of schizophrenia
research has been on determining whether an impairment exists in the integration of
reward value back to the current choice. Performance deficits in the two-stage decision
task and outcome devaluation tests are consistent with such an impairment; however, the
role of potential impairments in the other features of MBRL may also contribute. Form-
ing a mental map of the structure of the task is obviously a prerequisite to integrating
value for decision-making. Here, the fact that people with schizophrenia can select
actions according to different cues on the basis of their shared outcome implies that form-
ing a simple map of state transitions is intact in schizophrenia. In this case, the map consists
of combining R-O and S-O associations by way of the common outcome. However,
forming more complex maps that require calculating competing contingencies, and
which are necessary for representing causal structure, seems to be at the limit of (if not
beyond) the range of function in schizophrenia. This leaves us with a slightly more
nuanced view of the goal-directed decision-making in schizophrenia. For instance, on
the basis of the evidence presented here, people with schizophrenia should perform
sufficiently in navigation and maze tasks. Such tasks demand only a simple transition ma-
trix of state contiguities to support performance. However, when such maze tasks depend
on weighing competing routes or tasks that require competitive allocation of predictive
value, such as causal learning or instrumental control, then we should start to see perfor-
mance deficits. And indeed on tests involving the competitive allocation of predictive
value, people with schizophrenia perform poorly (Moran, Owen, Crookes, Al-Uzri,
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& Reveley, 2008; Morris et al., 2013). Looking toward the future, it seems that theoret-
ical development of MBRL to distinguish causal models from other kinds of noncausal
models will help us further characterize the deficit in schizophrenia and perhaps other
disorders of goal-directed learning.
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CHAPTER 18

Realigning Models of Habitual and
Goal-Directed Decision-Making
Kevin J. Miller1, Elliot A. Ludvig2, Giovanni Pezzulo3, Amitai Shenhav4
1Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States; 2Department of Psychology,
University of Warwick, Coventry, United Kingdom; 3Institute of Cognitive Sciences and Technologies, National Research
Council, Rome, Italy; 4Department of Cognitive, Linguistic, and Psychological Sciences, Brown Institute for Brain Science,
Brown University, Providence, RI, United States

In cognitive psychology, categories of mental behavior have often been understood
through the prevailing technological and computational architectures of the day. These
have spanned the distinction between types of processing (e.g., serial vs. parallel), forms of
memory maintenance (e.g., short-term vs. long-term storage), and even the fundamental
relationship between mind and brain (i.e., software vs. hardware). Over the past few de-
cades, research into animal learning and behavior has similarly been informed by prom-
inent computational architectures, especially those from the field of computational
reinforcement learning (RL; themselves having drawn inspiration from research on an-
imal behavior; e.g., Sutton & Barto, 1981, 1998). In addition to offering explicit and test-
able predictions for the process by which an animal learns about and chooses to act in
their environment, ideas from RL have been adapted to operationalize a distinction
from the animal learning literature: the distinction between habitual and goal-directed
actions (Daw & O’Doherty, 2013; Daw, Niv, & Dayan, 2005; Dolan & Dayan, 2013).

THE PREVAILING TAXONOMY MAPPING ANIMAL BEHAVIOR TO
REINFORCEMENT LEARNING

As described in earlier chapters, goal-directed behavior is distinguished from habits by its
sensitivity to context (including motivational state), future outcomes, and the meanseend
relationship between the actions being pursued and the rewarding outcome expected as a
result (Dickinson, 1985; Wood & R€unger, 2016). Experimentally, behavior is typically
classified as goal-directed when an animal alters a previously rewarded action following rele-
vant changes in the actioneoutcome contingencies (e.g., delivery of the outcome is no
longer conditional on an action) and/or following a change in the motivational signifi-
cance of the outcome expected for that action (e.g., the animal is no longer hungry;
Hammond, 1980; Adams, 1982). Insensitivity to these manipulations is considered a hall-
mark of habitual behavior. These two classes of behavior are believed to be underpinned by
distinct psychological processes and neural substratesda proposal that has been borne out
by evidence for dissociable patterns of neural activity (Gremel & Costa, 2013) and
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inactivation studies showing that behavior can be made more habitual or goal-directed by
selectively inactivating specific regions of the striatum and prefrontal cortex (Balleine &
O’Doherty, 2010; Killcross & Coutureau, 2003; Yin & Knowlton, 2006).

Edward Tolman (1948), one of the earliest researchers into goal-directed decision-
making, proposed that a distinguishing feature of goal-directed behavior was a reliance
on an internal model of the environment to guide action selection, rather than action se-
lection relying solely on the history of prior actions and associated feedback. This qual-
itative distinction is at the center of a parallel distinction in the RL literature between
algorithms that drive an agent’s action selection in a model-based or model-free manner
(Kaelbling, Littman, &Moore, 1996; Littman, 2015; Sutton & Barto, 1998). Specifically,
whereas model-free RL selects between actions based on the rewards previously experi-
enced when performing those actions, model-based RL incorporates more specific infor-
mation about the structure of the agent’s environment and how this interacts with the
agent’s actions and the associated outcomes. These parallels fostered a natural alignment
between the animal and machine learning literature such that goal-directed decisions
were mapped onto model-based RL algorithms, and habits were mapped onto model-
free algorithms (Daw et al., 2005; Dolan & Dayan, 2013). Today, these literature are
so tightly interwoven that the terms model-free/habitual and model-based/goal-
directed are often used interchangeably, and the linkages between them have yielded
novel insights into complex decision-making phenomena, such as addiction (Lucantonio,
Caprioli, & Schoenbaum, 2014; Vandaele & Janak 2017), impulsivity (Rangel, 2013),
and moral judgment (Buckholtz, 2015; Crockett, 2013; Cushman, 2013). For instance,
individuals with debilitating habits are thought to be driven more by model-free than
model-based learning systems (Gillan, Kosinski, Whelan, Phelps, & Daw, 2016; Gillan,
Otto, Phelps, & Daw, 2015), as are those who judge moral wrongdoings based on the
act and its outcome rather than also taking into account other features of the situation
(e.g., intention, directness of causality; Crockett, 2013; Cushman, 2013).

PROBLEMS WITH THE CURRENT TAXONOMY

Despite its popularity and intuitive foundations, key aspects of this mapping between this
pair of dichotomies remain tenuous. First, the fundamental basis of RLdthe idea of an
agent adjusting its actions based on prior reinforcementdalready strains against early (Hull,
1943; James, 1890; Thorndike, 1911) as well as more recent (Ouellette & Wood, 1998;
Wood & Neal, 2007; Wood & R€unger, 2016) conceptualizations of habits. According to
these alternate views, habits form through repetition of prior actions, irrespective of
whether those actions were positively reinforced. In other words, the mapping between
habits and model-free RL is in tension with the idea that habits may be value-free and
therefore may not require any form of RL Miller, Shenhav, & Ludvig, (in press).

A second concern about this mapping stems from research into the neural circuitry
associated with each process. In strong contrast to the relatively clean and homologous
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neural dissociations that have been observed when distinguishing habitual and goal-
directed behavior across species (Balleine & O’Doherty, 2010; Yin & Knowlton,
2006), model-free and model-based RL processes have tended to recruit largely overlap-
ping circuits (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Doll, Simon, & Daw,
2012; Wimmer, Daw, & Shohamy, 2012; but see Lee, Shimojo, & O’Doherty, 2014;
Wunderlich, Dayan, & Dolan, 2012). Moreover, the circuits implicated in both forms
of RLdincluding regions of midbrain, ventral and dorsomedial striatum, orbital/ventro-
medial prefrontal cortex, and anterior cingulate cortexdoverlap primarily with circuits
causally implicated in goal-directed (and/or Pavlovian) behavior, rather than with the
neural substrates of habitual behavior (Balleine & O’Doherty, 2010).

Together these two concerns suggest that the links between the animal and machine
learning taxonomies are at the very least incomplete if not deeply misaligned. They paint
a picture of (1) habits as being potentially value-free and therefore not mapping cleanly to
either form of RL and (2) model-free and model-based RL as instead both belonging to a
category of value-based behaviors that share mechanisms in common with goal-directed
behaviors (Fig. 18.1). Habits are therefore not necessarily the product of model-free
RL, and model-free RL may share more in common with model-based RL than habits
do with goal-directed behavior (see also Chapter 5 by Collins).

ALTERNATIVE TAXONOMIES FOR HABITUAL AND GOAL-DIRECTED
BEHAVIOR

Value-based versus value-free control
As suggested above, habitual and goal-directed behaviors may be distinguished along
other dimensions and according to other schemes than those encompassed by the popular
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Figure 18.1 Schematic of computational architectures for habitual and goal-directed control. Left:
Currently popular architecture in computational reinforcement learning (RL), in which model-free
and model-based RL instantiate habitual and goal-directed control, respectively (Daw et al., 2005).
Middle: Proposed architecture in which habits are implemented by direct (“value-free”) connections
between stimuli and the actions that are typically taken in response to those stimuli while goal-
directed control is implemented by RL (Miller et al., 2016; see Fig. 2). Right: Proposed architecture
in which habits are implemented by lower (“belief-free”) layers in a hierarchical predictive network,
while goal-directed control is implemented by higher (“belief-based”) layers (Friston et al., 2016;
Pezzulo et al., 2015). Left and middle panels modified from Miller et al., (2016).
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model-free/model-based dichotomy. One alternative framework for distinguishing be-
tween habitual and goal-directed behavior focuses on the role that value does or does not
play in driving those behaviors (Miller et al., 2016). Under this proposal, goal-directed
control is understood as relying on representations of expected value: “expected dis-
counted future reward” in the language of RL theory or “utility” in economics. Both
model-based and model-free RL agents represent expected value (i.e., both produce ac-
tions that are value-based) and might therefore implement different types of goal-directed
control. Habitual control, in this view, arises from a different type of agent: a value-free,
perseverative agent. This perseverative agent tends to repeat actions frequently taken in
the past in a particular situation, regardless of their outcomes (Fig. 18.1, middle).
Crucially, this perseverative system considers all past actions, whether they were taken
under its control or under the control of the goal-directed system. This allows behaviors
to be “passed on” from one control system to the other: If the goal-directed system tends
to frequently take the same action in a particular situation, the habitual system will learn
also to take that action (Fig. 18.2).
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Figure 18.2 (A) Schematic of value-based/value-free architecture. Habits are implemented by a value-
free process that strengthens actions that are frequently taken in a given state, while goal-directed
control is implemented by a process that computes values based on history of reinforcement and
knowledge of the task structure. For details, see Miller et al. (2016). (B) Simulations of a reversal
learning environment: Action A is initially reinforced with higher probability (0.5) than Action B (0),
but after 1000 trials, the reinforcement probabilities reverse. (C) Soon after the reversal, the goal-
directed system learns that Action B is more valuable. (D) The habit system increasingly favors Action
A the more often it is chosen and only begins to favor Action B once that action is chosen more consis-
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(F) Actions are selected on each trial by a weighted combination of the goal-directed values and the
habit strengths. Modified from Miller et al., (2016).
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Such an arrangement has been shown to recapitulate classic findings in the literature
on habits, including their strengthening with overtraining; their insensitivity to outcome
devaluation and contingency degradation; and the widespread finding that humans and
other animals perseverate on previous actions in instrumental tasks, irrespective of feed-
back (Miller et al., 2016). This framework also provides a natural explanation for the
finding that putatively model-based and model-free representations of value and predic-
tion error tend to colocate in brain regions associated with goal-directed control (Daw
et al., 2011). More generally, this proposal is grounded in previous approaches that
have incorporated Hebbian plasticity (i.e., increasing strengthening of stimuluseresponse
associations with repetition) in other computational models of the development of auto-
maticity (Ashby, Ennis, & Spiering, 2007; H�elie, Roeder, Vucovich, R€unger, & Ashby,
2015; Topalidou, Kase, Boraud, & Rougier, 2015).

