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Sequential sampling models have emerged as a standard theory of decision making in
two-alternative tasks. For decades, they have been employed to recover and predict behavior
and neural activity in problem domains as diverse as memory recognition, perceptual inference,
and value-guided decision making (e.g. Ratcliff, 1978; Britten et al., 1992; Krajbich et al., 2010).
In these models, some decision variable or variables accumulate potentially noisy evidence over
time until a response threshold is reached. Supporting extensive empirical observations,
analytical work has shown that one of the most successful such models, the diffusion decision
model (DDM, Ratcliff 1978), is analytically equivalent to Wald’s sequential probability ratio test
(SPRT), the optimal sequential test between two simple hypotheses (Wald and Wolfowitz 1948;
analysis by Bogacz et al. 2006). This situates the DDM not only as a descriptive model, but also
as a rational model of decision making and as such as a candidate unifying neural computation.

The struggle to maintain this dual status creates a tension, for example in the fact that the
proven-optimal “pure” DDM (pDDM) fails to recover some features of the data, such as
long-tailed and unequal response- and accuracy-conditioned RT distributions. Because of this,
many descriptive successes attributed to the DDM in fact derive from the “extended” DDM
(eDDM; Ratcliff 1978). This variant possesses additional trial-by-trial variability parameters that
allow it to recover those empirical effects — while losing the optimality properties that make the
pDDM a normatively grounded model (Moran, 2015).

A recently-proposed class of models reframes the conditions under which normative
optimality must hold by including the presence of an uncertain deadline, or relaxing the
assumption that evidence is temporally independent. These “collapsing-bound” DDM variants
replace the fixed decision threshold with a time-varying one, and are argued to achieve both the
descriptive advantages of the eDDM and the normative properties of the pDDM (Frazier and Yu,
2008; Drugowitsch et al., 2012; Moran, 2015).

In a recent issue of The Journal of Neuroscience, Hawkins and colleagues (Hawkins et al.
2015) attempted to assess the universality of the collapsing bound approach to decisions by
focusing on direct fits to data. They assembled nine datasets collected from two species
performing several different tasks in order to perform a direct comparison of the descriptive
power of the dynamic-threshold approach against the fixed-threshold eDDM.

The authors relied on several simplifying assumptions to constrain their comparisons, at least
two of which may bear on their observed results. First, since existing ways of computing
normative time-varying bounds rely on computationally-expensive dynamic programming, the
authors choose to focus on a general heuristic, the Weibull cumulative distribution function
(CDF). This is a three-parameter sigmoid, though for their primary comparison the authors
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allowed only the start and endpoint to vary, while fixing the shape of collapse. This is important
because the existing literature differs on the optimal shape, with Frazier and Yu (2008, Fig. 2)
reporting concave bounds and Drugowitsch etal. (2012, Fig. 3) convex, under different task
constraints. The authors allowed the shape to vary in a secondary analysis, but do not report
results from that variant, or any analysis in which shape is the only free parameter.

Second, the authors restrict their comparisons to one fixed-bounds model (the eDDM) and
two collapsing-bounds models (Weibull-collapsing-bounds versions of the eDDM and pDDM).
The latter comparison is motivated in part by the aforementioned idea that the collapsing
bounds and the trial-wise variability in the eDDM’s start point and drift rate are providing the
same descriptive power targeting long tails and unequal conditional RT distributions. Of interest
for rational analysis — one of the strengths of the collapsing bounds DDM — would have been a
comparison between the two proven-optimal models (fixed-bound pDDM and
dynamic-programming-collapsing-bound pDDM).

To correct for the additional parameters in the collapsed-bound models relative to the others,
the authors used the Bayesian Information Criterion (BIC), which adds to the fitted likelihood
score a penalty for each additional parameter that is a constant function of the data size.
Though standard, BIC is fragile to the parameterization choices of the models under
consideration. Because the Weibull CDF is novel in its application to these types of data, the
parameters that differ between the compared models had unknown, potentially null,
contributions to explanatory power. In these situations it may be more appropriate to apply an
adaptive penalty, such as the one provided by the Laplace approximation to the Bayes Factor
(MacKay, 2003). It is unclear whether the choice of parameterization and comparison algorithm
had meaningful impact on the results provided; any such influence would be in favor of the
fixed-bound eDDM.

