
Supplemental material for “Dissociating hippocampal and striatal con-
tributions to sequential prediction learning.” (European Journal of Neuro-
science 35:1011-1023).

Methods

Transition matrix generation

Images were selected according to a set of first-order contingencies specified by
three session-unique, pseudorandomly generated transition matrices for each sub-
ject. These matrices were designed to minimize the influence of response biases
arising from an overall unbalance between the unconditional image probabilities
— even ephemerally — and also to allow us to observe reaction time across a wide
range of first-order conditional probabilities. The specific procedure used is as
follows. Each of the four rows was generated, one at a time, in a pseudorandom
order. For the first row, four values were selected in a range of 0.05 to 0.95, and
then normalized to sum to one. For ensuing rows, each value was pseudorandomly
selected from a range with an upper bound of one minus the sum of the appropriate
column, and then normalized across the row. For the final row, each column was
set to one minus the sum of the other rows in that column, obviating any further
normalization. In this way we ensured that each set of image contingencies was a
probability distribution (rows sums to one) and also ensured uniform overall pre-
sentation frequency in the steady state (uniform stationary distribution: all columns
sum to one).

Among matrices generated this way, we retained only those that achieved the
uniform stationary distribution quickly (fast mixing time, see below) and selected
for a wide range of transition entropy (SD of row entropy > 0.25), to allow for a
broad sample in this measure as well. The transition probabilities in the matrices
ultimately used in our task ranged between 0.0019 and 0.7803 (mean 0.2503, stan-
dard deviation 0.1878), and transition entropy ranged between 0.6415 to 1.3854
(mean 1.1157, standard deviation 0.1859).

Mixing time. Mixing time is a measure of how many steps a Markov process
can be expected to proceed before the distribution of states visited approximates
the stationary distribution (which our case, uniform). Fast mixing was ensured by
a two-step process. First, we normalized each row and column of the transition
matrix, as detailed above. This property generates matrices that are likely to have
a high difference between the first and second eigenvalues, ensuring a low value
for the conductance of the resulting graph. The conductance is heuristically related
to mixing time (Sinclair, 1993). Second, a measure of worst-case mixing time
was computed by beginning with any individual image and counting the number
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of successive applications of the transition matrix required to obtain expected ob-
servation frequencies over images within one percent of the uniform distribution
(25% per image). Probability matrices which did not mix in fewer than ten steps
were discarded.

Learning rate analysis

We sought to identify activations in each of our brain regions of interest as indica-
tive of one of two distinct learning processes, both of which influence behavior.
These processes are distinguished by their learning rate, and so we sought to statis-
tically validate that BOLD signal in each region is best explained by regressors gen-
erated by one rate rather than the other. This analysis was complicated by the fact
that these regressors are correlated with one another, and so rather than employing
a traditional regression analysis, we used a method designed to infer which value
of the learning rate parameter which would optimally describe activation in each
region. Specifically, we constructed the forward entropy and conditional probabil-
ity regressors as estimated by a single process learning at the rate α0 — which we
set to the average of the two behaviorally identified rates — and included two ad-
ditional regressors measuring how these regressors would change if they had been
generated from the model with a different learning rate. Technically, we defined
these additional regressors as the partial derivatives of the probability and entropy
timeseries with respect to the learning rate parameter, evaluated at α0 (Holmes and
Friston, 1998). This analysis allows us to estimate the change in learning rate, rel-
ative to the reference point α0, that would best explain BOLD in an area, by using
a regression to estimate coefficients for the first two terms in the Taylor expansion
of the dependence of the regressor on the learning rate. This takes the following
form:

F (αBOLD) ≈ F (α0) + (αBOLD − α0)∂F (α)/∂α [S1]