Belief-based versus belief-free control
A second but related set of accounts distinguishes categories of behavioral control accord-
ing to the role played by beliefs rather than value per se (Fig. 18.1, right; Friston et al.,
2016). Under belief-free schemes, an agent selects actions based on stimuli or stimulus-
action sets (policies). By contrast, under belief-based schemes, an agent maintains internal
(probabilistic) estimatesdor beliefsdover external states (e.g., its current or future ex-
pected locations) and uses these beliefs for action selection. Forming beliefs about the
environmental state is important when the environment is partially observable (i.e.,
some of its parts are hidden and not directly observable, hence they need to be inferred),
and the current stimulus does not unambiguously specify (for example) the agent’s posi-
tion or context (Box 18.1).

To better understand the difference between belief-free and belief-based schemes,
consider the case of an agent in a T-maze, as depicted in Fig. 18.3. The agent can be
in one of eight possible states: one of four locations (center, top-left, top-right, bottom)
within one of two contexts (Fig. 18.3). In Context 1, reward is on the top-left, while in
Context 2 reward is on the top-right. The agent knows its initial location (center) but
does not know which context it is in. However, the agent knows that colored cues at
the bottom of the maze will disambiguate the context: these cues are either blue (Context
1) or cyan (Context 2). A belief-free agent, who has no notion of state or context, would
select a policy to go directly to one of the two reward sites (top-left or top-right), but
will, as a result, risk missing the reward. A belief-based agent, who knows it is uncertain
about the context and that the cue will reduce this uncertainty, would instead go to the
cue location first (called an “epistemic action” as it aims at changing the agent’s belief state
and not achieving an external goal). After disambiguating its current context, the belief-
based agent would go to the correct reward location with high confidence.
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In other words, a belief-free agent would reach a reward location without resolving
its uncertainty first and (in this maze) fail half the time. On the contrary, a belief-based
agent would perform an epistemic action first (go to the cue location) and then go to
the correct reward location. This case exemplifies the similarities belief-based action se-
lection shares with properties of goal-directed action selection, most notably, its reliance
on cognitive representations (state representation and generative models), its epistemic
drives (i.e., foraging for information and reducing uncertainty prior to acting), and its
context sensitivity. Friston et al. (2016) proposed that a belief-free scheme is sufficient

Box 18.1 Beliefs within a Markov Decision Process (MDP) framework
Under a belief-free scheme, an agent always directly infers its state (e.g., position in the maze)
from sensory measurements (observations). This scheme is particularly attractive because an
agent does not need to consider previous stimuli or actions to select an actiondthe current
stimulus is sufficient (the so-called Markov property of MDPs). Such a scheme also assumes a
one-to-one mapping between the agent’s “true” state (e.g., position in the maze) and its obser-
vations. However, realistic environments complicate such inferences about one’s current (or
future) states in at least two ways. First, such environments are stochastic, meaning different
observations can follow from the same state, such as reward being delivered probabilistically
in a corner of a maze. Second, most environments involve aliasing, meaning different states
generate the same observations, such as observing reward in two different corners of a
maze. The former complication (stochasticity) is not a real challenge for most RL schemes,
but the latter (aliasing) is more difficult to handle, as an agent cannot infer its true state
from sensory measurements. The agent may thus face a credit assignment problem in assign-
ing observations to their true causes (sometimes called hidden states). There are various ways
to extend the Markov Decision Process (MDP) formulation to handle these more challenging
cases. One is called belief MDP and consists in augmenting the agent’s representation with a
sort of memory; the hope is that even if two states are aliased and cannot be distinguished
on the basis of the current observations, they can be distinguished on the basis of a trace of
previous observations.

The problem described above is enriched within a framework known as a Partially Observ-
able Markov Decision Process (POMDP; Kaelbling, Littman, & Cassandra, 1998); here, the agent
is enriched with a notion of “state” that is distinct from an observation or a history of previous
observations. In a probabilistic setting, an agent maintains a probability distribution or belief
over its current state or even about future goal states or previous states (becoming a belief-
based system). All of these beliefs are continuously updated on the basis of new observations,
using mechanisms that are analogous to Kalman (or Bayesian) filtersdhence, it can resolve any
ambiguity about its current (or future or past) states by collecting more observations. This
probabilistic approach is at the core of recent formulations of goal-directed systems that are
driven by planning-by-inference (Botvinick & Toussaint, 2012), KullbackeLeibler (KL) control
(van den Broek, Wiegerinck, & Kappen, 2010), and active inference (Friston, FitzGerald, Rigoli,
Schwartenbeck, & Pezzulo, 2017).
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to characterize habitual systems but that a belief-based scheme is necessary to characterize
goal-directed systems.

This taxonomy also illustrates that a belief-based scheme is only required when there
is state uncertainty, but when uncertainty is resolved (e.g., after learning), the belief-based
scheme can give way to a belief-free scheme. For instance, after engaging with the
T-maze above for a sufficient number of trials to learn that the reward contingencies
were stable, the agent can become sufficiently confident about them. In this case, it
would not need to check context cues anymore but can go directly to the correct reward
location (e.g., the top-left). In other words, with no residual uncertainty about the cur-
rent context, the agent no longer needs a belief-based scheme or epistemic actions. This
case is exactly when the agent can use (or learn) a classical belief-free or stimuluse
response RL policy, say, to go directly to the top-left (see Friston et al., 2016 for details).
Hence, belief-free action selection shares many similarities with habitual behaviordmost
notably, a primary dependence on stimuli to trigger actions and an inflexibility to changes
in contingencies (i.e., a change in reward location). In sum, while goal-directed behavior
requires a belief-based scheme, habitual behavior maps naturally to a belief-free scheme;
and both can coexist within the same agent architecture. Note that while the belief-based
scheme uses a notion of (expected) value, the belief-free scheme uses stimuluseresponse
mechanisms and has no notion of value.

Other approaches
There have been several other theoretical attempts to carve the space that includes goal-
directed and habitual behavior, while avoiding a strict model-based versus model-free di-
chotomy. One such approach leverages distinct forms of memory for past rewards: a
slowly updating, long-term memory and a rapidly adjusting short-term memory
(Hikosaka, Ghazizadeh, Griggs, & Amita, 2017; Silver, Sutton, & M€uller, 2008). The
former is thought to encode skills, which are analogous to habits in that they are auto-
matic, precise, and inflexible, whereas the latter is responsible for flexible responding,
analogous to goal-directed control. A second approach puts habits right into the goal-
directed planning process, whereby planning proceeds through a typical search process,
but terminates after a certain depth (Keramati, Smittenaar, Dolan, & Dayan, 2016). The
value of the terminal node of the search is taken to be the habitual value and used to guide
the initial choice. A third approach asserts that habits arise from “chunking” of action se-
quences that are initially taken under goal-directed control and are selected by the goal-
directed system in situations where they are adaptive (Dezfouli & Balleine, 2013;
Dezfouli, Lingawi, & Balleine, 2014). A fourth approach proposes a tripartite division be-
tween exploratory, model-based, and motor memory systems. This approach splits the
model-free system into a component that generates highly variable exploratory behavior
and another habitual component that sticks strictly to the learned values (Fermin et al., 2016).
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Figure 18.3 Epistemic versus pragmatic policies and belief-based versus belief-free schemes. (A) A
simple choice situation that includes four spatial locations (center, top-left, top-right, bottom) and
two contexts (Context 1 and Context 2), for a total of eight (four by eight) hidden states. In Context
1, the reward (blue circle) is located to the top-right, and a cue indicating its position (blue arrow) is
located to the bottom. In Context 2, the reward (cyan circle) is located to the top-left, and a cue indi-
cating its position (cyan arrow) is located to the bottom. Red circles are not rewarding. (B) A simulated
agent starts from the center location and has to select a sequence of two actions to reach the reward
site, but the agent does not know the current context. Three example policies are shown: Policy 5 (top-
left, top-left) is a pragmatic policy that goes directly to the left location; Policy 8 (bottom, top-left) and
Policy 9 (bottom, top-right) are epistemic policies that go to the informative (bottom) location before
reaching one of the two reward locations. (C) Results of a simulation using the belief-based scheme of
active inference. The panel shows the sequence of contexts (Context 1 is represented by the green
circle and Context 2 by the black square) that the agent encounters for each trial and the policies it
selects (horizontal lines). There is a clear transition between epistemic policies 8 and 9 to the pragmatic
Policy 5 at trial 18, when the agent has resolved its uncertainty about its current context. (D) Out-
comes (cyan and blue dots are rewards, red dot is no reward; note that outcomes are stochastic), per-
formance (expected utility, with zero as maximum value) and reaction time for each trial. (E) Agent’s
belief about its initial hidden state. The values 1 and 2 indicate the center location in Context 1 and 2,
respectively. Note that the agent increases its belief about being located in Context 1dwhich also
produces the shift from an epistemic to a pragmatic policy after about 20 trials. (F) This panel shows
how the belief-free component of the agent controller emerges over time. The belief-free component
here corresponds to the expected transitions between the eight hidden states (columns are starting
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Finally, research on category learning has described a related distinction between the
competing systems: between a nonverbal, implicit system and a verbal, explicit system
(Ashby & Maddox, 2011; Ashby, Alfonso-Reese, Turken, & Waldron, 1998). The
former system exhibits many of the hallmarks of habitual behavior, including rapid
responding and insensitivity to change, whereas the latter only emerges when there is
a verbalizable rule available. Synthesizing and distinguishing these multiple taxonomies
is a significant challenge for future work.

WHAT IS THE STRUCTURE OF THE GOAL-DIRECTED SYSTEM?

In the previous section, we reviewed schemes that replace model-free RL as the compu-
tational basis for habits. In this section, we consider the variety of possible schemes for the
computational basis of goal-directed control, many of which merge model-based plan-
ning with model-free elements. This diversity results from the fact that optimal
model-based control is impossible in realistic environments, because it would require
enumerating and evaluating the full tree of possible future states, imposing computational
costs that cannot be met by any physical system. Different schemes therefore represent
different attempts to approximate optimal control without paying these costs (Daw &
Dayan, 2014). A wide variety of such algorithms has been proposed, both within RL
(Sutton & Barto, 1998) and in artificial intelligence more generally (Russell & Norvig,
2002), and the details of the algorithms used by the brain are only now beginning to
be understood (Dolan & Dayan, 2013).

One strategy for reducing computational costs is to explore only parts of the search
tree, whether using random rollouts (Kearns, Mansour, & Ng, 2002; Silver & Veness,
2010) or other heuristics to focus the search (Huys et al., 2015, 2012; Kocsis & Szepesv�ari,
2006). Evaluation of unexplored parts of the tree may be further assisted by cached values
(Keramati et al., 2016). In general, these approaches entail a metacontrol problem gov-
erning how much of the tree to search (Baum, 2004; Simon, 1984). A closely related
approach, termed DYNA, combines model-based and model-free RL. In this frame-
work, a model-free value is incrementally updated through samples drawn from a world
model (Gershman, Markman, & Otto, 2014; Sutton, 1991; Silver et al., 2008).

states; lines are end states), which are learned by “observing” one’s own goal-directed behavior over
time. In this particular example, an epistemic policy emerges as the agent progressively increases its
expectation that it would perform a transition from state 1 (centerdContext 1) to state 7 (bottomd
Context 1) and from state 7 to state 3 (top-leftdContext 1). When the confidence in these transitions
is sufficient, the agent can shift from the belief-based scheme shown in panels (C, D) to a simpler
belief-free scheme that does not require a generative model but only one of the matrices of expected
transitions shown in panel (F). The latter correspond to habits and are insensitive to devaluation.
Modified from Friston, et al. (2016).

=
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Another approach to reducing the computational costs of model-based control, while
remaining sensitive to at least some changes in task contingencies, is to adopt a predictive
state representation, in which each state is associated with information about expected
future states, but no explicit planning takes place (Dayan, 1993; Littman & Sutton,
2002). An agent using such a representation avoids many of the costs of model-based
control but retains some of its flexibility, making it a plausible candidate for understand-
ing some aspects of goal-directed behavior in humans (Momennejad et al., 2016; Russek,
Momennejad, Botvinick, Gershman, & Daw, 2017).