In the comparison against the collapsing-bound eDDM, the results favor the fixed-bound
model, though a noticeable split exists between the human subjects (most of whom are better-fit
by fixed bounds) and monkeys (most of whom are better fit by collapsing bounds). In the
comparison against the collapsing-bound pDDM, the monkeys were evenly split between the
two models, and more humans remained better-fit by the fixed bound model (though not by as
large a majority as in the first comparison). Across both comparisons, BIC favors the fixed
bounds model overall, though with considerable variability across experiments.

The authors note the apparent divide between model fits to monkey and human behavior.
They suggest that the much greater amount of practice in the monkeys could lead to learning to
perform the task in a way that is better captured by the collapse models. This is consistent with
a simultaneously reported observation by Moran (2015), who notes that setting the relevant
decision policy parameters (starting point, drift rate, and bound separation) in these sorts of
tasks requires optimization over a large enough space as to likely require extensive learning
and feedback. This interpretation could also explain a surprising fit divergence in Hawkins and
colleagues’ results, between data re-analyzed from an experiment by Palmer et al. (2005) better
fit by this collapsing bounds model, and a replication by Hawkins and colleagues (Experiment 1)
better fit by fixed bounds: while the Palmer experiment employed extensive pre-training that
may have provided the necessary long timescale optimization, Experiment 1 did not.

As alluded to above, the benefits of the collapsed-bound model have been argued only
secondarily in its fits to data, and primarily in its ability to provide those fits alongside a
normative account of behavior. In sidestepping the latter, the authors lose a potential insight into



selecting an arena for the former. It remains to be seen what would result from a meta-analysis
of tasks and conditions under which collapsing bounds have been proven optimal: those with
asymmetric priors, heterogeneous and unsignaled difficulty levels, uncertain deadlines, or other
variability in trial timing and evidence. It is in those settings where one would expect dynamic
bounds to be most distinguishable from the fixed-bound model, under the assertion of
rationality.

Future work is also needed to synthesize the disparate conditions under which collapsing
bounds are analytically motivated or empirically observed. We see one such synthesis as the
class of models where the assumption of i.i.d. evidence samples is broken and therefore the
DDM will not inherit the SPRT’s optimality. Another approach is to accept collapsing bounds as
rational mechanism in the idealized case, but explore representational limitations or costs of
performance optimization under which collapsing decision bounds rationally reduce to the fixed
case.

With respect to descriptive work agnostic of the rationality question, subsequent
demonstrations that the fixed-bound model obtains in direct model comparisons would raise the
question of how we should interpret the full empirical picture: should we conclude that previous
empirical arguments for time-varying bounds have overfit the data, and the eDDM remains the
best consensus model on the strength of this meta-analysis? Should we keep preferring the
dynamic-bounds model because the present work did not investigate the best places for it to
apply and because it reduces to the fixed-bound model as a special case? Or should we
assume that both mechanisms apply in different situations and tasks? Mechanistic parsimony
might suggest the first or second option, but the question is an empirical one - different neural
circuits could conceivably implement different variations of the same computations and
strategically deploy them under different task demands. Recent work has shown that multiple
brain regions reflect — if not necessarily always participate in — the evidence accumulation
process driving perceptual decisions (Ding and Gold, 2012; Hanks etal., 2015). These
structures may operate as discrete elements of a parallel circuit, learning and implementing
decision policies with different computational properties. The influence of these policies on
behavior may range from negligible to dominant, depending on task.

In sum, Hawkins and colleagues have placed one signpost towards the next-generation
consensus theory of the temporal dynamics of decision making, and in doing so highlighted the
different contributions that can be made by research groups who differently value explanatory
versus descriptive modeling. Further efforts in both directions will be essential in capturing what
is optimal about behavior, and suboptimal about our models.
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