Here F(α) is the regressor of interest (i.e., the probability or entropy time-
series), viewed as a function of the learning rate α, and αBOLD is some other
learning rate for which the regressor would best fit the BOLD signal. To encode
learning rates in this analysis we used a change of variables by which the original
Rescorla-Wagner learning rate was transformed by an inverse sigmoid, so that it
ranged throughout the real numbers and estimates of it could be treated with Gaus-
sian statistics. Thus F(α) above first maps the unconstrained argument α through
the logistic sigmoid function to produce a learning rate in original (0-1 constrained)
units, and the partial derivative accordingly includes the derivative of this transform
by the chain rule. This linear approximation to the (nonlinear) relationship between
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the regressor and the learning rate parameter allows the use of a GLM to approxi-
mately estimate the learning rates that would best explain BOLD correlates to the
regressor. In particular, the weight estimated for the partial derivative regressor cor-
responds to αBOLD α0 (or, more particularly, k · [αBOLDα0], if the net effect of
the regressor on BOLD is scaled by multiplying both sides of Equation S1 by some
factor k). This is just the degree to which the best-fit (inverse-sigmoid transformed)
learning rate for explaining the BOLD response differs from α0, the value used to
calculate our regressor of interest and its derivative. We thus computed estimates of
αBOLD for each regressor (entropy or probability) at a voxel by first extracting the
regression weights for the partial derivative regressor for each subject. To normal-
ize these coefficients to a common scale in units of transformed learning rate (even
if they originated from different regions or underlying regressors, i.e. probability
or entropy), we divided these weights by the average, across subjects, of the regres-
sion weights for the corresponding regressor F(α0) at the voxel, this corresponding
to the overall scale factor k mentioned above. Lastly, we added the reference value
α0, converting the result into the range of our behaviorally-obtained rates. Our
statistical analyses were all performed on the learning rate estimates in the trans-
formed units, taken across the population. Specifically, we test whether the com-
puted αBOLD is statistically distinguishable from learning rate values obtained by
fitting behavior, via t-tests against each (transformed) fit rate. We also test whether
αBOLD differs between regions, by comparing the estimates in paired-sample t-
tests. For Figure 5 (main text), we mapped the mean estimates and their confidence
intervals through the sigmoid to depict them in units of Rescorla-Wagner learning
rate. To maximize power, to examine learning-rate effects at areas where there was
learning- related activity, and to identify areas to allow between-region compar-
isons, we first selected voxels at which to perform these analyses of learning rates
using contrasts on the main effect of the conditional probability and entropy re-
gressors (not their derivatives). This was one motivation for choosing α0 to be the
midpoint of the fast and slow rates i.e., that it is roughly equally suited to detect
activity related to either. Additionally, the linear approximation to αBOLD is most
accurate when the difference αBOLD - α0 is small, suggesting placing α0 equally
close to both relevant learning rates. We selected the voxels of peak group activa-
tion within each of our a priori regions of interest. Differences between parameters
in the subsequent tests were considered reliable at a level of p < 0.05. Note that
the various tests on these estimates do not require correction for bias introduced by
the (region-wise) multiple comparisons used in voxel selection. This is because the
estimate αBOLD is computed from the estimate for the partial derivative, scaled by
the estimate for the main effect. The partial derivative regressors are by definition
orthogonal to the main effects, and thus the estimate for the partial derivative is
essentially independent of the selecting contrast. In particular, after whitening and
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filtering, which in principle can re-correlate orthogonal regressors (Kriegeskorte
et al., 2009), the average correlation across subjects between regressors represent-
ing the derivative and the original variable was 0.026 for conditional probability
and 0.076 for forward entropy. For testing αBOLD against the average learning
rate α0 (equivalent to testing the estimate for the partial derivative against zero),
the scale factor is a constant, and only the partial derivative affects the significance
of the test. For the other tests on implied learning rates, the selecting contrast does
introduce a bias, but it is a bias that works against the hypotheses we test. In par-
ticular, the selecting contrast extremizes the scale factor (the parameter estimate
for the main effect of entropy or probability), which (since the estimate is divided
by this factor) minimizes the absolute estimate of αBOLD α0, or equivalently bi-
ases the estimate of αBOLD toward α0. In other words, selecting voxels for best
correlation with the probability or entropy computed for learning rate α0 tends to
bias the estimated learning rate toward the selecting learning rate in our case, the
midpoint – which biases the estimate against the hypotheses that αBOLD differs
between regions or that it corresponds to the fast or slow values of the learning
rate. Thus, observing a significant effect for the derivative regressors is a strong
test of the hypothesis that either of the extreme, behaviorally-obtained, learning
rates, is a superior explanation of neural activity compared to the midpoint value
used for voxel selection.

Additional GLM analyses

In order to investigate alternative approaches to the fMRI data, we conducted two
additional GLM analyses, which were similar to those described in the main text
except for the definition of the parametric regressors of interest. For the first, (com-
bined process) we generated probability and entropy estimates from the net transi-
tion matrix (the weighted sum of both fast and slow transition matrices, from Eq.
2), rather than either the fast or slow separately. For the second, we included regres-
sors from both fast and slow processes in a single GLM, without orthogonalizing
one to the other.