What all these approaches have in common is that they typically do not make a sharp
distinction between model-based and model-free learning. Rather, these algorithms
seem to operate along a continuum, such that “model-basedness” itself forms a contin-
uous dimension that varies in informational richness, from simple associations between
states or responses and cached values to more complex associations that include informa-
tion about specific outcomes and/or transition probabilities, or even conjunctive associ-
ations between states, responses, and outcomes (Alexander & Brown, 2011, 2015). This
continuity between model-based and model-free algorithms stands in stark contrast to
the sharp division between goal-directed and habitual mechanisms suggested by behav-
ioral and neural data. This difference lends credence to accounts in which goal-directed
control is implemented by a system with model-based and model-free aspects, whereas
habitual control is implemented by separate mechanisms (Ashby et al., 2007; Dezfouli &
Balleine, 2012; Friston et al., 2016; Miller et al., 2016; Pezzulo, Rigoli, & Friston, 2015;
Topalidou et al., 2015).

WHAT WILL MAKE FOR A GOOD ACCOUNT OF HABITUAL AND GOAL-
DIRECTED BEHAVIOR?

The previous sections have described various attempts to develop computational theories
of habitual and goal-directed control, along with the challenges that each theory faces.
Directly comparing the utility of these models, however, proves difficulty because of a
critical limitation in this area: The different theories tend to address different aspects of
the experimental literature. Indeed, it is not always clear when the various theories
describe different, incompatible views of the processes by which behavior is controlled,
and when they instead describe potentially compatible pieces of a larger picture which no
theory yet fully encompasses. Therefore, rather than attempting such direct comparisons,
in this section, we instead outline the major pieces of empirical data that future theories of
habitual and goal-directed control should address.

Automaticity versus control
As discussed above, one classic criterion for distinguishing habits and goal-directed be-
haviors relates to the kind of action an animal takes after experiencing a degradation of
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contingencies or devaluation of outcomes following extended training. Habits, however,
exhibit other behavioral hallmarks, including responses that are faster and more accurate
(Graybiel, 2008; Wood & R€unger, 2016; e.g., Smith & Graybiel, 2013). With extended
training, behavior also becomes more consistent, an observation documented most
robustly in the literature on motor skill learning (Newell, 1991; Willingham, 1998;
Wulf, Shea, & Lewthwaite, 2010). In other words, the inflexibility of habitual control
trades off with gains in speed and consistency of action.

This set of observations collectively points to habits as being fundamentally more auto-
matic than goal-directed actions. That is, relative to their goal-directed equivalents,
habitual actions are selected faster and are less prone to interference from other ongoing
tasks (Norman & Shallice, 1986; Posner & Snyder, 1975; Shiffrin & Schneider, 1977).
This distinction was instrumental in classifying habits and goal-directed behaviors as ex-
emplars of automatic/intuitive (“System 1”) versus controlled/reflective (“System 2”)
processing within the dual-process literature (Wood, Labrecque, & Lin, 2014; cf. Evans,
2008). It is therefore difficult to describe a robust taxonomy of these behaviors without
accounting for the relative differences in automaticity between them (Wood & R€unger,
2016) in addition to the kinds of choices an animal makes in a given setting.

Not only must a theory of these behaviors account for the automaticity of habits, it
must also account for the controlled nature of goal-directed decision-making. The char-
acteristics of decisions that involve increasing goal-directed deliberation suggest that such
decisions benefit from cognitive control. For instance, increasingly goal-directed deci-
sions are slower, more susceptible to interference from other ongoing processes, and
are experienced as costly/effortful (Kool, Gershman, & Cushman, in press; Otto,
Gershman, Markman & Daw, 2013; Otto, Raio, Chiang, Phelps, & Daw, 2013;
Schwartz, 2004; see Chapter 7 by Kool et al. and Chapter 6 by Schmidt et al.). However,
it is still unknown what type(s) of cognitive control goal-directed decisions rely on and
what kinds of costs they incur. One prominent proposal suggests that goal-directed
decision-making requires searching through an internal map of potential future states
in order to identify the best possible future state (Kurth-Nelson, Bickel, & Redish,
2012). This search process requires selection from and maintenance of episodic and se-
mantic memories, as well as instantiation of relevant contexts (see Chapter 6 by Schmidt
et al.). The cost of goal-directed decision-making therefore may derive from the time
and/or cognitive resources required for this search process (Kool et al., in press).

The development of habits
A foundational observation in the psychology of goal-directed and habitual control is that
habits are slow to develop. The behavioral manifestations described above (speed, stereo-
typy, inflexibility, and resistance to interference) appear only after extended experience
with a particular type of behavior (Adams, 1982; Dickinson, 1998; Wood & R€unger,
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2016). Behavior in relatively novel environments tends to be slow, flexible, and vulner-
able to distractiondthe hallmarks of goal-directed control. A computational theory of
goal-directed and habitual control must account for this shift, in which behavior begins
under putatively goal-directed control, then over time becomes habitual. Such a theory
must also account for the fact that habitization proceeds at different rates in different types
of environments, for example, proceeding slowly in the case of “variable-ratio” reward
schedules in which reward rate is directly proportional to the rate of performance of an
action but proceeding very quickly in “variable-interval” reward schedules, which pro-
duce a reduced correlation between variability in behavior and variability in reward
(Dickinson, Nicholas, & Adams, 1983; Miller et al., 2016).

Neural correlates of goals and habits
Computational theories of goal-directed and habitual control can be tested and con-
strained by neural data in at least two ways. First, predicted computational variables
can be validated by observing corresponding neural correlates. All of the theories that
we have outlined posit latent computational variables, such as the expected value associ-
ated with an action, or the associative strength between two stimuli, that are kept track of
by the processes that govern behavior and that change over time. To the extent that a
theory accurately describes computational mechanisms implemented by the brain, these
latent variables are expected to have correlates in neural activity. Measurement of neural
activity (e.g., single unit recordings, fMRI) during the performance of well-controlled
tasks should reveal these neural correlates and could help adjudicate between competing
models.

The second way in which neural data can inform theories of the type we consider
here is by way of perturbation experiments. Specific perturbations to neural activity
(e.g., lesions, pharmacology, optogenetics) have been shown to have specific effects on
behavior in many tasks. A classic and robust example of this is found in the specific
impairments in goal-directed or habitual control caused by lesions to specific regions
of the striatum (Yin & Knowlton, 2006). A more recent example seems to demonstrate
a specific role for dopamine in model-based control (see Box 18.2). A successful compu-
tational account of behavior must account for these causal mechanisms, perhaps by
ascribing particular computational functions to particular structures or neurotransmitters.

Goal selection and pursuit
A rich psychological literature has characterized a set of distinct processes associated with
goal-directed control, including committing to a goal (Oettingen, 2012), formulating a
plan to achieve that goal (Wieber & Gollwitzer, 2017), pursuing that plan in the face of
unexpected circumstances (Gollwitzer & Oettingen, 2012), and learning from one’s suc-
cess or failure to achieve the desired goal (Coricelli et al., 2005; Laciana &Weber, 2008).

418 Goal-Directed Decision Making



Box 18.2 Do we need model-free control?
Many of the theories presented in the main text offer alternative computational mechanisms
for habits that take the place of model-free reinforcement learning (RL). While these models
allow for the possibility that model-free computations may still play a role in driving goal-
directed behavior, this move nevertheless raises the question of whether stand-alone model-
free algorithms are a necessary component of computational theories of decision-making.

Historically, the strongest support for model-free algorithms in the brain has come from a
series of seminal studies demonstrating that firing rates of dopaminergic neurons in the
midbrain show a response pattern evocative of the “prediction error” signal (Schultz, Dayan,
& Montague, 1997), which plays a key computational role in model-free learning algorithms.
These findings have given rise to the view that these neurons are part of a model-free control
system, perhaps principally involving their strong projection to the striatum (Houk, Adams, &
Barto, 1995). This picture has been complicated by recent evidence indicating that dopamine
transients may be informed by model-based information (see also Chapter 11 by Sharpe and
Schoenbaum). Dopamine neurons in a reversal learning task encode prediction errors that
are consistent with inference (Bromberg-Martin, Matsumoto, Hong, & Hikosaka, 2010), while
dopamine transients in humans encode information about both real and counterfactual re-
wards (Kishida et al., 2016). Perhaps most tellingly, dopamine neurons encode prediction errors
indicative of model-based information (Sadacca, Jones, & Schoenbaum, 2016), and they even
respond to errors in the predictions of sensory features that do not impact the value of the
reward received (Takahashi et al., 2017).

These findings are congruent with a wealth of recent data from cognitive neuroscience,
suggesting that dopamine plays a role in model-based rather than model-free control. Individ-
ual differences in dopamine receptor genotype correlate with the extent of model-based, but
not model-free, influence on behavior (Doll et al. 2016). Model-based control is more dominant
in human subjects with higher endogenous dopamine levels (Deserno et al., 2015), as well as
those whose levels of dopamine have been artificially increased using drugs (Wunderlich,
Smittenaar, & Dolan, 2012). Patients with Parkinson disease, in which midbrain dopaminergic
neurons die in large numbers, show a smaller influence of model-based control on behavior,
which is rescued if they take medication to restore systemic dopamine levels (Sharp, Foerde,
Daw, & Shohamy, 2015).

This pattern of results casts doubt on the idea that dopamine neurons signal a model-free
prediction error in the service of a model-free control system. The idea that such a dopami-
nergic model-free system underlies habitual control is further undermined by data showing
that patients with Parkinson disease are relatively unimpaired at learning habits relative to
goal-directed control (Hadj-Bouziane et al., 2012; de Wit, Barker, Dickinson, & Cools, 2011),
and also that subjects whose levels of dopamine have been artificially depleted show fewer
“slips of action,” a behavioral measure of habit formation (de Wit et al., 2012). Taken together,
these data suggest that dopamine may not be involved in specifically model-free computations
and is unlikely to play a selective role in habitual control. More generally, these developments
raise doubts about the widely accepted notion that the brain implements model-free RL algo-
rithms, and they strongly motivate the search for alternative computational accounts of
habitual behavior, such as those reviewed in this chapter.

Realigning Models of Habitual and Goal-Directed Decision-Making 419



Computational models have only begun to engage with this rich psychological phenom-
enology, for example, proposing that goal selection and goal pursuit map to two distinct
computational processes with separate demands and neural underpinnings (O’Reilly,
Hazy, Mollick, Mackie, & Herd, 2014). However, much remains to be understood con-
cerning the psychological and phenomenological aspects of goal-directedness and the
associated computational processes. These more elaborate psychological elements of
goal seeking have also become an important topic for the nascent field of computational
psychiatry (Montague, Dolan, Friston, & Dayan, 2012).

Goals and habits in ecological behaviors
Almost all previous theorizing about goal-directed versus habitual systems has focused on
well-controlled laboratory experiments that manipulate a limited set of variables. Real-
life situations, by contrast, invariably include a large state space and number of options,
making some of the aforementioned strategies (e.g., exhaustive search or caching all
state/action values) intractable. It has been variously proposed that dealing with real-
life situations requires some form of approximation (e.g., approximate planning methods)
as well as forms of abstraction, modularization, and/or hierarchization. These approxi-
mate solutions may reflect the structure inherent in the problem space (e.g., the fact
that often real-life problems can be split into meaningful subproblems that can be solved
one after the other, rather than solving the whole problem from start to end). Still, this is
largely uncharted territory, and it is unclear whether one can find domain-general or
domain-specific ways to address the full complexity of real-life situations.

The challenge of real-life complexity is particularly acute in this instance as goal-
directed and habitual behavior are often distinguished by using laboratory manipulations
(e.g., outcome devaluation) that emphasize aspects that are present in one condition but
not the other. However, real-life situations, like shopping or planning a trip, tend to
involve both habitual (e.g., stereotyped/scriptlike) components (e.g., going to the usual
shop or train station) and novel challenges that have to be solved on the fly and thus need
to engage a more deliberative form of reasoning (e.g., what to do if the shop is closed/the
train is delayed). Some challenges posed by these tasks may be solved by reusing “cached”
strategies or require some minimal form of generalization, whereas other challenges may
require planning and deliberating de novodhence, aspects of goal-directed and habitual
control would plausibly need to be continuously and creatively integrated.

Recognizing that real-life behaviors are often hierarchically organized in this way,
several recent proposals have adopted decision architectures that are themselves hierarchi-
cal. One such proposal comes from hierarchical RL, and proposes that behavior can be
organized into abstract behavioral chunks (termed “options”), each aimed at reaching a
given goal (Botvinick, 2012; Botvinick, Niv, & Barto, 2009; Sutton, Precup, & Singh,
1999). This framework provides a way to abstract away unnecessary details and plan
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behaviors in terms of subgoals and their associated plans/policies (e.g., go to the train sta-
tion, then take the train, etc.). A related proposal suggests that the brain implements hi-
erarchical probabilistic inference, which identifies the best ways to decompose a problem,
simplifying the selection of subgoals (Balaguer, Spiers, Hassabis, & Summerfield, 2016;
Donnarumma, Maisto, & Pezzulo, 2016; Maisto, Donnarumma, & Pezzulo, 2015).
Other hierarchical schemes posit that simpler and more complex aspects of a plan
(e.g., “go to the airport”) depend on different hierarchical layers in the same network
(Pezzulo et al., 2015; Pezzulo, Rigoli, & Friston, 2018). Integrating ideas like these
into models of the interaction between goal-directed and habitual control offers a prom-
ising direction toward understanding the complexities of real-world behaviors.

Interactions between habitual and goal-directed control
Previous research has proposed several ways that separate habitual and goal-directed con-
trollers could interact. One approach assumes that goal-directed and habitual mechanisms
compete for control of behavior, with an arbitration mechanism that allocates control to
one or another mechanism (e.g., Daw et al., 2005). The two controllers learn indepen-
dently, and the arbitration mechanism can reflect the uncertainty or recent utility of each
controller. As a result, behavior is alternately under control of one system or another at
different times or in different contexts. This allows the agent to avoid the costs of running
the goal-directed controllerdwhether in terms of precision (Daw et al., 2005), of time
(Keramati, Dezfouli, & Piray, 2011), or of computational cost (Kool, Cushman, &
Gershman, 2016)din situations where it is not needed.

While goal-directed and habitual controllers are often modeled as learning in parallel,
some proposals suggest a hierarchical organization. One family of proposals suggests that
habits can be activated by goal-directed mechanisms (Aarts & Dijksterhuis, 2000), perhaps
being composed of “chunked” sequences of behavior, which develop with experience
(Dezfouli & Balleine, 2012; Dezfouli et al., 2014). A complementary family of proposals
suggests that goals themselves may be activated by habits (Cushman & Morris, 2015; see
also Chapter 7 by Kool et al.).

An alternative possibility is that both goal-directed and habitual behavior interact by
forming part of a single controller, thereby cooperating to create a single integrated value.
Such a cooperative architecture is incorporated into the “mixed instrumental controller”
(Pezzulo, Rigoli, & Chersi, 2013). By default, this controller uses probabilistic priors on
action or policy values to select action (i.e., a form of model-free control). The controller,
however, also uses costebenefit computations to decide when the prior is not sufficient.
When the prior is insufficient, a second, model-based component is engaged to collect
more evidence (by covertly resampling experience from the internal forward model of
the task) before making a choice. This approach is closely related to the DYNA architec-
ture (described above; Gershman et al., 2014; Sutton, 1991), in which simulated
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experience from a forward model is used to drive learning. Both of these schemes give
rise to a continuum of choice patterns, which can stem from purely cached values or
from a combination of these values and internal modeling: the more samples are drawn
from the internal model, the more behavior will appear to be planned rather than model-
free.

Another way to construct a continuum between habitual and goal-directed behavior
is to posit that behavior at each moment results from a weighted sum of the influences of
each system. One set of approaches involves an explicit arbiter that assigns weights adap-
tively (Lee et al., 2014; Miller et al., 2016). Another approach appeals to hierarchical pre-
dictive coding (Pezzulo et al., 2015). Here, goal-directed behavior arises when higher
hierarchical layers produce long-term action predictions, and these predictions are
used to “contextualize” shorter-term predictions at lower layers. Habitual behavior arises
when lower layers acquire sufficient precision (a measure of inverse uncertainty in pre-
dictive coding) and become essentially insensitive to top-down messages. From this
perspective, the continuum between goal-directed and habitual behavior depends on
the relative strength (precision) of the top-down and bottom-up messages (predictions)
in the hierarchical architecture, without an explicit arbiter.

The majority of these schemes were developed in the context of models that assert
that habitual behavior relies on model-free mechanisms, and may be best suited to un-
derstanding the interactions between model-based and model-free control within the
goal-directed system (seeWhat is the structure of goal-directed control? section, above). Gener-
alizing them to the case where habits are instantiated by other mechanisms remains an
important direction for research.

CONCLUSIONS

A large body of evidence suggests that the brain contains separate mechanisms for goal-
directed control, characterized as flexible but slow and effortful, and habitual control,
characterized as inflexible but rapid and automatic (Balleine & O’Doherty, 2010; Dolan
& Dayan, 2013; Yin & Knowlton, 2006). Recently, influential accounts have posited that
goal-directed control is instantiated by model-based RL mechanisms, while habitual
control is instantiated by model-free RL (Daw et al., 2005). These proposals have given
a new theoretical foundation for investigations into the mechanisms of decision-making
in general and supported new insights into many aspects of cognition, including addic-
tion, morality, and other domains (Cushman, 2013; Lucantonio et al., 2014). At the same
time, key tensions have become apparent between the model-based/model-free compu-
tational dichotomy and the theoretical and empirical literature.

Theoretical accounts of habits, both classic (Hull, 1943; James, 1890; Thorndike,
1911) and modern (Graybiel, 2008; Wood & R€unger, 2016), hold that habits are medi-
ated by direct stimuluseresponse associations, which bypass any representation of

422 Goal-Directed Decision Making



expected outcome. Model-free RL, in contrast, depends critically on representations of
expected value associated with each action. Empirically, the clear dissociations observed
between neural structures involved in habitual and goal-directed behaviors have not been
observed in tasks designed to differentiate model-based from model-free computationsd
instead, the regions involved have been largely overlapping (Doll et al., 2012). Together,
these findings suggest that the model-based/model-free dichotomy may not map cleanly
onto neural circuitry and that dominant computational models of goal-directed and
habitual control may be in need of revision.

Here, we have reviewed a family of diverse alternative proposals that both arise from
and engage with different portions of the literature. One element that many of these pro-
posals share is severing the tie between habitual control and model-free RL, instead
positing that habits are instantiated by an alternative computational mechanism (e.g.,
Dezfouli & Balleine, 2012; Friston et al., 2016; Miller et al., 2016). This realignment rai-
ses the question of whether model-free RL mechanisms in the brain are part of the goal-
directed controller, or indeed whether such model-free mechanisms are at all necessary to
explain human and animal behavior (see Box 18.2). More broadly, these newer proposals
highlight important questions about the detailed structure of the goal-directed system and
how that system resolves the inevitable trade-offs between performance and computa-
tional costs.

Finally, we have reviewed part of the broad empirical literature on goal-directed and
habitual behaviors and suggested a set of phenomena that future work should seek to
understand computationally. On the empirical side, this will mean developing new
behavioral measures that allow for the examination of separate and interactive influences
of habitual and goal-directed processes on behavior in complex environments, at
different stages of habit development. On the computational side, it will be important
to account not only for the observed behaviors and neural patterns within these exper-
iments but also for the processes underlying learning and selection of habits and goal-
directed behaviors, and for the real-world manifestations of these processes in both
healthy and disordered populations. Such a convergence of efforts will no doubt help
to adjudicate between and build on available models and work toward a full computa-
tional understanding of the neural mechanisms of goal-directed and habitual control.
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CHAPTER 19

The Motivation of Action and the
Origins of Reward
Bernard W. Balleine
Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Kensington, NSW, Australia

INTRODUCTION

This chapter is divided into two parts: The first surveys the currently accepted view of
goal-directed actions, their neural bases, and their boundary conditions in non-goal-
directed actions or habits particularly with regard to the reward- and reinforcement-
related feedback processes that guide their acquisition. The second part focuses more
specifically on the structure of these feedback processes, as it emerges from consideration
of general theories of motivation.

From a neural perspective, although there is a long and extensive literature linking
executive functions, such as goal-directed action, to the prefrontal cortex (Fuster,
2000; Goldman-Rakic, 1995), more recent studies suggest that these functions depend
on reward-related circuitry linking the prefrontal, premotor, and sensorimotor cortices
with the striatum (Dolan & Dayan, 2013; Hikosaka, Kim, Yasuda, & Yamamoto,
2014). Evidence from a range of species suggests that this corticostriatal network controls
functionally heterogeneous processes involving the following: (1) actions that are flexible
or goal-directed, sensitive to rewarding feedback and mediated by discrete regions of
association cortices particularly medial, orbitomedial, premotor, and anterior cingulate
cortices together with their targets in caudate/dorsomedial striatum (DMS) and (2)
actions that are stimulus bound, relatively automatic or habitual and mediated by senso-
rimotor cortices and dorsolateral striatum (DLS)/putamen (cf. Balleine & O’Doherty for
review). Indeed, changes in basal ganglia function produced by neurodegenerative
disorders, stroke, injury, or disease can produce pathological changes in action control
(Lee, 2013), and the nature of these changes depends on the locus of the damage.
Damage to the associative, DMS (or the caudate nucleus) produces deficits in volitional
or goal-directed action and can produce intrusive, involuntary, or compulsive actions
(Chambers, Garavan, & Bellgrove, 2009; Levy & Dubois, 2006), whereas damage to
the motor, DLS (or putamen) produces a loss of skilled or habitual motor movement
(Pramstaller & Marsden, 1996) and can produce intrusive thoughts and cognitive
demands, deficits in attention, and concentrated effort (Ellison-Wright, Ellison-
Wright, & Bullmore, 2008).
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Importantly, these two forms of action control have been argued to depend on
distinct learning rules controlled by different forms of feedback; i.e., “reward” in the
case of goal-directed action and “reinforcement” in the case of habits (Balleine,
Liljeholm, & Ostlund, 2009). Although, historically, terms like “reward” and “reinforce-
ment” were thought to refer to synonymous processes, recent research has found
evidence of significant differences in these forms of feedback at both a behavioral and
a neural level. This research is described in the first part of this chapter, whereas the
second part will consider the motivational bases of these feedback processes more
generally.

ACTIONS AND HABITS

It is now widely accepted that choice between different actions, e.g., pressing a lever or
pulling a chain when these actions earn different food rewards, is determined by an
animal encoding the association between its actions and their specific consequences
and the relative value of those consequences; thus, choice is sensitive both to degradation
of the actioneoutcome contingency and to outcome revaluation treatments (Balleine &
Dickinson, 1998a). In contrast, when actions are overtrained, decision processes become
more rigid or habitual and performance is no longer sensitive to degradation and deval-
uation treatments and is controlled by a process of sensorimotor association. Indeed,
whereas actioneoutcome encoding appears to be mediated by a form of error correction
learning, the development of habits is determined by event contiguity rather than con-
tingency (Dickinson, 1994).