Results

fMRI: Combined Process

The analyses in the main text are premised on the assumption that neural correlates
relate to either of the hypothesized learning processes separately. As a partial test
of this assumption, we conducted an additional exploratory analysis using regres-
sors generated from the combined learning process (Figure 2).
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Conditional Probability When generating regressors according to the estimates
of the combined process (the behaviorally-observed weighted sum of expectations
learned by the fast and slow LR processes) as fit to behavior, we observed corre-
lates to the conditional probability regressor in striatum (specifically, right medial
caudate [12, 8, 6 ; p < 0.0005 unc.]).

Forward Entropy Examining the forward entropy regressor in the combined
process revealed negative correlates in caudate [left -14, 4, 12 p < 0.0003 unc.;
right 12, 8, 0 p < 0.0006 unc.]. In our other major region of interest, MTL, no
activity was observed reaching even an exploratory uncorrected reporting thresh-
old of .001. Overall, that these results are weaker than those reported in the main
text (in particular, that none of these results survive correction for multiple compar-
isons), is consistent with our interpretation that neural activity is related to separate
rather than combined processes. Also, that the results, in Figure 2, more closely
resemble the correlates of the fast process (Figures 3a and 4, main text) which we
speculate may be due to the slightly greater weight of this process in the combined
probabilities.
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Figures

Figure 1: Non-orthogonalized SPMs. To observe the results of our analyses un-
contaminated by any residual correlation that might be imparted by SPM’s implicit
orthogonalization, this GLM was run with orthogonalization turned off, for all re-
gressors. The regressors of interest (probability, entropy) from both fast and slow
processes were used to construct a single GLM. The entropy results, shown here,
reflect similar patterns of activity as in the main text (Figure 3a and b), albeit at a
less-stringent statistical threshold.
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Figure 2: Combined process SPMs. These maps were generated using the two
process regressors, with learning rate and weight parameters as fit to behavior. The
probability and entropy results, shown here, reflect a similar pattern of activity as
in the fast process (Figures 3a and 4, main text), perhaps due to the slightly greater
weight applied to this process in effecting behavior
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Tables

Region Hem MNI Extent T p (unc.)
Putamen R 18 6 -6 84 4.67 0.000014 *

Inferior Frontal Gyrus R 36 16 -4 1008 9.56 0.000000 ++
Thalamus L -14 -18 4 198 9.34 0.000000 ++

Right Calcarine Sulcus R 22 -56 4 1004 8.24 0.000000 ++
Left Anterior Insula L -40 14 -4 923 8.03 0.000000 ++

Table 1: Areas of negative correlation with the forward entropy regressor in the
fast process GLM.
** = p < 0.05 after FWE correction for search in an anatomically defined mask of
the ventral striatum and hippocampus.
* = p < 0.1 after correction.
++ = p < 0.05 after whole-brain correction for FWE.
+ = p < 0.1 after whole-brain correction.

Region Hem (xyz) Extent T punc

Hippocampus (Anterior) L -26 -10 -18 36 5.71 0.000021 **
Parahippocampal Cortex L -16 -34 -18 35 4.84 0.000109 *

Table 2: Regions of significant correlation with the forward entropy regressor in
the slow process GLM.
** = p < 0.05 after FWE correction for search in an anatomically defined mask of
the ventral striatum and hippocampus.
* = p < 0.1 after FWE correction.
Note: Parahippocampal cluster was significantly active outside of the hippocampal
mask, and therefore was disadvantaged by correction on the hippocampus proper.
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Region Hem MNI Extent T punc

Putamen R 18 14 -4 25 4.52 0.000204 *

Table 3: Regions of significant correlation with the conditional probability regres-
sor in the fast process GLM.
** = p < 0.05 after FWE correction for search in an anatomically defined mask of
the bilateral ventral striatum and hippocampus.
* = p < 0.1 after correction.

Region Hem MNI Extent T punc

Postcentral Gyrus L -58 -6 20 40 5.47 0.000032
Anterior Cingulate L 0 28 24 81 5.12 0.000063
FrontalInfTriR (aal) R 54 20 0 19 4.25 0.000347

Table 4: Regions of significant correlation with the conditional probability regres-
sor in the slow process GLM.
No clusters survived whole-brain correction for FWE.
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