Assessments of the detailed circuitry associated with these forms of decision process in
rodents have found that cell body lesions of the prefrontal cortex, particularly the prelim-
bic (Balleine & Dickinson, 1998a; Corbit & Balleine, 2003), but not the infralimbic (Kill-
cross & Coutureau, 2003), region abolish the acquisition of goal-directed actions
resulting in actions being controlled by a process of sensorimotor association alone.
Prelimbic involvement in goal-directed learning is, however, limited to a period early
in acquisition (Ostlund & Balleine, 2005; Tran-Tu-Yen, Marchand, Pape, Di Scala, &
Coutureau, 2009) suggesting that the learning-related plasticity mediating goal-
directed action is localized to an efferent structure. The prelimbic cortex projects densely
to both DMS and accumbens core (Gabbott, Warner, Jays, Salway, & Busby, 2005) and,
although the latter region appears not to be involved (Corbit, Muir, & Balleine, 2001),
evidence has consistently implicated the DMS in goal-directed learning. Thus, within the
posterior part of dorsomedial striatum (pDMS) both pre- and posttraining lesions,
muscimol-induced inactivation, the infusion of the NMDA-antagonist AP-5, or drugs
that block the phosphorylation of kinases associated with plasticity, such as mitogen-
activated protein kinase (MAPkinase), all abolish goal-directed learning and render
choice performance insensitive to both contingency degradation and outcome

430 Goal-Directed Decision Making



devaluation treatments and so leave choice habitual (Shiflett & Balleine, 2011; Yin,
Knowlton, & Balleine, 2005; Yin, Ostlund, Knowlton, & Balleine, 2005).

Importantly, evidence suggests that a parallel corticostriatal circuit involving DLS
together with the sensorimotor and infralimbic cortices (ILs) mediates habitual actions
(Barnes, Kubota, Hu, Jin, & Graybiel, 2005; Yin, Knowlton, & Balleine, 2004).
However, whereas the IL has been argued to mediate aspects of the reinforcement signal
controlling sensorimotor association (Balleine & Killcross, 2006), changes in DLS appear
to be training related (Costa, Cohen, & Nicolelis, 2004; Tang, Pawlak, Prokopenko, &
West, 2007) and to be coupled to changes in plasticity, as behavioral processes become
less flexible (Shan, Christie, & Balleine, 2015). Correspondingly, whereas overtraining
causes performance to become insensitive to outcome devaluation, lesions of DLS reverse
this effect rendering performance sensitive to devaluation treatments (Yin et al., 2004).
Likewise, muscimol-induced inactivation of DLS renders otherwise habitual actions
goal-directed (Yin, Knowlton, & Balleine, 2006) consistent with the claim that distinct
corticostriatal networks control different forms of action control (Balleine & O’Doherty,
2010). This circuitry is illustrated in Fig. 19.1A.

Reward and reinforcement
An important way in which these control processes differ lies in the feedback that they
use to update the specific learning rules controlling goal-directed and habitual actions.
Whereas goal-directed actions depend on feedback associated with an outcome-
mediated reward signal derived from the emotional significance of the goal, habitual
actions depend on an affective reinforcement signal via which a specific stimuluse
response (S-R) association is strengthened (Dickinson, 1994).

The essential psychological distinction between reward and reinforcement lies in their
consequences: In common usage, rewards are things that are given in recognition of
effort or achievement. Rewards are, therefore, given for actions over which some control
can be exerted: that can be increased or decreased, withheld, released, or modified in
order to achieve a specified change in the environment that satisfies some need or desire. In
contrast, reinforcers do not encourage actions that alter the environment in specified
ways but rather they work to reinforce or stamp in a particular motor movement as a response
to a specific situation or stimulus. These elicited responses are not discretionary but reflexive,
and rewarding them would be like rewarding a brick for standing still or a leaf for falling
from a tree.

Movements tend to be repeated if they generate a signal capable of strengthening
their association with antecedent stimuli. It has been interesting to consider the nature
of this signal; whether it reflects a change in affective tone, such as a contiguous increase
in positive affect (or satisfaction as envisaged within Thorndike’s “law of effect”
(Thorndike, 1898)), or a precise phasic change related to the predictive status of the
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stimulus. In the latter case, which is commonly supposed by reinforcement learning
accounts of habits (Daw, Niv, & Dayan, 2005), unpredicted events productive of a pos-
itive affective response, such as food for a food-deprived rat, generate a strong phasic
response, whereas well-predicted food generates a weaker or zero phasic response
(Schultz & Dickinson, 2000). This latter view has the virtue of predicting that the
associative strength of the S-R association will asymptote; as the environment comes
to predict food, the error signal will decline, meaning the S-R association will reach a
point after which it will no longer be strengthened. However, experiments that have
altered the predictive status of these stimulus conditions, for example, by only delivering
food when a response is withheld on an omissions schedule (Davis & Bitterman, 1971),

Figure 19.1 (A) Summary of the basic circuitry mediating goal-directed actions and habits and their
feedback processes associated with reward and reinforcement, respectively. (B) Summary of the role
of IL in the disinhibition of the BLA inhibition of CeN the substrate mediating the interaction of reward
and reinforcement processes. IL manipulations should, therefore, affect habit learning and perfor-
mance to the extent that these depend on the interaction between the BLA and CeN. See text for
details. aIC, anterior insular cortex; BLA, basolateral amygdala; CeN, amygdala central nucleus; DLS,
dorsolateral striatum; DMS, dorsomedial striatum; GPi, globus pallidus interna; IL, infralimbic cortices;
MD, mediodorsal thalamus; mOFC, medial orbitofrontal cortex; NAc, nucleus accumbens core; PL, pre-
limbic cortex; PO, posterior thalamus; SM, sensorimotor cortex; SNc, substantia nigra pars compacta;
SNr, substantia nigra pars reticulata.
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have found that such manipulations do not alter the performance of habits (Dickinson,
1998). Although reversing the contingency should provoke a strong prediction error,
habits do not adjust to this variation in contingency, although such variations strongly
reduce the performance of goal-directed actions. It seems unlikely, therefore, that the
reinforcement signal can be reduced to an error signal (Dezfouli & Balleine, 2012).

In contrast, research into the nature of reward has revealed one of the most striking
properties of goal-directed actions: that they are controlled by the experienced value of the
outcome generated by some specified action or other. Unlike habits or other reflexes,
therefore, goal-directed actions are not directly affected by the immediate energetic
and affective consequences of shifts in primary motivation and are only affected when
the influence of those changes on outcome value is directly experienced (Dickinson, Bal-
leine, Watt, Gonzalez, & Boakes, 1995dSee Dickinson, Chapter 1, for a more complete
description of the motivational control of habits). For example, hungry rats trained to
perform two actions, one delivering a solid food, the other a liquid food, will not alter
their choice between actions when made thirsty until they have first consumed the liquid
food in the thirsty motivational state and discovered, based on their experienced
emotional responses, that it is valuable in that state (Dickinson & Dawson, 1988). This
is also true of shifts between different levels of deprivation; rodents do not immediately
choose an action associated with a more (or less) calorific outcome when deprivation is
increased (or decreased) (Balleine, 1992; Dickinson & Balleine, 1994). Rather they have
first to learn about the new reward value of the outcome before the shift in motivation
will influence performance, an effect we have called incentive learning.

Incentive learning is a ubiquitous feature of changes in reward value and has been
found to influence changes in choice after (1) taste aversion-induced outcome devalua-
tion (Balleine & Dickinson, 1991); (2) specific satiety-induced outcome devaluation
(Balleine & Dickinson, 1998b); (3) shifts from water deprivation to satiety (Lopez,
Balleine, & Dickinson, 1992); (4) changes in outcome value mediated by drug states
(Balleine, Ball, & Dickinson, 1994; Furlong, Supit, Corbit, Killcross, & Balleine, 2017;
Ostlund, Maidment, & Balleine, 2010); (5) changes in the value of thermoregulatory
rewards (Hendersen & Graham, 1979); (6) sexual rewards (Everitt, 1990; Woodson &
Balleine, 2002); and (7) changes in the value of heroin in a state of withdrawal
(Hutcheson, Everitt, Robbins, & Dickinson, 2001) (see Balleine, 2005 for review).

Neural feedback processes
Reward
Incentive learning is required for changes in reward value because the proximal cause of
such changes is the integration of the sensory properties of the rewarding event with a
change in emotional feedback, i.e., the emotional response contiguous with detection
of the rewarding event (Balleine, 2001, 2005). Considerable evidence suggests that the
basolateral amygdala (BLA) plays a critical role in this integrative process: Thus, lesions
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(Balleine, Killcross, & Dickinson, 2003), inactivation (Ostlund & Balleine, 2008),
m-opiate receptor blockade (Wassum, Ostlund, Maidment, & Balleine, 2009), or protein
synthesis inhibition (Wang, Ostlund, Nader, & Balleine, 2005) in the BLA all render rats
insensitive to changes in the reward value of an outcome. However, it has become clear
that, although the BLA plays a key role in encoding changes in reward value, it does not
itself store those changes which, current evidence suggests, involves the anterior insular
cortex, a structure strongly connected with the BLA (Parkes & Balleine, 2013; Wassum
et al., 2009)dsee Fig. 19.1A.

For example, we, Parkes and Balleine (2013) found that, in hungry rats trained to
press two levers for distinct outcomes, whereas inactivation of the BLA prior to specific
satiety-induced outcome devaluation abolished the effect of the change in outcome value
on choice in an extinction test, inactivation after the outcome devaluation treatment did
not. In contrast, inactivation of the insular cortex, whether conducted prior to or after the
devaluation manipulation, abolished the effect of outcome devaluation on choice. We
hypothesized that these effects of insular inactivation suggest that it is involved in
retrieving changes in outcome value to guide choice and, to test this, we used an asym-
metrical, temporal inactivation procedure. Hungry rats were again trained to press two
levers for distinct outcomes prior to specific satiety-induced outcome devaluation and
a choice extinction test. However, prior to the devaluation, the BLA in one hemisphere
was inactivated leaving the contralateral BLA free to become involved in encoding the
change in value. Then, after the devaluation treatment, we inactivated the insular cortex
contralateral to the BLA inactivation. If the change in value involves BLA inputs to the
insular cortex then this order of the inactivation treatments should abolish sensitivity to
outcome devaluation on test. A control group received the reverse treatment, i.e., inac-
tivation of the insular cortex in one hemisphere prior to devaluation and of the contra-
lateral BLA prior to test; a treatment that should allow the insular cortex in one
hemisphere to encode the change in value and so alter performance on test. This is
precisely what we found; the group that had the BLA inactivation prior to the insular
inactivation showed no devaluation on test, whereas the control group showed a signif-
icant devaluation effect in their choice performance (Parkes & Balleine, 2013). This result
provides strong evidence for the argument that the BLA is involved in changes in reward
value because of its influence on encoding those changes in the anterior insular.

We have also found that the BLAeinsular cortex encoding of the change in value
interacts with regions of the striatum to mediate changes in performance after outcome
devaluation. So, for example, disconnection of the insular cortex from the nucleus
accumbens core (NAco) after outcome devaluation abolishes changes in choice perfor-
mance on test (Parkes, Bradfield, & Balleine, 2015). Likewise, lesion-induced disconnec-
tion of the BLA from the pDMS has been found to abolish sensitivity to outcome
devaluation, whether conducted prior to or after training (and so prior to devaluation
in both cases) (Corbit, Leung, & Balleine, 2013). Thus, as described above, prior research
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has established that bilateral inactivation of either the pDMS or the BLA, using the
GABA-A agonist muscimol, reduced the sensitivity of actions to outcome devaluation
(Ostlund & Balleine, 2008; Yin, Ostlund, et al., 2005). We have found the same is
true after a unilateral lesion of the BLA and inactivation of either the contralateral
BLA or the contralateral pDMS. Rats trained to press two levers for different outcomes
then had one of the two outcomes devalued by specific satiety before a choice extinction
test conducted on the levers. Control groups given a unilateral BLA lesion plus infusion
of saline vehicle into either the BLA or pDMS prior to devaluation showed normal
outcome devaluation: The rats reduced their choice of the action that in training deliv-
ered the now-devalued outcome compared to the other action. In contrast, devaluation
was abolished by inactivation of contralateral BLA or, more importantly, by inactivation
of contralateral pDMS prior to devaluation since the latter treatment functionally discon-
nects the BLA from the pDMS (Corbit et al., 2013).

These experiments demonstrate that a circuit involving the BLA, the insular cortex,
and the NAco interacts with the pDMS to control the way changes in outcome value
affect goal-directed action. These nodes form an integrated circuit that links the dorsal
stream encoding the learning processes through which goal-directed actions are encoded,
with a ventral stream encoding the reward values that control the performance of such
actions (see Hart, Leung, & Balleine, 2014 for a review of this thesis).

There is one final node in this network that deserves mention and that is the medial
orbitofrontal cortex (mOFC). Although the immediately adjacent cortical regionsdthe
prelimbic cortex, the IL, and the ventral and lateral orbital corticesdplay no role in the
way changes in outcome value affect goal-directed action, when animals have to retrieve
changes in value from memory then lesions or inactivation specifically of the mOFC
blocks that capacity (Bradfield, Dezfouli, van Holstein, Chieng, & Balleine, 2015).
What is the role of the medial orbital cortex relative, say, to the anterior insular region?
We have previously found evidence that after the reward value of an outcome has been
encoded, applying treatments that would otherwise affect that value were the outcome
contacted have no impact on the way the value is retrieved on test. For example, chole-
cystokinin can serve as a satiety factor and animals given cholecystokinin prior to reex-
posure to food when they are hungry fail to revalue that food, as revealed in a
subsequent choice test. However, conducting the test under cholecystokinin does not
affect the value that is retrieved on test; i.e., the effect of cholecystokinin on the increase
in value of a specific food during reexposure when hungry does not extend to the
retrieval of other foods on test, suggesting that the mechanisms involved in encoding experienced
values and retrieving those values differ (Balleine & Dickinson, 1994; Balleine, Davies, &
Dickinson, 1995). One possibility is that the concrete changes in value induced by direct
experience and involving the anterior insular cortex engender a further abstract encoding
of those changes in value in the mOFC via the cortico-cortical connections it maintains
with that structure. This suggests that the way in which the BLA-insular circuit gains
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access to the striatum could be not only via connections with the accumbens core but also
via connections with the mOFC conveying both somatic and more abstract values,
respectively (Balleine, 2005). However, to explain the effects of mOFC manipulations,
the representation of abstract values must succeed and also largely replace the somatic
values.

Reinforcement
In contrast to goal-directed actions, the neural basis of the reinforcement signal that con-
trols habits appears to be relatively straightforward, being thought to reduce to dopamine
release in the DLS (White, 1989). The DLS receives direct and converging afferents from
sensorimotor and motor cortices as well as a dense projection from the substantia nigra
dopamine neurons that a number of studies suggest is critical for plasticity in this region
and mediates the reinforcement of habits (Reynolds, Hyland, & Wickens, 2001). Of
particular importance in this process is the release of dopamine in the striatum produced
by sustained activation of these midbrain neurons (Da Cunha, Gomez-A, & Blaha, 2012).
Inputs to the DLS arise in the substantia nigra pars compacta (SNc), and one input to the
SNc that has been of interest in this regard is that arising in the central nucleus of the
amygdala (CeN).

It has been known for some time that the acquisition of simple sensory motore
orienting responses is mediated by the CeNeSNc connection (Holland, Han, &
Gallagher, 2000; Lee et al., 2005) and, although lesions of the CeN have no effect on
the acquisition of goal-directed actions, they do attenuate the general motivational effects
of stimuli associated with reward (Corbit & Balleine, 2005; Hall, Parkinson, Connor,
Dickinson, & Everitt, 2001). In fact, recent evidence suggests that the acquisition of
habitual actions depends on a circuit involving the DLS and the CeN (Dezfouli, Lingawi,
& Balleine, 2014; Lingawi & Balleine, 2012). As noted above, to demonstrate habits, rats
are usually overtrained. Early in training actions are sensitive to devaluation and hence are
goal directed. After extended training, however, their control shifts from being goal-
directed to being habitual, i.e., their performance becomes insensitive to the effects of
outcome devaluation (Dickinson, 1994). Bilateral lesions of the DLS reduce habit learning
and render overtrained actions goal-directed (Yin et al., 2004). The same is true of bilat-
eral lesions of the anterior (but not of the posterior) CeN (Lingawi & Balleine, 2012).
Furthermore, whereas a unilateral lesion of the CeN and ipsilateral DLS does not affect
the rats’ insensitivity to outcome devaluation, we found that a unilateral lesion of the
CeN plus contralateral DLS rendered performance goal-directed and generated a reliable
outcome devaluation effect. This latter finding has important implications for our under-
standing of the circuitry mediating habits. Anatomical tracing studies have found evidence
that the anterior CeN projects to the SN (Gonzales & Chesselet, 1990). The SN has two
divisions: the reticulata (SNr) and the SNc. The SNr is largely composed of GABAergic
projection neurons to the thalamus, which maintain collateral projections to neurons in
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the SNc (Groenewegen, 2003; Joel & Weiner, 2000). In contrast, the SNc is composed
primarily of a bank of dopaminergic neurons that are the source of dopamine to the dorsal
striatum, and it is this dopaminergic projection to the DLS that has been implicated in the
reinforcement signal mediating learning in the DLS (Reynolds et al., 2001).

Interestingly, the processes that mediate goal-directed and habitual actions appear to
interact; albeit likely in different ways, at different times. During the performance of instru-
mental actions, for example, the speed of action selection, which is enabled by the
stimulus control of habits, allows habits to outcompete goal-directed control. Neverthe-
less, habits can be inhibited, and it is likely circuitry involved in goal-directed control that
accomplishes that process. Recent evidence suggests that feedback connections within
the basal ganglia, most notably those within the indirect pathway associated with connec-
tions from the subthalamic nucleus to the globus pallidus and thence to the dorsal
striatum via the arkypallidal neuronal projection, accomplish this process; being inhibi-
tory, these projections could quite readily alter the balance between dorsomedial and
dorsolateral areas in a manner reflecting such an interaction between the performance
of goal-directed and habitual actions (Bogacz, Martin Moraud, Abdi, Magill, &
Baufreton, 2016; Mallet et al., 2016).

In contrast, both processes appear, generally, to be engaged in parallel during
acquisition; damage to or inactivation of the pDMS renders what would otherwise be
goal-directed actions habitual (Yin, Ostlund, et al., 2005), whereas inactivation of the
DLS renders what would otherwise be habitual actions goal-directed (Yin et al.,
2004). Nevertheless, it is interesting to consider the possibility that the processes medi-
ating goal-directed and habitual actions interact very early during acquisition at which
point, thinking adaptively, it would seem prudent to establish whether a newly acquired
action were going to be of some enduring value before starting the process of stamping it
in as a long-term habit. Although it is not known whether, say, the goal-directed system
inhibits habit learning during initial acquisition, some evidence suggests that it does. For
example, pretraining excitotoxic lesions of the BLA appear to accelerate habit learning;
rather than requiring extensive training to induce habits, they emerge rapidly after only a
few sessions and, by and large, with the rate of performance largely unaffected (Balleine
et al., 2003). Indeed, based on recent studies, it is possible that this interaction between
goal-directed and habitual control is due to some form of interaction involving amygdala
subnuclei, between which the feed-forward excitatory and inhibitory connections
involving the BLA and CeN have been described (Busti et al., 2011; Herry et al.,
2010). However, if habit learning is delayed by BLA-mediated inhibition of the CeN
then this cannot persist forever; otherwise habits would never emerge at all. Obviously,
any such inhibition must itself be modulated by some third structure, but, given this sce-
nario, which structure could that be?

Evidence that the IL is involved in habit learning has important implications in
this regard (Coutureau & Killcross, 2003; Killcross & Coutureau, 2003); as with
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manipulations of the DLS, both excitotoxic lesions and pharmacological inactivation of
the IL have been reported to impair habit learning. Although this may be taken to imply
that habits depend on a circuit involving the DLS and the IL, anatomically, they are not
connected with one another; however, the IL does maintain strong connections with the
CeN, particularly with its lateral capsular area (McDonald, Shammah-Lagnado, Shi, &
Davis, 1999; Pinard, Mascagni, & McDonald, 2012) suggesting that the IL might interact
with the CeN to regulate the acquisition of habits. In fact, as illustrated in Fig. 19.1B, one
intriguing hypothesis is that, rather than modulating BLA or CeN directly, the IL may
modulate the inhibitory interaction between the BLA and CeN. Interaction between
the IL and amygdala has been of interest recently in the context of the neural bases of
the extinction of Pavlovian fear conditioning, where BLA inputs to central nucleus are
thought to be regulated by IL inputs to the region, particularly to the intercalated cells
(ITCs) that stand between BLA and CeN (Par�e, Quirk, & Ledoux, 2004). Although
the role of ITCs has recently been questioned (Pinard et al., 2012), the evidence for regu-
lation of the BLA output by the IL is quite strong and suggests, in the current context,
that, during the course of instrumental training, the IL functions in the habit circuit to
inhibit the BLA inhibition of CeN to allow the CeN reinforcement signal to initiate
the acquisition of habit learning. Likewise, posttraining inactivation of the IL should
be predicted to result in a return of BLA inhibition of the CeN and, with it, a loss habitual
performance.

Some implications
Taken together these data on the behavioral and neural bases of goal-directed and
habitual action confirms that they constitute distinct control processes with very different
goals: a change in the external environment in the case of goal-directed actions and in a
specified motor movement in the case of habits. They have different associative struc-
tures, learning rules, and feedback processes that regulate that learning. Importantly, a
single event, e.g., a morsel of food when hungry or a drop of fluid when thirsty, can serve
both to reward a goal-directed action and to reinforce a habit. This parsing of a single
event into multiple feedback signals to control diverse learning processes appears to be
one of the critical functions of the amygdala, at least insofar as appetitive learning is con-
cerned (although the same may be true for aversive learning, it is beyond the scope of this
chapter; see Balleine & Killcross, 2006 for a review of these issues). I have considered the
hypothesis that some interaction occurs between these feedback processes; that at some
point they are competitive, with the reward system inhibiting the reinforcement system
under the modulatory control of the IL. Generally, although other forms of interaction
can occur during performance, e.g., the goal-directed system appears able rapidly to curtail
the performance of habits (unless the latter can outpace that inhibitory process), during
learning these systems appear to function relatively autonomously to establish the forms
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of action control with which they are associated. Although it is clear, therefore, that
distinct forms of feedback exist, their origin within the general motivational processes
of the animal has not often been considered, and I turn to this issue in part 2.

FROM MOTIVATION TO ACTION

Although reward and reinforcement have distinct functions in goal-directed and habitual
action, how they achieve their independent influence is still an open question. From a
motivational perspective, it seems unlikely that these processes have independent origins;
both have clear links with regulatory processes through which events that relieve, for
example, hunger, thirst, heat, cold, pain, fear, or illness may gain value. And, just as
such events can function to strengthen habits, they can also provoke the acquisition of
new actions. How does the contribution of motivational processes to these functions
differ?

Affective change and reinforcement
Historically, motivational analyses were closely aligned to energetic conceptions such as
homeostasis or drive (Cannon, 1932; Richter, 1927). There were several major propo-
nents of drive theory and the theories took several forms but perhaps the most ambitious,
certainly the most thoroughly articulated, was Clark Hull’s theory of general drive (Hull,
1943). According to this view, behavior is driven by S-R associations stamped in by a
process of reinforcement, the latter produced by drive reduction. Accordingly, an in-
crease in drive could provoke, initially, an increase in general activity that would persist
until drive reduction occurred, resulting in a strengthening of the relationship between
the situation and whatever response preceded the drive reduction. As a consequence,
when that S arose again, its associated R would be more likely to occur. To ensure
the R resulted in something reasonably biologically useful, both the S and the drive
reduction were linked to the animal’s internal conditions; so drive stimuli could arise
that were reasonably specific, say a state of hunger, to which some R could be linked
that would result in drive reduction, presumably due to contact with food, along with
a concomitant reduction in the stimulus/drive conditions. However, for Hull, although
there could be different drive stimuli, there were no specific drives, just different sources
of drive and, therefore, drive could be reduced by a reduction in any of those sources.

This view implies that different sources of drive can both summate with and
substitute for other sources of drives, a position which had one strength but many fail-
ings. The failings were empirical; many studies tested the ability of drives to summate and
to substitute one for another and, although summation and substitution were sometimes
observed, these predictions were not generally supported (Bolles, 1967). However, the
one strength of the general drive perspective should not be underemphasized: It ensured
that the concept of reinforcement had an objective, observable content that did not
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depend on unobserved (from Hull’s perspective, unobservable) connections within the
animal and, therefore, was not circular. Subsequent positions that aimed to fix the prob-
lems with the general drive concept by divorcing reinforcement from drive reduction
were forced to define it in relational terms; which ultimately reduced the definition of
reinforcement to “the presentation of a reinforcer” and of a reinforcer to “a thing that
reinforces” or, as if more words could help, to “a stimulus change that increases the
strength of the preceding response” (Meehle, 1950; Paniagua, 1985)!

These statements held out against claims that reinforcement was determined by
connections inside the animal, by some form of central motivational state, but, as these
attempts make clear, that was hardly an advantage. Nor was it likely to persist in practice;
in fact, some of the most interesting and persistent ideas from that period come from
attempts to instantiate general drive theory in neural terms; for example, in terms of
the effects generated by the ascending reticular activating system (Lindsley, 1957). So
much became clear with the advent of incentive theories which, for both empirical
and theoretical reasons, had significant advantages over drive theory (Bindra, 1959).
Incentives are essentially reinforcers: Money, for example, is often held up as the primary
example of a positive incentive. However, unlike reinforcers, incentives do not neces-
sarily reinforce; the notion that one could establish the degree to which they do,
when they do and when they don’t, meant that the relationship between incentive
and reinforcement was at least an empirical one. Furthermore, considering the properties
of the reinforcing event and its effects on the animal generated important insights:
Sheffield’s sex and saccharine studies, in which, after running in a runway, male rats
were allowed access to events designed to induce rather than reduce drive, e.g., to
intromit but not ejaculate or, when hungry, to drink nonnutritive saccharine, appeared
nevertheless to acquire runway performance suggesting these events served to reinforce
that performance (Sheffield & Roby, 1950; Sheffield, Wulff, & Backer, 1951). These and
other data motivated alternative theories of reinforcement according to which consum-
matory or hedonic responses were the necessary component, consistent with incentive
views (Sheffield, Roby, & Campbell, 1954; Young, 1949). Nevertheless, some data
naggingly persisted in demonstrating a role for drive. For example, Miller and Kessen
(1952) were able to reinforce responses in a T-maze by injecting milk directly into the
stomach of hungry rats through a fistula. Even though rats given oral milk learned
much faster (even with a long delay), the impressive effects of direct stomach injection
suggest a form of drive reduction was in play. Furthermore, Webb, Bolles, and others
found that up to a point, responses established with food deprivation could be maintained
with water deprivation and even with mild footshock (Bolles, 1961; Webb, 1949).
Beyond that point, and with water deprivation, it was a limit of about 7 h deprivation,
the substitution collapsed; indeed, thirsty rats given water responded as if they were
hungry suggesting that at deprivation levels above 7 h thirst was actively inhibiting not
substituting for hunger (Grice & Davis, 1957).
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Nevertheless, drive theory gave way to incentive theories and so to the view that
behavior reflects the anticipation of events that generate affective responses and that it
is the prediction or delivery of, say, a food reward, rather than a reduction in hunger,
that generates the appetitive activity necessary to strengthen the S-R association
(Dickinson & Balleine, 2002). Incentive theories have been successful; they can explain
the rapid changes in behavior associated with changes in the quality or quantity of the
incentive used to reinforce an action and so can give a more reasoned description of
the influence of reinforcers as the targets of performance and not just as they influence
learning. However, because they were developed in opposition to drive theories, they
typically do not, and perhaps cannot, fully stipulate the sources of reinforcement. And
yet, quite clearly, specific drives modulate incentive-related activity; the level of hunger
determines activity (whether one means behavioral activity or activity in a specific central
motivational statedsuch as a nutrient system) associated with food and food anticipation;
thirst modulates fluid-related activity, and so on. With regard to aversive events, similar
relationships can be drawnde.g., a drive related to pain may be thought to modulate the
influence of fear- (or threat) inducing events, malaise to modulate disgust-inducing
events. The activity of these incentive processes would, one imagines, increase aversive
affect and engage something like the negative law of effect to diminish rather than
strengthen S-R associations, whereas a reduction in this activity would be appetitive,
resulting in negative reinforcement and so increase S-R association (LeDoux & Daw,
2018). It would appear necessary, therefore, as was argued by Spence (Spence, 1956),
to retain both drive and incentive constructs, allowing the former to define the sources
of the specific needs that are the target of the latter. Indeed, Bindra, perhaps the quintes-
sential incentive theorist, developed a position that had at its core exactly such integration
(Bindra, 1974). And such a position, in which drive and incentive are integrated, helps to
overcome difficulties or confusions at the heart of motivational accounts, e.g., it is some-
times argued that hunger is an aversive state that nutrients reduce, leading to confusion as
to whether nutrient commodities are positive or negative reinforcers (Betley et al., 2015).
Nutrients do, of course, reduce hunger and so inhibit that source of drive but, from the
perspective of incentive theory, nutrients and the stimuli that predict them activate a
nutrient incentive system and so generate positive affect, i.e., they are positive reinforcers.

Collectively, therefore, this combined drive-incentive perspective supposes multiple
incentive processes with attendant modulatory “drives,”what might be seen as peripheral
changes in state, that alter the likelihood that one of a number of central incentive systems
are activateddsee Fig. 19.2. Feedback from that activity diminishes the drive, whereas
activity of the incentive system changes the internal state, generates state- and sensory-
specific motivational associations and causes an affective output to the appetitive or
aversive affective system, depending on the incentive system. At a simple neural level,
if the appetitive activity reflected in midbrain dopamine neurons and their modulation
by CeN provides the proximal signal through which situationeresponse associations
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are reinforceddas described above and as illustrated in Fig. 19.3, and if, as proposed
above, such affective activity is mediated by activity in the individual incentive systems,
then one should anticipate that interconnections between the CeA and brain stem and
hypothalamic regions associated with these systems to play a role in this reinforcement

Figure 19.2 A cartoon describing the hypothetical peripheralebrainstemehypothalamic interactions
mediating the drive-incentive system, including its fixed connections with the affective processes of
the limbic system. This is developed for multiple drives, D, incentive systems, I, processing appetitive
(e.g., nutritive, fluidic, etc.) and aversive (e.g., threatening, disgusting, etc.) incentives, and appetitive
(AP) and aversive (AV) affective systems. On this view, and to account for evidence of partial summa-
tion and substitution between sources of drive, a source of general arousal, “G,” is hypothesized that
distributes the activational effects of drive based on their specific modulatory impact (based, say, on a
competitive threshold) on their respective incentive systems. Shown is feedback inhibition by each
specific incentive system on their respective sources of drive; not shown are potential interactions
between drives or incentive systems (e.g., as postulated by Konorski, 1967).

Figure 19.3 Sources of affective feedback and their influence on instrumental conditioning. In the
presence of specific situational stimuli (S), actions are performed resulting in events that have two
kinds of effect: One effect is driven by direct feedback via the incentive and affective systems to
reinforce the stimuluseaction (S-R) association. The second effect is indirect; the action resulting in
a specific stimulus event produces, via the incentive and affective systems, emotional feedback, in
the form of an emotional response, allowing an experienced value (and, incidentally, an abstract
value) to be assigned to those consequences and an action value to be calculated based on the
actioneoutcome contingency.
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process. This connectivity has been well documented in previous (Paredes, Winters,
Schneiderman, & McCabe, 2000) and more recent mapping studies (Douglass et al.,
2017), with strong inputs from the brain stem visceromotor nuclei as well as from a broad
range of hypothalamic inputs both directly to the CeA and relayed via the bed nucleus of
the stria terminalis. Such signals would appear consistent with a summed activation of in-
puts to these structures, with little if any sensory specificity to these various inputs consis-
tent with the nonspecific activation of dopamine neurons and with a resulting general
affective signal appropriate for the reinforcement of habitual actionsdsee Fig. 19.4.

Emotional feedback and reward
Incentive theories have, naturally enough, been concerned as much with reward as with
reinforcementdalthough, historically, these processes were not usually differentiated.
My concern in this section is with how such theories account for reward and how
rewards are instantiated at a neural level. Although a general affective signal is sufficient
for reinforcement, this will not provide the specificity necessary to account for the

Figure 19.4 Putative neural bases of the reward and reinforcement signals supporting instrumental
conditioning. The left panel shows various brain stem inputs to the hypothalamus and thalamic sen-
sory relay targeting the basolateral amygdala through which the reward value of the instrumental
outcome is encoded in the insular and medial orbital cortices. It is retrieved into the nucleus accum-
bens to guide the performance of goal-directed actions. In the right panel, a broad arousal signal to
the hypothalamus targets the central and extended amygdala that controls dopaminergic inputs to
the dorsolateral striatum to influence the acquisition of habits. BLA, basolateral amygdala; ARAS,
ascending reticular activating system; BNST, bed nucleus of the stria terminalis.
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functions of reward; as described above, it is clear that, in goal-directed action, animals
acquire a highly specific representation of the consequences of their actions both to
inform their encoding of actioneoutcome contingencies and to constrain the assignment
and modulation of reward values. As a consequence, one of the primary distinctions
between rewards and reinforcers is the necessary involvement of specific sensory
information in the representation of rewarding events. Furthermore, studies assessing
instrumental incentive learning suggest that the basis for such learning is not simply affec-
tive activity but an emotional response; that a simple affective signal is not sufficient to
produce a change in reward value and that such changes depend on direct consummatory
experience. Subsequent analyses have focused on this latter requirement, proposing that
consummatory experience is required because it allows the animal to experience the sen-
sory properties of a reward in conjunction with the emotional response such contact
evokes and that it is this conjunction that provides the necessary conditions for the assign-
ment of any reward value (Balleine, 2005).

If this experience is necessary to alter the value of the goals of goal-directed actions,
and so for animals to modify the performance of such actions after shifts in primary moti-
vation, then the effect of such shifts on the performance of other responses (i.e., those not
goal-directed) should not depend on this process. And by and large, that is what exper-
iments have found. Thus, habitual instrumental actions and Pavlovian-conditioned
reflexes, such as magazine approach, are directly influenced by shifts in primary motiva-
tion, and for slightly different reasons (Balleine, 1992; Dickinson et al., 1995). Whereas
motivational shifts, such as a reduction in food deprivation appear to influence the
performance of habits by altering the animals’ level of general arousal, changes in the
Pavlovian conditioned reflex (CR) appear to be due to alterations in the ability of condi-
tioned stimuli to activate the representation of the unconditioned stimulus (Dickinson &
Balleine, 2002dsee also Implications for theories of conditioning section).

Careful consideration of these kinds of effect suggests that the influence of specific
incentive processes on affective centers provokes a number of distinct responses: such
as approach and withdrawal, changes in arousal or general activity but also likely distinct
forms of emotional response. Behaviorally, considerable research suggests that fixed ac-
tion patterns, unconditioned and conditioned reflexes, are produced by tastes or other
stimuli associated with palatable or unpalatable outcomes (Berridge, 2000), and, along
with William James, it is tempting to regard these responses as the emotional response
itself. However, evidence from studies assessing the neural bases of both incentive
learning and changes in taste reactivity suggests that they can be doubly dissociated. In
one study, infusing the m-opioid receptor antagonist naloxone into either the nucleus
accumbens shell or the ventral pallidum blocked changes in taste reactivity produced
by a sucrose solution following an increase in food deprivation (Wassum et al., 2009).
Nevertheless, these naloxone infusions failed to block an increase in the incentive value
of the sucrose; reexposure to the sucrose after the upshift in food deprivation increased
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subsequent goal-directed action even though no change in taste reactivity was observed
during that exposure. Hence, it is clear that motivational shifts can have immediate effects
on many classes of reflexive response, including unconditioned reflexes, conditioned
reflexes, and habitual instrumental actions, and can do so by causing changes in the ability
of primary incentive processes to engage the affective system. And, in one way or
another, it is clear that such changes are distinct from the emotional feedback that these
incentive processes can also produce. Indeed, as described in the first section, emotional
feedback clearly engages the BLA and incentive learning appears critically to involve the
sensory and visceral/emotion-related inputs to that structure to encode those changes in
value in the insular cortex (Livneh et al., 2017).

How this is achieved at an emotional level is not yet fully understood; however, as
implied by this analysis, considerable recent research has confirmed that affective pro-
cesses do have two quite distinct neural effects, one associated with the discrimination
of different forms of affective or emotional state, particularly, in humans, those expressed
by other people and involving the well-described somatotopic representation in the
somatosensory cortices, whereas the other appears to be associated with experienced
emotional responses per se and involves the amygdala as well as the insular and orbito-
frontal cortices (McGlone, Wessberg, & Olausson, 2014). It is these latter that appear
to be critical for incentive learning and, indeed, that appear to be essential for any initial
changes in value to be induced. With regard to changes in emotional response associated
with changes in primary motivation, the ascending fiber pathways from the periphery to
the solitary tract, particularly inputs from the gut and mouth via the vagal, fascial, and
glossopharyngeal nerves, and thence to brain stem structures particularly the parabrachial
complex, which provides the most caudal topographic map of the body, allowing the
assembly of what has been argued to be a fundamental interoceptive map (Critchley &
Harrison, 2013; Damasio & Carvalho, 2013). Subsequently, projections from this brain
stem affective representation extend to thalamic and hypothalamic structures and densely
to the amygdala as well as to the insular cortex both directly and via the thalamic relay
(Venkatraman, Edlow, & Immordino-Yang, 2017). It has been hypothesized that the
emotional responses that form the basis of incentive learning are generated within this
circuitry via coordinated inputs to the BLA of visceral and sensory afferents to encode
the specific sensory features of events contiguous with those responses. It is worth noting
that insular cortex involvement in encoding the product of incentive learning, i.e., spe-
cific incentive values, could be taken to suggest that it plays a role in emotional experi-
ence. However, on the current view, the anterior insular cortex serves to encode
incentive values and so is sensitive to the effect of emotional processing rather than itself
providing the source of that processing, consistent with other recent views (e.g., Damasio
& Carvalho, 2013).

It is also worth noting that touch-related sensation and discrimination has previously
appeared to provide an exception to this model. Such inputs depend on spinal inputs
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from C and C tactile (CT) fibers, which send rapid signals to somatosensory cortices and
play a key role in sensorimotor functions. However, recent research describing slow,
touch-sensitive CT fibers that are specifically involved in pleasant touch suggests that
touch-related emotional responses may fall into much the same category as other
emotional responses and, importantly, unlike the rapid inputs to somatosensory cortices,
these slow CT fibers appear to project to much the same forebrain areas as the ascending
visceral sensory projections described above, terminating in insular and orbitofrontal
cortices (McGlone et al., 2014).

Generally, therefore, a simple model driven by a certain amount of redundancy and
following prior accounts could be generated that proposes that sensory-incentive associ-
ations underlie the ability of specific events to drive affective activity associated with the
following: (1) the reinforcement signal used in the acquisition of habits; (2) the affective
responses associated with Pavlovian preparatory conditioned reflexes; and (3) the
emotional feedback necessary for incentive learning. What differentiates these processes
on this account is not their source, which is in all cases determined by the drive-incentive
system, but the specific output of the affective system, i.e., on affective feedback, arousal
and emotional responding, such that each response can be measured and their effects
within the neural systems associated with unconditioned stimulus (US) processing, rein-
forcement, and reward, detected by specific behavioral tests that discriminate between
these processesdcf. Fig. 19.3.

Perhaps the most interesting, if not the most surprising, implication of this analysis is
that, like reinforcement, reward is really a quite abstract signal. However, rather than
being limited to internal activity in the ascending SNc dopamine projection, it is deter-
mined by an emotional response, reflecting the bodily reaction to the motivational/
incentive properties of some specific event with which it is subsequently associated.
However, note that, on this account, assigned reward value to an event means to asso-
ciate the sensory properties of that event with an emotional response, whether those sen-
sory events are in any way connected with the generation of the emotional response or
not. It appears, therefore, that, if simply pairing a stimulus with an emotional response is
all that is required, then the reward value of any event can readily be modified, even of
artificial compounds, such as drugs of various kinds, that our nervous system did not
evolve to regulate. Likewise, one can see a ready route for the development of specific
psychopathology.

IMPLICATIONS FOR THEORIES OF CONDITIONING

Having commented on the origins of reward and reinforcement in the functions of the
affective system, it is important to recognize that specifying the source of activity in this
system as arising in the various incentive systems has other implications, most of which
remain to be tested. Perhaps the most important implication is for “US processing”
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theories of Pavlovian conditioning, particularly the most influential such theory advanced
by Rescorla and Wagner (Rescorla & Wagner, 1972).

That early account assumed within the model that the “value” of the representation
of the US (l) is fixed, as is its salience (b). However, on the current account, the US rep-
resentation is acquired during the formation of sensory connections with the incentive
systems, and so the value cannot be fixed at the start of conditioning. Likewise, the
salience, what might more accurately be called the associability, of the US may also be
assumed to vary much as conditioned stimulus (CS) processing theories contend that
the associability of the CS does. Although this quite radically changes the assumptions
of the RescorlaeWagner model, some phenomena are difficult to explain in any other
way. For example, experiments on Pavlovian conditioning have found considerable ev-
idence for nonassociative learning phenomena, for example, exposure to a US (or other
salient event) can result in an increase in unconditioned responding to that event, i.e., in
sensitization, and sometimes to other events, i.e., cross-sensitization or pseudoconditioning
(Overmier, 2002). Such phenomena accord well with the idea that USs are better pro-
cessed or are more accurately represented over the course of exposure. Furthermore, such
effects appear to depend on a background level of motivational arousal; Davis found that
sensitization of startle to a loud noise emerged when background white noise was greater
that 60 db whereas against a background of low motivational arousal such exposure
resulted in habituation (Davis, 1974). These data are consistent with the notion that ac-
tivity in the incentive system modulates US processing (see also Swithers, 1996).

Direct evidence for this claim in the appetitive domain comes from studies assessing
the effect of a newly established motivational state on responding to the US. In “condi-
tioned reflexes” (Pavlov, 1927, p. 23), Pavlov casually describes an experiment in which
young dogs weaned from their mothers’ milk are made hungry for the first time and
shown meat. Despite their hunger, however, they did not salivate at the sight of the
meat. Nevertheless, having eaten the meat, they did salivate when shown it for a second
time. A more recent replication of this study in rats found a comparable effect, now on
approach to food or water when rat pups were first made hungry or thirsty (Changizi,
McGehee, & Hall, 2002; Myers & Hall, 2001). In both cases, the rat pups failed to
show any more approach responses than sated animals when first made hungry or thirsty
and exposed to food or water. Having experienced the food or water in these states,
however, they immediately approached the site of these events when subsequently
made hungry or thirsty. These experiments confirm the observations reported by Pavlov
and, together with the effects of aversive arousal on startle sensitization, support the gen-
eral claim that changes in responding induced by repeated exposure to a US produces a
change in US processing.

Careful consideration of these effects suggests that phenomena often thought to pro-
vide support for CS processing accounts of Pavlovian conditioning could instead reflect
fluctuations in US processing. For example, sometime ago, Simon Killcross and I found
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evidence to suggest that latent inhibition, the phenomenon that preexposure to a CS
slows the subsequent conditioning of that CS, is specific to the motivational state in
which the CS is presented (Killcross & Balleine, 1996). Thus, exposure to one CS, S1,
when hungry and a different CS, S2, when thirsty, slowed conditioning more to S1
than S2 when the rats were made hungry and thirsty and both S1 and S2 were paired
with food; whereas it slowed conditioning to S2 more than S1 when both were paired
with saline. Although we interpreted these results at the time as reflecting a form of
learned irrelevance, an alternative US processing account of these results can be devel-
oped according to which, by virtue of exposure to S1 when hungry (or S2 when thirsty),
S1 (or S2) becomes associated with the nutritive (or fluidic) incentive system and so
interferes with (perhaps overshadows or blocks) subsequent processing of the US. As a
consequence, normal acquisition of the CSeUS association should be delayed until
the details of the US predicted by the CS are sorted out.

Some aspects of Pavlovian conditioning accord with this account; for example,
sensory preconditioningdthe phenomenon that a first stimulus, S1, trained to predict
a second stimulus, S2, shows evidence of conditioning after S2 has been paired with a
USdis also sensitive to motivational state. Although a learned irrelevance account of
latent inhibition would appear to predict that exposure to S1/ S2 when the rat is hun-
gry should reduce the relevance of both S1, S2 and their association for food, in fact the
opposite has been reported: Adamec and Melzack (1970) exposed cats to pairings of a
clicker stimulus and a flash stimulus when the cats were food and water deprived or
when they were undeprived. In a second phase, the cats remained or were made food
and water deprived, and the flash was conditioned by pairing it with milk delivery.
Finally, in a test, the cats were presented with the clicker and their willingness to lick
at the spout from which milk was delivered was recorded. If deprivation increases the
irrelevance of the exposed stimuli to the target motivational event, in this case a nutritive
fluid such as milk, then the clicker and the flash should both be less likely to generate CRs
in the group exposed to these events when food and water deprived than when unde-
prived. In fact, the opposite results were found. In line with the view that exposure to
the stimuli in the deprived state caused them to become associated with the relevant
incentive systems, the cats responded more to the clicker when it was associated with
the flash in the deprived state than in the undeprived state; and indeed, responded
more to the clicker than did a deprived control group exposed to the click and the flash
unpaired.

If this account is correct, then this kind of US processing needs to be added to formal
theories of Pavlovian conditioning to fully specify what the animal learns in even quite
basic situations where a simple stimulus predicts a US. One way of achieving this,
summarized in Fig. 19.5, is to regard Rescorla and Wagner’s lambda (l) as essentially a
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prediction of the true lambda (L) that changes such that dl ¼ b(L � Sl), with condi-
tioning reflecting this changing value of the US; viz: DV ¼ ab((Sl) � SV). Alterna-
tively, or perhaps additionally, it is possible to consider the merits of using US
exposure to change the associability of the US, (b), much as has been claimed for the
CS by CS processing theorists (Mackintosh, 1975; Pearce & Hall, 1980). Thus, for
example, orienting to specific perceptual features of the environment appears to be
strongly modulated by the animals’ prevailing motivational state (Aarts, Dijksterhuis, &
De Vries, 2001; Changizi & Hall, 2001) and, as such, it appears reasonable to suppose
that the likelihood of a particular US being processed (b) could change as a result of expe-
rience, such the value of b on trial n is bn ¼ jLn�1 � ln�1j, where Dln ¼ ibLn ¼ i j
Ln�1 � lo

n�1 j Ln, where i is the intensity of sensory representation of the US.
Or perhaps it could be assumed Dbo is positive if jL � loj < jL � lXj, where
lo ¼ bo(L � lo); refer Fig. 19.5.

There are clearly many alternatives available at present, and many experiments are
called for to clarify these ideas; however, the point of this analysis is not to provide the
final word but merely to consider the implications of providing a fully elaborated moti-
vational account of Pavlovian and instrumental conditioning. Although, as summarized
here, we have, in the past, provided many of the details for the latter; the former has been
neglected and is, one feels, a major gap in current theorizing.

Figure 19.5 The hypothesis considered here regarding the motivational control of US processing in
Pavlovian conditioning. (A) The conditioned stimulus can form associations with the stimulus and the
motivational/incentive components of the US and with the affective system that it activates. Each of
these associations produces distinct conditioned reflexes facilitated by the effects of incentive activity.
(B) US processing involves the formation of associations between the specific sensory components of
the US and the incentive system, and responses to those sensory events are facilitated by feedback
from the incentive system and will generate sensitization.
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